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Abstract
In many situations, programming languages with varying levels of expressiveness need to interact
to achieve a final result. This paper is about HC, a framework derived from a categorical model that
formalizes how two typed paradigmatic programming languages H and C can interact in a hierarchical
manner: the host language H can operate on the core terms of C, but not the other way around. We
recall the essential structure of the categorical model, and present a specific example of HCwhere H is
capable of composing circuits that can be modeled using C. Finally, we discuss potential straightforward
and natural generalizations of this instance of HC.
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1. Introduction and insights

Multi-language programming concerns all those scenarios where several programming lan-
guages must interoperate. A first widespread scenario is the “Full-Stack Web Development”
where for example, JavaScript is used for the frontend (user interface), Python or Ruby for the
backend (business logic and database), and SQL to query a database, while HTML, CSS, Type-
Script and Java are involved in various further roles. A second typical scenario occurs when we
need to connect heterogeneous systems, thus we have to develop application interfaces (APIs)
that allow interactions between systems (maybe involving JSON patterns). A third scenario is
that of scientific analysis where it is necessary to cooperate elements of numerical calculation
(MATLAB, Python) and simulation of physical phenomena (C++).

We are focused on a particular interoperability scenario, namely that of circuit programming.
More precisely, we are interested in programming languages that are used to develop and
describe reversible, quantum, analog, or the usual digital circuits. Digital circuits are often
designed by means of Hardware Description Languages (HDLs) like VHDL and Verilog that
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are endowed with suitable simulation tools (e.g. Vilinx Vivado and Quartus Prime) for the
development of digital circuits. Often, HDLs programs are interfaced with software written
in C/C++. Reversible circuits are a special class of digital circuits where every operation is
physically reversible, so that the energy dissipation can be tamed in a precise way. Specialized
languages and extensions of existing HDLs to describe reversible circuits are considered in
RevKit and, sometimes, interoperates with quantum programming. The quantum programming
is essentially done in terms of quantum circuits (see Quantum Azure, IBM Quantum Platform,
...) in a context controlled by a high-level language (typically Python) which sets up the desired
orchestration of quantum operations. Last, a situation not dissimilar to the digital case occurs
in the case of analog circuits, which typically must be interfaced with digital systems by using
Verilog-AMS and VHDL-AMS (extensions of Verilog and VHDL for analog/mixed signal).

Languages distinctive traits. This paper aims to model the interaction between two lan-
guages: a core one, describing circuits and a host language that manipulates them. This
interoperation is typical of any quantum development kit (e.g., see QiSKIT and QDK) that
grasps an usual facet of quantum programming languages (see, for instance, [1, 2, 3, 4, 5, 6]),
and reasonably and smoothly adapts to the other mentioned cases in which a classical computer
must interact with circuits that perform specific tasks. For example, we are thinking about Field
Programmable Gate Arrays (FPGAs) in the digital case, Field-Programmable Analog Arrays
(FPAAs) in the analog case, quantum coprocessors (sometimes accessible via the cloud) in the
quantum case, and energy-efficient circuits in the reversible case, all on the core side.

We notice that this work is meant to be explorative, so we will keep it as simple and intuitive
as possible. We begin by identifying the distinguishing features that characterize the host-core
scenario that we want to explore.

• The language for circuits we will formalize is iteration-free. It provides primitives to
compose sub-circuits. The host language will allow us to manipulate sub-circuits, for
example replicating them as required, possibly depending on some parameter. For example,
an adder could be parameterized on the number of its input/output bits.

• The host language operating on the terms of a core language fits in the area of meta-
programming, where programs manipulate other programs. We address to [7] for the
readers interested to deepen the relations with meta-programming which can be sum-
marized as follows: a program can be designed to read, generate, analyse, or transform
another program.

Metodology. Our starting point is a categorical analysis as proposed in [8], in its turn
inspired to [9, 10, 11], conceived as a basis to cope with a quantum programming perspective
that implicitly outlines the characteristics that we here generalize, which also suggested us to
adopt the terminology “host-core”.

On the categorical ground we define a typed calculus HC embodying two communicating
languages H (host) and C (core), our calculus being the sound and complete internal language
of the mentioned interacting categories. The language C is a linearly typed calculus sufficient
to model the composition of circuits. The language H is essentially a simply typed lambda



calculus characterized by the type Proof(𝐴,𝐵), where 𝐴 and 𝐵 are types for the terms in C.
The presence of types with form Proof(𝐴,𝐵) in H place H in a higher position than that of C
in a straightforward hierarchy which establishes which language manipulates the terms of the
other language. Specifically, host terms in H can manipulate core terms in C, namely circuits,
but not vice versa.

It is worth noting that HC has some significant limitations. Firstly, for example, C will not
include the fan-out wiring (see [12]), which refers to the ability to freely connect the output of
a gate to multiple inputs of other gates, due to linearity constraints on its types. This limitation
is quite relevant if the aim is to model digital or analog circuits. Secondly, H does not include
constructs for iteration or recursion. At least apparently, this significantly restricts quantum
programming languages that we might try to model by means of HC.

We here do not see the mentioned limitations as an obstacle to start the investigation that we
summarize in this work. We will briefly discuss how to overcome limitations in a simple way in
the conclusions.

2. A “kernel” host-core calculus HC

In this section we present the typed calculus HC. It builds upon the two components host
language H, designed as a simply typed lambda calculus, and embedded core language C which
we assume can be typed by a linear type discipline. By design, the host language is privileged,
as compared to the core. Seen in the other way round, we do not allow that every of the terms
we can build as part of the host language can be seen as terms at the core level. Roughly, the
core language is hierarchically dependent on the host language.
HC differs from the language that Benton introduces in [9] because the communication

between H and C cannot occur in both directions in HC. At the level of a categorical semantics,
this means we do not require comonad or adjunction between the categories that model host
and core components. Instead, we need a suitable enriched category.

2.1. Syntax of HC, and a type system

We strictly follow the notation in [10].

• Regarding the host language H, H-types are ranged over 𝑋,𝑌, 𝑍 . . . , H-type contexts by
Γ,Γ′, H-variables by 𝑥, 𝑦, 𝑧 . . . , and H-terms by 𝑠, 𝑡, 𝑣 . . . .

• Regarding the core language C, C-types are ranged over by 𝐴,𝐵,𝐶 . . . , C-type contexts
by Ω,Ω′, C-variables by 𝑎, 𝑏, 𝑐 . . . , and C-terms by ℎ, 𝑓, 𝑔 . . . .

We write Γ | Ω to identify a mixed context that includes both host (in Γ) and core (in Ω) type
information. For every host context Γ, we denote the product of its elements by ×Γ. Same for
every core context Ω. We consider two fixed sets of base types: a set ΣC of base C-types, ranged
over by 𝛼 (possibly indexed) and a set ΣH of base H-types, ranged over by 𝜄 (possibly indexed).

The language T𝐶 of types for the core language is generated by the grammar:

𝐴,𝐵,𝐶 ::= 𝐼 | 𝛼, 𝛼0, 𝛼1, . . . | 𝐴⊗𝐵 (1)



with 𝐼 the unit type, and 𝛼, 𝛼0, 𝛼1, . . . elements of ΣC, set of base types for C. An example of
an element in ΣC is Bit (see Section 3 ). The type 𝐼 is the unit for the tensor ⊗, meaning that
we can always think of 𝐴1 ⊗ . . .⊗𝐴𝑛 and 𝐼 ⊗𝐴1 ⊗ . . .⊗𝐴𝑛 as simply 𝐼 whenever 𝑛 = 0.

The language T𝐻 of types for the host language is generated by the grammar:

𝑋,𝑌, 𝑍 ::= 1 | 𝜄, 𝜄0, 𝜄1, . . . | 𝑋 × 𝑌 | 𝑋 → 𝑌 | Proof(𝐴,𝐵) (2)

with 1 the unit type, 𝜄, 𝜄0, 𝜄1, . . . elements of ΣH, set of base types for H, and both 𝐴,𝐵 being
C-types. Examples of elements in ΣH are {Nat,Bool}.

Similarly to [4, 11], the host-type Proof(𝐴,𝐵), with 𝐴,𝐵 core-types, is the formal tool to
model where host and core syntax meet. Proof-theoretically Proof(𝐴,𝐵) is the type of proofs
from 𝐴 to 𝐵 in the host language. For us, core terms represent circuits that can be manipulated
at the host level by means of this typing approach.

The grammars that generate the core language C and the host language H have the following
mutually recursive definitions:

𝑓, 𝑔 ::= ∙ | 𝑎 | 𝑓 ⊗ 𝑔 | let 𝑓 be 𝑎⊗ 𝑏 in ℎ | let 𝑓 be ∙ in ℎ | derelict(𝑠, 𝑓) (3)

𝑠, 𝑡 ::= * | 𝑥 | ⟨𝑠, 𝑡⟩ | 𝜋1(𝑠) | 𝜋2(𝑠) | 𝜆𝑥 : 𝑋.𝑡 | 𝑠𝑡 | promote(𝑎1, . . . , 𝑎𝑛.𝑓) (4)

respectively, where 𝑓 in (4) is a core term generated by (3), and 𝑠 in (3) is a host term generated
by (4).

Core terms belong to a linear language1 with let constructor and unit ∙ with type 𝐼 . Host
terms are simply-typed lambda calculus with unit term * with type 1. Finally, the functions
derelict(·, ·) and promote(·.·) model the communication between host H and core C.

The typing rules for HC are in Figure 1. The dereliction rule (der) “derelicts” a host term to
the core language by applying it to a correctly typed (linear) core term; this choice is consistent
with the standard presentation of this kind of rules (e.g., see [11]). Similarly, the promotion rule
(prom) “promotes” a term from the core to the host by “preserving” the linear context.

Remark 1. [Promotion with empty linear contexts.] Let us assume that the closed core term 𝑓
is typed by Γ | − ⊢C 𝑓 : 𝐴. According to the promotion rule (prom) of Figure 1, we can derive
Γ ⊢H promote(−.𝑓) : Proof(𝐼, 𝐴) because 𝐴1 ⊗ . . .⊗𝐴𝑛 is simply the unit 𝐼 . □

The following lemma can be proved by structural induction on the derivations that we can
build by means of the rules in Figure 1.

Lemma 1. [Substitution]

(sub1) If Γ ⊢H 𝑠 : 𝑋 and Γ, 𝑥 : 𝑋 | Ω ⊢C 𝑒 : 𝐴 then Γ | Ω ⊢C 𝑒[𝑠/𝑥] : 𝐴.

(sub2) If Γ | Ω1 ⊢C 𝑔 : 𝐴 and Γ | Ω2, 𝑎 : 𝐴 ⊢C 𝑓 : 𝐵 then Γ | Ω1,Ω2 ⊢C 𝑓 [𝑔/𝑎] : 𝐵.

(sub3) If Γ ⊢H 𝑠 : 𝑋 and Γ, 𝑥 : 𝑋 ⊢H 𝑡 : 𝑌 then Γ ⊢H 𝑡[𝑠/𝑥] : 𝑌 .

1We use “linearity” to identify the linear use of variables (alternative linearity notions are discussed in [13, 14]).



(av) Γ1, 𝑥 : 𝑋,Γ2 ⊢H 𝑥 : 𝑋 (uv) Γ ⊢H * : 1

(pv)
Γ ⊢H 𝑠 : 𝑋 Γ ⊢H 𝑡 : 𝑌

Γ ⊢H ⟨𝑠, 𝑡⟩ : 𝑋 × 𝑌
(𝜋1𝑣)

Γ ⊢H 𝑣 : 𝑋 × 𝑌

Γ ⊢H 𝜋1(𝑣) : 𝑋

(𝜋2𝑣)
Γ ⊢H 𝑣 : 𝑋 × 𝑌

Γ ⊢H 𝜋2(𝑣) : 𝑌
(aiv)

Γ, 𝑥 : 𝑋 ⊢H 𝑡 : 𝑌

Γ ⊢H 𝜆𝑥 : 𝑋.𝑡 : 𝑋 → 𝑌

(aev)
Γ ⊢H 𝑡 : 𝑋 → 𝑌 Γ ⊢H 𝑠 : 𝑋

Γ ⊢H 𝑡(𝑠) : 𝑌

(ac) Γ | 𝑎 : 𝐴 ⊢C 𝑎 : 𝐴 (uc) Γ | − ⊢C ∙ : 𝐼

(tc)
Γ | Ω1 ⊢C 𝑓 : 𝐴 Γ | Ω2 ⊢C 𝑔 : 𝐵

Γ | Ω1,Ω2 ⊢C 𝑓 ⊗ 𝑔 : 𝐴⊗𝐵

(let1c)
Γ | Ω1 ⊢C 𝑓 : 𝐴⊗𝐵 Γ | Ω2, 𝑎 : 𝐴, 𝑏 : 𝐵 ⊢C ℎ : 𝐶

Γ | Ω1,Ω2 ⊢C let 𝑓 be 𝑎⊗ 𝑏 in ℎ : 𝐶

(let2c)
Γ | Ω1 ⊢C 𝑓 : 𝐼 Γ | Ω2 ⊢C ℎ : 𝐶

Γ | Ω1,Ω2 ⊢C let 𝑓 be ∙ in ℎ : 𝐶

(prom)
Γ | 𝑎1 : 𝐴1, . . . , 𝑎𝑛 : 𝐴𝑛 ⊢C 𝑓 : 𝐴

Γ ⊢H promote(𝑎1, . . . , 𝑎𝑛.𝑓) : Proof(𝐴1 ⊗ . . .⊗𝐴𝑛, 𝐴)

(der)
Γ ⊢H 𝑡 : Proof(𝐴,𝐵) Γ | Ω ⊢C 𝑓 : 𝐴

Γ | Ω ⊢C derelict(𝑡, 𝑓) : 𝐵

Figure 1: Typing rules

Notice that (sub1) allows us to substitute a host term for a variable in a core term. In designing
(sub2), we follow the line adopted in languages like QWire and EWire, which have some
primitive notions of substitution for composing functions of Proof(·, ·) type. Finally, (sub3)
models the replacement of a term for a variable in the host language as well as in simply typed
lambda calculus. These substitution lemmas are quite similar to that presented in the enriched
effect calculus EEC, see [15, Prop. 2.3]

2.2. Equational theory for HC

The equational theory among the terms in H is the standard one induced by 𝛽/𝜂-rules which
equates simply typed lambda terms. Figure 2 introduces the equational theory of HC.

The equations in the rules of Figure 3 model how promotion and dereliction are each other
dual, where in (der-prom) we use Ω to denote [𝑎1 : 𝐴1, . . . , 𝑎𝑛 : 𝐴𝑛].



(el1)
Γ | Ω1, 𝑎 : 𝐴, 𝑏 : 𝐵 ⊢C 𝑓 : 𝐶 Γ | Ω2 ⊢C 𝑔 : 𝐴 Γ | Ω3 ⊢C ℎ : 𝐵

Γ | Ω1,Ω2,Ω3 ⊢C let 𝑔 ⊗ ℎ be 𝑎⊗ 𝑏 in 𝑓 = 𝑓 [𝑔/𝑎, ℎ/𝑏] : 𝐶

(el2)
Γ | Ω1, 𝑐 : 𝐴⊗𝐵 ⊢C 𝑓 : 𝐶 Γ | Ω2 ⊢C 𝑔 : 𝐴⊗𝐵

Γ | Ω1,Ω2 ⊢C let 𝑔 be 𝑎⊗ 𝑏 in 𝑓 [𝑎⊗ 𝑏/𝑐] = 𝑓 [𝑔/𝑐] : 𝐶

(el3)
Γ | Ω ⊢C 𝑓 : 𝐴

Γ | Ω ⊢C let ∙ be ∙ in 𝑓 = 𝑓 : 𝐴

(el4)
Γ | Ω1, 𝑎 : 𝐼 ⊢𝒞 𝑓 : 𝐴 Γ | Ω2 ⊢𝒞 𝑔 : 𝐼

Γ | Ω1,Ω2 ⊢𝒞 let 𝑔 be ∙ in 𝑓 [∙/𝑎] = 𝑓 [𝑔/𝑎] : 𝐴

Figure 2: Let-Evaluation rules for the core language C

(der-prom)
Γ | Ω ⊢C 𝑓 : 𝐴 Γ | Ω1 ⊢C 𝑔1 : 𝐴1 . . . Γ | Ω𝑛 ⊢C 𝑔𝑛 : 𝐴𝑛

Γ | Ω ⊢C derelict(promote(𝑎1, . . . , 𝑎𝑛.𝑓), 𝑔1 ⊗ . . .⊗ 𝑔𝑛) = 𝑓 [𝑔1/𝑎1 . . . 𝑔𝑛/𝑎𝑛] : 𝐴

(prom-der)
Γ ⊢H 𝑓 : Proof(𝐴,𝐵)

Γ ⊢H promote(𝑎.derelict(𝑓, 𝑎)) = 𝑓 : Proof(𝐴,𝐵)

Figure 3: Promote and Derelict duality rules

Observe that pure C-judgments with form:

− | Ω ⊢C 𝑓 : 𝐴 (5)

identify terms that we can interpret as purely linear structures that we can build by means of
tensor products.

Remark. As compared to Benton LNL system, here we add the 𝜂 rules to the calculus following
the presentation of [10]. Observe that this is necessary to get a completeness result.

Specifically, the crucial difference between LNL original presentation and HC is that the
interaction between H and C is not symmetric. Since we are programmatically defining HC
as a minimal system, having a linear core is a natural starting choice. This could appear very
limiting and difficult to overcome when writing a program. However, it is not the case.

On a first hand, to extend C with non-linear behavior, it would be enough to endow the rules
for the tensor product with additive contexts and transform it into a Cartesian product. This
can be easily reflected at the semantic level, restoring all the results about the correspondence
between syntax and semantics [8]. Moreover, a smooth syntactical approach is proposed in the
conclusion by discussing the fan-out representability: if suitable constants (gates for circuits)
are assumed available in the core, then we can simulate the non-linearity.

On the other hand, the design of the system HC is motivated by the need to incorporate
linearity into languages for quantum computing and multi-language frameworks, the goal being



to demonstrate how a minimal linear system like HC can be effectively integrated into a host
language and extended for future applications. □

Example 1. [Composition in H of C terms] Let the following judgments:

Γ ⊢H 𝑠 : Proof(𝐴,𝐵) Γ ⊢H 𝑡 : Proof(𝐵,𝐶) Γ | 𝑎 : 𝐴 ⊢C 𝑎 : 𝐴

be given. We can construct the term:

Γ ⊢H promote(𝑎.derelict(𝑡,derelict(𝑠, 𝑎))) : Proof(𝐴,𝐶) (6)

in H, denoted as comp(𝑎.𝑠, 𝑡), which becomes the associative composition in H of terms in C
which we can think of as functions from 𝐴 to 𝐵, and 𝐵 to 𝐶 . □

3. HC as circuit description language

We here introduce examples to show how we concretely think of using a formal framework like
HC. The examples assume to equip HC with constants and functions to support basic circuit
definition and manipulation, specializing HC to a system hosting a (toy) hardware definition
language.

Since languages for circuit manipulation are particularly relevant for classical,
probabilistic[16], reversible, and quantum computations[17, 18], we focus on sketching how
Reversible Boolean Circuits, seen in [19] as a rewriting system instance of a 3-Category, can be
built at the core level and composed at the host level.

The extensions of C and H with new terms and the specification of their operational semantics
are kept at an intuitive level, in an illustrative perspective. This work is meant to show that
modelling the interaction between two languages as we do is viable, leaving a full technical
development to future work.

Example 2. [Reversible Boolean Circuits at the core level] We recall that any boolean reversible
gate with arity 𝑘 is interpreted as a self-dual boolean injective function with 𝑘 input and 𝑘
output.

We start by extending C to C* to include boolean reversible gates. We need to fix a new type
Bit and its two inhabitants 0,1 such that:

Γ | − ⊢C 0 : Bit Γ | − ⊢C 1 : Bit

which we interpret obviously by the corresponding natural numbers.
The further extension of C*, as compared to C, is by the set of boolean reversible gates “Swap”

sw, “Negation” not, also known as “Toffoli-one”, “Toffoli-two” cnot, and “Toffoli-three” ccnot
whose typing rules are:



Γ | Ω ⊢C 𝑓 : Bit

Γ | Ω ⊢C not(𝑓) : Bit

Γ | Ω𝑓 ⊢C 𝑓 : Bit Γ | Ω𝑔 ⊢C 𝑔 : Bit

Γ | Ω𝑓 ,Ω𝑔 ⊢C sw(𝑓, 𝑔) : Bit⊗Bit

Γ | Ω𝑓 ⊢C 𝑓 : Bit Γ | Ω𝑔 ⊢C 𝑔 : Bit

Γ | Ω𝑓 ,Ω𝑔 ⊢C cnot(𝑓, 𝑔) : Bit⊗Bit

Γ | Ω𝑓 ⊢C 𝑓 : Bit Γ | Ω𝑔 ⊢C 𝑔 : Bit Γ | Ωℎ ⊢C ℎ : Bit

Γ | Ω𝑓 ,Ω𝑔,Ωℎ ⊢C ccnot(𝑓, 𝑔, ℎ) : Bit⊗Bit⊗Bit
.

The reversible gates can be interpreted as boolean functions with inpu/output values in {0, 1}:

sw(𝑥, 𝑦) ::= 𝑦 ⊗ 𝑥 not(𝑥) ::= 1− 𝑥

cnot(𝑥, 𝑐) ::= 𝑥⊕ 𝑐 ccnot(𝑥, 𝑦, 𝑐) ::= 𝑥𝑦 ⊕ 𝑐 ,

where ⊕ is the exclusive or and 𝑥𝑦 the multiplication between 𝑥 and 𝑦.
For cnot, modelling it as a self-dual operator, would mean to add the axiom:

let cnot(𝑥, 𝑐) be 𝑦 ⊗ 𝑐′ in cnot(𝑦, 𝑐′) = 𝑥⊗ 𝑦

to C*. The equation models that a series composition of cnot(𝑥, 𝑐), and cnot(𝑦, 𝑐′) yields the
identity on the tensor product 𝑥 ⊗ 𝑦 between the two “wires” 𝑥, and 𝑦. Analogous axioms
would be required for sw, not, and ccnot.

For example, we can derive Γ | Ω ⊢C not(not(𝑓) : Bit by means of the substitution rule
(𝑠𝑢𝑏2), as follows:

Γ | Ω𝑓 ⊢C 𝑓 : Bit

Γ | Ω𝑓 ⊢C not(𝑓) : Bit

Γ | Ω𝑓 ⊢C not(not(𝑓)) : Bit

.

Linear constraints on Bit forbid the duplication of variables with type Bit. This aspect is
crucial in contexts like reversible and quantum computing where the no-cloning property on
values must hold. □

Examples 3 and 4 below suggest how to accommodate the syntax of the host language to the
extension in Example 2. In particular, we focus on the circuits manipulation at host level.

Example 3. [Promoting Reversible Boolean Circuits to the host level] Let our core language
be C* as in Example 2. The core constants 0 and 1 can be lifted the host level, so belonging to
what we can call H*, by means of (𝑝𝑟𝑜𝑚):

Γ ⊢H promote(−.0) : Proof(𝐼,Bit)



Γ ⊢H 𝑓 : Proof(𝐴,𝐵) Γ | 𝑎 : 𝐴 ⊢C 𝑎 : 𝐴

Γ | 𝑎 : 𝐴 ⊢C derelict(𝑓, 𝑎) : 𝐵

Γ ⊢H 𝑔 : Proof(𝐶,𝐷) Γ | 𝑐 : 𝐶 ⊢C 𝑐 : 𝐶

Γ | 𝑐 : 𝐶 ⊢C derelict(𝑔, 𝑐) : 𝐷

Γ | 𝑎 : 𝐴, 𝑐 : 𝐶 ⊢C derelict(𝑓, 𝑎)⊗ derelict(ℎ, 𝑐) : 𝐵 ⊗𝐷

Γ ⊢H parallel(𝑎.𝑓, 𝑐.ℎ) : Proof(𝐴⊗ 𝐶,𝐵 ⊗𝐷)

Figure 4: Parallel composition of two reversible boolean circuits lifted from C*.

Γ ⊢H promote(−.1) : Proof(𝐼,Bit)

Likewise, lifting exists for gates and complex circuits built on gates. For example:

Γ ⊢H promote(𝑎1 . . . 𝑎𝑛.not (𝑓)) : Proof(⊗Ω,Bit)

Γ ⊢H promote(𝑎1 . . . 𝑎𝑛, 𝑏1 . . . 𝑏𝑚.cnot (𝑓, 𝑔)) : Proof(⊗Ω𝑓 ,Ω𝑔 ,Bit) ,

where ⊗Ω𝑓 ,Ω𝑔 denote 𝐴1 ⊗ . . .⊗𝐴𝑛 ⊗𝐵1 ⊗ . . .⊗𝐵𝑚, assuming that:

𝑎1 : 𝐴1 . . . 𝑎𝑛 : 𝐴𝑛 ⊢C 𝑓 : Bit 𝑏1 : 𝐵1 . . . 𝑏𝑚 : 𝐵𝑚 ⊢C 𝑔 : Bit .

In fact, we can apply the lifting to H* to more complex circuits in C* to obtain further complex
structures, like parallel composition. Let:

Γ ⊢H 𝑓 : Proof(𝐴,𝐵) Γ ⊢H 𝑔 : Proof(𝐶,𝐷)

Γ | 𝑎 : 𝐴 ⊢C 𝑎 : 𝐴 Γ | 𝑐 : 𝐶 ⊢C 𝑐 : 𝐶

be given, where, the terms 𝑓, 𝑔, and ℎ have already be lifted to H* from C*. The parallel
composition of 𝑓 and 𝑔, which depend on 𝑎, and 𝑐, respectively, is:

parallel(𝑎.𝑓, 𝑐.𝑔) ::= promote(𝑎, 𝑐.(derelict(𝑓, 𝑎)⊗ derelict(𝑔, 𝑐)))

whose type is Proof(𝐴⊗ 𝐶,𝐵 ⊗𝐷). Fig. 4 derives it.

Extending the derivation in Fig. 4 with some more steps yields

𝜆𝑓:Proof(𝐴,𝐵). 𝜆𝑔:Proof(𝐶,𝐷).parallel(𝑎.𝑓, 𝑐.𝑔) (7)

with 𝑎 : 𝐴 and 𝑐 : 𝐶 open variables from C*, not in H*, and type

Proof(𝐴,𝐵) → Proof(𝐶,𝐷) → Proof(𝐴⊗ 𝐶,𝐵 ⊗𝐷) .

A term analogous to (7), which, however, model the series composition, is:

𝜆ℎ : Proof(𝐴,𝐵).𝜆𝑓 : Proof(𝐵,𝐶).comp(𝑎.ℎ, 𝑓)

with type Proof(𝐴,𝐵) → Proof(𝐵,𝐶) → Proof(𝐴,𝐶) which applies ℎ after 𝑓 , where
comp(𝑎.ℎ, 𝑓) is defined in Example 1. □



Example 4. [A circuit core language, III: Controlling Circuits, some reflections] Let us assume
to call H++ the extension of H* in Example 3 with boolean constants true, false, typed by the
obvious rules, with:

Γ ⊢H 𝑡 : bool Γ ⊢H 𝑡𝑙 : 𝑋 Γ ⊢H 𝑡𝑟 : 𝑋

Γ ⊢H if 𝑡 then 𝑡𝑙 else 𝑡𝑟 : 𝑋

Depending on the value of 𝑡, we can decide to operate either on 𝑡𝑙, or 𝑡𝑟 which may well have
been lifted from C*. So, inside H++ it is possible control how to operate on circuits that come
from C*.

For example, let us assume that 𝑎 : 𝐼 , 𝑏 : 𝐼 , 𝑐 : Bit⊗Bit, and Γ be:

𝑥 : bool, 𝑓 : Proof(Bit⊗Bit,Bit⊗Bit), 𝑔 : Proof(Bit⊗Bit,Bit⊗Bit) .

We can start to observe that the terms:

promote(−.0⊗ 0) promote(−.1⊗ 1)

represent input values 0⊗ 0, and 1⊗ 1 lifted from the core level to the host one. Then, we can
derive the two following judgments:

Γ ⊢H

𝐹 [𝑓 ]⏞  ⏟  
comp(𝑎.promote(−.0⊗ 0), 𝑓) : Proof(𝐼,Bit⊗Bit)

Γ ⊢H comp(𝑎.promote(−.1⊗ 1), 𝑔)⏟  ⏞  
𝐺[𝑔]

: Proof(𝐼,Bit⊗Bit) ,

where 𝐹 [𝑓 ] (with free variable 𝑓 ) stands for the application of 𝑓 to the input promote(−.0⊗0),
and 𝐺[𝑔] (with free variable 𝑔) has analogous meaning, or the slightly more complex judgment:

Γ ⊢H

𝐺𝐹 [𝑔,𝑓 ]⏞  ⏟  
comp(𝑏.promote(−.1⊗ 1), comp(𝑐.𝑔, 𝑓)) : Proof(𝐼,Bit⊗Bit)

in which 𝐺𝐹 [𝑔, 𝑓 ] (with free variables 𝑔, 𝑓 ) represents tha application of the promoted 𝑔 to the
application of the promoted 𝑓 to the promoted input 1⊗ 1.

Building on the previous terms, we can give the type:

bool → Proof(Bit⊗Bit,Bit⊗Bit)

→ Proof(Bit⊗Bit,Bit⊗Bit) → Proof(𝐼,Bit⊗Bit)

to the term:

𝜆𝑥.𝜆𝑓.𝜆𝑔.if𝑥 then

𝐹 [𝑓 ]⏞  ⏟  
comp(𝑎.promote(−.0⊗ 0), 𝑓) (8)

else comp(𝑏.promote(−.1⊗ 1), comp(𝑐.𝑔, 𝑓))⏟  ⏞  
𝐺𝐹 [𝑔,𝑓 ]

where we omit the types of lambda-abstracted variables for the sake of readability. Obviously,
(8) evaluates only one of the two branches depending on the eventual value of 𝑥. □



Example 4 shows a very basic form of control by the host on the core. According to further
extensions of the core C, one can define more significant control operations. For example, if we
move to a Turing complete host, or at least to a typed system as expressive as Gödel System 𝒯 ,
we can think of defining series or parallel compositions of circuits whose length or dimension
depends on a numeric parameter 𝑛, used to drive some iteration. These would be quite handy
to define terms at the host level ready to build well-known quantum algorithms [1], given the
value of 𝑛.

4. Categorical semantics and Internal Language Theorem

In this section we recall the main ideas and some results we inherit from the technical report
[8]. A soundness and a completeness theorem w.r.t. a suitable semantics, as well as an internal
language theorem, have been proved for HC in its basic format.

One can define a model for HC in terms of an instance of an enriched category, by interpreting
the host part into a category H and the core part into a suitable category C enriched in H [20].

Definition 1. A model for HC is given by a pair (ℋ, 𝒞), where ℋ is a cartesian closed category,
and 𝒞 is a ℋ-enriched symmetric monoidal category.

Structure and interpretation are defined in a standard way. A structure for the language
HC in (ℋ, 𝒞) is specified by giving an object [|𝑋|] ∈ ob(ℋ) for every base H-type 𝑋 , and
an object [|𝐴|] ∈ ob(𝒞) for every base C-type 𝐴. Given these assignments, the other types
are interpreted recursively. We address to [8] for the full definitions. Here we only focus
on some peculiar aspects. For example, notice that the type Proof(𝐴,𝐵) is interpreted as
[|Proof(𝐴,𝐵)|] = 𝒞([|𝐴|], [|𝐵|]), i.e. as the set of morphisms from the denotaton of 𝐴 to the
denotation of 𝐵.

Theorem 1. [Soundness and Completeness] Enriched symmetric, monoidal categories on a
cartesian closed category are sound and complete with respect to the calculus HC.

In the proof of the previous theorem and in the following results, some notions play a crucial
role. The first one is the category Th(HC) of HC-theories, whose objects are HC-theories, i.e.,
type systems that properly extend HC with new base types, term symbols, and equality rules.
The morphisms are translations between theories, mapping types and terms to types and terms,
preserving type and term judgments.

Notice that concrete instances of HC introduced in the previous section are examples of
HC-theories.

The other key notion to achieve the Internal Language theorem is the category of models
Model(HC). This step is the more interesting and challenging part of the proof. The objects
of Model(HC) are models of HC (see Definition 1). Morphisms of Model(HC) require to in-
troduce the formal notion of change of base, that explains formally how by changing the host
language one can induce a change of the embedded language. Given a cartesian closed functor
𝐹 : ℋ1

→→ ℋ2 (a morphism between two models for H1 and H2 resp.), the induced change
of base functor 𝐹* : ℋ1-Cat →→ ℋ2-Cat sends a ℋ1-category 𝒞 (a category for a core C1



embedded in H1) to the ℋ2-category 𝐹*(𝒞) (a category for a core C2 embedded in H2). 𝐹*(𝒞)
has the same objects as 𝒞 and for every 𝐴 and 𝐵 of 𝒞, one defines 𝐹*(𝒞)(𝐴,𝐵) = 𝐹 (𝒞(𝐴,𝐵));
the composition, unit, associator and unitor morphisms in 𝐹*(𝒞) are the images of those of
𝒞 composed with the structure morphisms of the cartesian closed structure on 𝐹 (see [21,
Proposition 3.5.10] or [20] and [8]).

Notice that the notion of change of basis suggests how effectively the embedding of a core in
a host works and how two obtain new embeddings: if one provides a translation between two
host languages H1 and H2 and C is a core language for H1, then one can use this translation of
host languages to change the host language for C, obtaining an embedding in H2. See [8] for all
technical details.

We know from [10] that the typed calculus HC provides an internal language of Model(HC)
if we can establish an equivalence Th(HC) ≡ Model(HC) between the category of models and
the category of theories for HC [10, 22, 23, 24, 25].

We state now the theorem showing the equivalence between the categories of models and
that of theories for HC.

Theorem 2. [Internal Language Theorem] The typed calculusHC provides an internal language
for Model(HC), i.e. Th(HC) is equivalent to Model(HC).

The proof relies on the construction of a pair of functors: the first functor
𝑆 : Th(HC) →→Model(HC) assigns to a theory its syntactic category, and the second func-

tor 𝐿 : Model(HC) →→ Th(HC) assigns to a pair (ℋ, 𝒞) (a model of HC, see Definition 1) its
internal language, as a HC-theory (see [8]).

5. Conclusion

We conclude this work by recalling some observations we left at the end of our introduction,
which are related to the expressiveness of the components H, and C of HC.

A possible way to add a fan-out to C in order to duplicate values is to adopt Toffoli’s proposal
in [12], where he introduces gates and ancillary wires to reversible circuits, or improvements of
Toffoli’s proposal in [26] where ancillae are implicitly hidden.

Similarly, we can enhance the expressiveness of H by incorporating constants with types that
align with the categorical semantics, and which can be interpreted as recursion or while iterators.
For instance, a recursion iterator could have the type Nat → (Nat → Nat) → Nat → Nat,
where Nat denotes the type of natural numbers. This type can be easily interpreted in a
straightforward generalization of the categorical model from the previous section, where the
tensor product ⊗ can be replaced by the Cartesian product ×.

According to a wider perspective, we see how HC can be extended to model the interaction
between a classical and a reversible, or quantum language. Specifically, we plan to explore how
to add the constant “projection” to HC, “projection” being present in the languages explored in
[27, 2, 1, 3, 28, 29], requiring also to identify the appropriate sub-categories of the one in [8].
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