
Configuration of Heterogeneous Agent Fleet: a Preliminary
Generic Model
Thomas Pouré1,†, Stéphanie Roussel2,†, Elise Vareilles1,3,∗,† and Gauthier Picard2,†

1ISAE SUPAERO, Université de Toulouse, 10 avenue Édouard Belin, BP 54032 - 31055 Toulouse CEDEX 4, France
2DTIS, ONERA, Université de Toulouse, 2 avenue Édouard Belin, BP 74025 - 31055 Toulouse CEDEX 4, France
3CGI / IMT Mines Albi, Université de Toulouse, allée des sciences, 81000 Albi, France

Abstract
A multitude of autonomous agents – encompassing a range of technologies, including robots and drones – represent a crucial
modern tool for the execution of a multitude of tasks, including surveillance, delivery and the saving of lives. In order to
optimally utilise these agents, it is vital to configure each agent, the composition of the entire fleet of agents and the mission
plan associated with each agent in the most effective manner possible. The following article presents a knowledge model for the
configuration of a fleet of heterogeneous agents, encompassing the three levels of configuration: agent configuration, agent fleet
configuration, and mission plan configuration. It explicitly delineates the relationships between these three configuration levels,
thereby facilitating rapid, efficient, robust, and simultaneous configuration. A toy problem illustrates our first proposals.

Keywords
Multi-level Configuration, Autonomous Agent, Knowledge Formalisation, Heterogeneous Fleet,

1. Introduction
With the increasing autonomy of drones and robots, fleets
of agents are now being used for many different types
of missions, such as exploration, rescue, disaster relief,
civil and military security. In this article, the term "agent"
is used to refer to any system that is capable of acting
autonomously in a variety of environments, including
ground, water, and air. The term encompasses a di-
verse range of platforms, including quadrupeds, bi-blades,
underwater rockets, and others. Additionally, the term
"agent" encompasses a wide range of capabilities, includ-
ing communication, rescue, and delivery. Therefore, the
term "agent" can be used to describe a diverse range of sys-
tems, from household robots to high-tech stealth military
drones. Some of these applications require heterogeneous
agent fleets, i.e. with different platforms, capabilities, mo-
bility and equipment. Such fleet of heterogeneous agents
may or may not be coordinated autonomously to carry out
the missions to which the fleet is dedicated. For exam-
ple, an exploration mission may require the collaboration

ConfWS’24: 26th International Workshop on Configuration, Sep 2–3,
2024, Girona, Spain
∗Corresponding author.
†
These authors contributed equally.
$ thomas.poure@student.isae-supaero.fr (T. Pouré);
stephanie.roussel@onera.fr (S. Roussel);
elise.vareilles@isae-supaero.fr (E. Vareilles);
gauthier.picard@onera.fr (G. Picard)
� https://onera.academia.edu/SRoussel (S. Roussel);
https://pagespro.isae-supaero.fr/elise-vareilles/ (E. Vareilles);
https://gauthier-picard.info/ (G. Picard)
� 0000-0001-7033-555X (S. Roussel); 0000-0001-6269-8609
(E. Vareilles); 0000-0002-9888-9906 (G. Picard)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

of ground agents with at least the ability to Travel and
Communicate, and aerial agents with at least the ability to
Observe and Communicate. The success of a multi-agent
mission depends, among other things, on the configuration
of the fleet executing it [1].

This paper addresses the problem of multi-level con-
figuration of heterogeneous agent fleets, as presented in
Fig. 1. By multi-level configuration, we mean the several
interleaved problems that must be solved when setting
up a fleet to carry out a mission. The first level is the
simultaneous configuration of each agent (Agent Configu-
ration Problem, ACP). The second consists in configuring
the fleet itself (Fleet Configuration Problem, FCP), i.e.
defining precisely what the composition of the fleet is.
The final level is the fleet deployment problem in order
to carry out dedicated missions in an efficient and robust
way (Plan Configuration Problem, PCP). This multi-level
configuration problem requires an analysis of the rela-
tionships between these three configuration levels, both
upstream in fleet composition and downstream in fleet
operation.

This multi-level configuration problem raises many re-
search questions, such as:

• the representation/modeling of configuration
knowledge (compact modeling language),

• eliciting constraints (what is allowed or forbidden)
and criteria (what is preferable) that apply both to
the fleet configuration and to each robot in it, and

• the development of algorithms to generate optimal
or, at least, good-quality solutions.

This problem can be tackled in several ways. First of
all, there is the question of how to express knowledge,

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:thomas.poure@student.isae-supaero.fr
mailto:stephanie.roussel@onera.fr
mailto:elise.vareilles@isae-supaero.fr
mailto:gauthier.picard@onera.fr
https://onera.academia.edu/SRoussel
https://pagespro.isae-supaero.fr/elise-vareilles/
https://gauthier-picard.info/
https://orcid.org/0000-0001-7033-555X
https://orcid.org/0000-0001-6269-8609
https://orcid.org/0000-0002-9888-9906
https://creativecommons.org/licenses/by/4.0

Figure 1: Multi-level configuration of an heterogeneous fleet of robots.

constraints and preferences, both from the point of view
of fleet configuration and from the point of view of per-
formance and robustness in the context of mission [2].
Approaches such as constraint programming and multi-
agent modeling [3, Chap.2 and 15] appear to be suitable
candidates.

Following several works dedicated to Search and Res-
cue applications such as [4] and [5], a mission consists
here in the execution of several tasks distributed on an
intervention zone represented by a graph. A fleet and a
plan of action are configured in order to accomplish the
mission, i.e. successfully complete all the tasks. The per-
formance of a fleet for a mission can be evaluated along
several criteria: the global time required for performing
all tasks, the fleet cost (platform, equipment), the fleet
and the plan robustness (capacity of the fleet/the plan to
support damages and complications), etc.

This article focuses on initial ideas for modeling the
knowledge of this multi-level configuration problem of
heterogeneous agents fleets. More precisely, we propose a
formal modelling of the inputs of each level configuration
problem, along with the decisions that have to be made.
The formalization of constraints associated with each level
are out of scope of this paper and are left for future work.

The paper is organized as follows. In Section 2, we
formally describe the type of mission we consider. Then,
Sections 3, 4 and 5 are respectively dedicated to the Agent
Configuration Problem or ACP, the Fleet Configuration
Problem or FCP and the Plan Configuration Problem or
PCP. In each of these sections, we formally present the
inputs of the problem, the associated decision variables

and an illustrative example. Finally, we conclude and
discuss future works in Section 6.

2. Mission
A mission allows to represent the several tasks that the
agents have to perform and the graph on which they can
move. The elements composing a mission can be repre-
sented in a UML diagram as illustrated in Fig. 2. Those
elements are first briefly described and then formalized
in a second step. In our work, we have made several
assumptions on a mission. A mission is therefore:

• deterministic: the mission is perfectly known
from the beginning and during the fleet’s interven-
tion, and agents cannot suffer from malfunctions,

• static: the mission remains static throughout the
fleet’s intervention. No edges or vertices are intro-
duced or removed during the mission.

2.1. Description
A Mission is composed of the following elements.

• The location on which the agents can evolve is rep-
resented by a connected and non-directed Graph.
Such a graph is composed of vertices (Vertex
class), representing way points or places of inter-
est in the mission context, and edges (Edge class),
representing routes for moving.

Mission Task

Graph

Edge Vertex

Trafficability Capability

1..*

1..* 1..*-base

1

1..* 2

*

1

1 1

Figure 2: UML representation of a mission.

• One of the vertices is called the base, and is the
location at which the agents start and finish their
missions.

• The actions that the agents have to perform to
achieve the mission are called Tasks. Each task
is assigned to a single vertex, that represents the
location at which it must be executed. A capability
is associated to each task, it is the requirement to
perform a task.

For the agent to be able to move through the graph and
execute task, we define two additional classes.

• A Capability describes how an agent accom-
plishes the mission’s tasks. More precisely, each
task requires a single specific capability to be exe-
cuted. Examples of capabilities are observe, grab
material, transport a injured person, etc.

• One instance of Trafficability is associated to each
edge, representing the edge practical environment
for agent moves. Instances of Trafficability could
be Aerial, Terrestrial or more fine-grained proper-
ties such as Forest, Field, Street, etc. Note that a
trafficability could also be combinations such as
Terrestrial and Aerial.

2.2. Formalization
We propose here a mathematical formalization of the mis-
sion, that can be used as input for the multi-level configu-
ration problem.

A mission is a tuple m = (V,E,T,TV,C,CT,R,RE)
where:

• V = (1, . . . ,nV) is the vector of vertices. We sup-
pose that vertex with number 1 is the base.

• E = (ei, j)i, j∈[1..nV]2 is the adjacency matrix of size
n2

V that represents the connection between vertices

V . For all vertices i, j ∈ [1..nV]
2, ei, j = 1 if there

exists an edge between vertices i and j, ei, j = 0
otherwise.

• T = (1, . . . ,nT) is the vector of tasks that have to
be performed during the mission.

• TV = (tvi)i∈[1..nT] is a vector of size nT such that
for all task i ∈ [1..nT], tvi ∈ [1..nV] is the vertex
the task i is assigned to.

• C = (1, . . . ,nC) is the vector of capability types.

• CT = (cti)i∈[1..nT] is a vector of size nT , such that
for each task i ∈ [1..nT] in m,cti ∈ [1..nC] repre-
sents the capability required by task i.

• R = (1, . . . ,nR) is the vector of traficabilities.

• RE = (rei, j)i, j∈[1..nV]2 is a matrix of size n2
V , such

as for each edge (i, j) ∈ [1..nV]
2, rei, j ∈ [1..nR] is

the trafficability of the edge ei, j in m.

We call the graph associated to a mission m the pair
(V,E). A mission m is said to be well-formed if the fol-
lowing assumptions hold:

• The graph does not contain any edge from a vertex
to itself.

∀i ∈ [1..nV],ei,i = 0 (1)

• The graph is non-oriented and the trafficability
matrix is symmetrical.

E = ET (2)

RE = RET (3)

• The graph is connected, i.e. from any two ver-
tices i and j, there exists a path of edges con-
necting them. Formally, ∀i, j ∈ [1..nV]

2, ∃k ∈ N∗,
∃(v1, . . . ,vk) ∈ [1..nV]

k, such that:

v1 = i,vk = j (4)

∀r ∈ [1..k−1], evr ,vr+1 = 1 (5)

• For any vertices i, j ∈ [1..nV]
2, ei, j = 1 means that

there is exactly one edge between vertices i and j.

In order to illustrate the notations defined previously,
we consider the following toy example.

2.3. Toy Problem Mission
We define a simple Search & Rescue mission m, illustrated
in Fig. 3, composed of the following elements.

• The vertices vector of locations is V =(︁
1 2 3

)︁
, where 1 is the "base" (c), 2 is the

"ruins" (r), and 3 is the "aid camp" (_).

c

r

_

k

4

4

Task ☼
Capa. 4

Task g
Capa. ~

Figure 3: Illustration for Example 2.3. Three locations are
considered: a base (c), ruins (r) to explore, and an aid camp
(_) to supply. Moving from the base to the ruins requires
an aerial agent (k), while moving to the camp requires a
terrestrial agent (4).

• The edges matrix of paths is E =

⎛⎝0 1 1
1 0 1
1 1 0

⎞⎠.

For instance, e1,3 = 1 holds, meaning that it is
possible to directly go from vertex 1 ("base") to
vertex 3 ("aid camp").

• The tasks vector is T =
(︁
1 2

)︁
, where 1 is "ex-

plore the ruins" (☼), and 2 is "deliver supplies"
(g).

• The assignment of tasks to the vertices is the vec-
tor TV =

(︁
2 3

)︁
, representing that task 1 ("ex-

plore the ruins") and task 2 ("deliver supplies")
must respectively be executed in vertex 2 ("ruins")
and vertex 3 ("aid camp").

• The capabilities vector is C =
(︁
1 2

)︁
, where 1 is

"carry" (~), and 2 is "observe" (4).

• The assignment of capabilities to the tasks is the
vector CT =

(︁
2 1

)︁
, meaning that capability 2

("observe") is required for task 1 ("explore the
ruins") and capability 1 ("carry") is required for
task 2 ("deliver supplies").

• The traficabilities are R =
(︁
1 2

)︁
, where 1 is "ter-

restrial" (4), and 2 is "aerial" (k).

• The assignment of traficabilities to the edges is the

matrix RE =

⎛⎝0 2 1
2 0 1
1 1 0

⎞⎠. For instance the path

(1,2) has the trafficability 2 ("aerial"), whereas the
path (2,3) has the trafficability 1 ("terrestrial").

3. Agent Configuration Problem
In this section, we present the model associated with the
Agent Configuration Problem (ACP), which consists in
deciding agents’ composition wrt. a catalog of platform

types and equipment types, by using the notion of agent
pattern.

3.1. Description
As illustrated in Fig. 4, an AgentPattern represents a
type of robot or a type of drone that can act somewhat
autonomously. Elements composing an agent pattern are
divided as follows:

• Platform represents the skeleton of an agent pat-
tern. Each agent pattern has a single platform.

• Each Platform is associated to a unique Platform-
Type representing the agent pattern skeleton type.
Examples of such platform types could be aerial,
terrestrial, marine. It would also be possible to
consider more fine-grained platform types, such
as quadcopter or submarine. The platform type
limits and defines most of the agent pattern char-
acteristics.

• Equipment represents the payload that can equip
an agent pattern. An agent pattern can be equipped
with several equipments.

• Each Equipment is associated to a unique Equip-
mentType, which represents the type of the equip-
ment (e.g. camera, sensor, motor).

• Available PlatformTypes and EquipmentTypes
are grouped in a Catalog.

An agent is able to interact with the mission throughout
two connections to the mission description:

• Each Equipment instance has a set of Capability
instances, allowing agents to execute tasks. If an
agent pattern is equipped with an equipment that
provides the capability associated to a task, then
any agent following that pattern will be able to
perform the task.

• Each PlatformType instance is associated with
a set of Trafficability instances representing the
types of environments it is compatible with. Con-
sequently, an agent pattern is compatible with an
edge if and only if the edge trafficability belongs to
the agent pattern platform type set of compatible
traficabilities.

3.2. Formalization
We first formalize the inputs of the agent configuration
problem and then define the decision variables. We next
present some assumptions on the problems we consider
and finally illustrate the concepts on the toy example.

ACP

Catalog

PlatformType

Platform

EquipmentType

Equipment

AgentPattern

Trafficability Capability

1..* 1..*

1 1

*1

1

output

**

Legend

ACP Input

ACP Decision

Figure 4: UML representation the ACP.

3.2.1. Inputs

Let m be a mission. A catalog on m is a tuple catm =
(P,Q,maxQ,RP,CQ) where:

• P = (1, . . . ,nP) is the platform types vector,

• Q = (1, . . . ,nQ) is the equipment types vector,

• maxQ ∈ N∗ is an upper bound on the number of in-
stances of each equipment type that can be carried
by an agent pattern,

• RP = (rpi, j)i, j∈[1..nP]×[1..nR] is the plat-
form/traficability compatibility matrix of
size nQ.nR. For each platform type i ∈ [1..nP]
and each trafficability j ∈ [1..nR], rpi, j = 1 if the
platform type i is compatible with trafficability j.
Otherwise, rpi, j = 0.

• CQ = (cqi, j)i, j∈[1..nQ]×[1..nC] is the equip-
ment/capability relation matrix of size nQ.nC.
For each equipment type i ∈ [1..nQ] and each
capability j ∈ [1..nC], cqi, j = 1 if the equipment
type i provides the capability j. It equals 0
otherwise.

The catalog is the only input of the ACP.

3.2.2. Assumptions

A catalog cat should satisfy the following assumptions.

• Task Feasibility. For each task, there is at least
one equipment type in the catalog that provides its
capability, which translates into:

∀ j ∈ [1..nT],
nQ

∑
i=1

cqi,ct j ≥ 1 (6)

• Task Reachability. For each task, there exists a
platform type and a path from the base to the task’s
vertex such that the platform type is compatible
with all the path’s edges trafficabilities. Formally,
∀i ∈ [1..nT],∃ j ∈ [1..nP],∃k ∈ N∗,(v1, . . . ,vk) ∈
[1..nV]

k, s. t.

v1 = 1,vk = tvi (7)

∀r ∈ [1..k−1]2, evr ,vr+1 = 1 (8)

rp j,revr ,vr+1
= 1 (9)

Those two assumptions ensure that for each task in the
mission, there exists an agent pattern compatible with the
task perform it.

3.2.3. Decision Variables

We present here the decision variables that must be as-
signed a value when solving an ACP. To do so, we first
formally define an agent pattern.

For a given catalog cat, an agent pattern is a tuple
acat = (ap,AQ) where :

• ap is an integer in [1..nP] that represents the plat-
form of catalog cat associated with acat.

• AQ = (aqi)i∈[1..nQ] is the acat equipment vector of
size nQ. For all equipment type i ∈ [1..nQ], aqi is
an integer in [1..maxQ] that represents the number
of equipment type i present in acat.

For a given catalog cat, the objective of ACP is to
compute a tuple Tcat = (1, . . . ,nT) where each element
is an index of an agent pattern, as defined previously, and
nT the number of elements in the tuple.

As we do not consider any constraint in this paper,
there are nT = nP ·n

maxQ
Q possible agent patterns. In real

world applications, the ACP should of course satisfy some
constraints (e.g. max payload, mission’s budget, etc.) and
could optimize some criteria (e.g. cost minimization).
This is out of scope of this paper, and so are the precise
definitions of platform and equipment attributes related
to them (such as weight, price, etc.). Note that even with
constraints consideration, the vector Tcat might be too
large to be exhaustively explored.

3.3. Toy Problem ACP
We consider the mission m defined in Subsection 2.3.

We define the catalog cat the following way.

• The platform types vector is P =
(︁
1 2

)︁
, where

1 is "UAV" (Ê) and 2 is "rover" (�).

• The equipment types vector is Q =
(︁
1 2

)︁
, where

1 is "camera" (�) and 2 is "trunk" (�).

Platform Equipment

AgentPattern

Agent

Fleet

Stock

FCP

1..*

1

*

**

1

1

output

*

Legend

ACP Solution
FCP Input

FCP Decision

Figure 5: UML representation of the FCP.

• the maximum number for each equipment instance
on an agent pattern is maxQ = 1.

• The platform/trafficability compatibility matrix is

RP =

(︃
0 1
1 0

)︃
. In this example, rp1,2 = 1 holds,

meaning that platform 1 ("UAV") is compatible
with the trafficability 2 ("aerial"). However, as
rp1,1 = 0, platform 1 is not compatible trafficabil-
ity 1 ("terrestrial").

• The equipment/capability relation matrix is CQ =(︃
1 0
0 1

)︃
. In this example, rp1,1 = 1 holds, mean-

ing that the equipment 1 ("camera") provides the
capability 2 ("observe"). However, rp1,2 = 0,
which means that this equipment does not provide
capability 2 ("carry").

The two following agent patterns belong to Tcat:

• a1 = (1,
(︁
1 0

)︁
) is a UAV equipped with one

camera and zero trunk.

• a2 = (2,
(︁
1 1

)︁
) is a rover equipped with one

camera and one trunk.

There is a total of nT = 6 possible agent patterns (Tcat =
(a1, . . . ,a6)).

4. Fleet Configuration Problem
In this section, we present the model associated with the
Fleet Configuration Problem (FCP), which aims at decid-
ing the composition of the fleet wrt. the available stock.

4.1. Description
Fig. 5 contains a UML representation of the Fleet Config-
uration Problem. The FCP class takes as an input the set
of AgentPattern computed by the ACP, as presented in
the previous section. Its output is a Fleet, i.e. a collection
of Agents, where each Agent is associated to a unique
AgentPattern.

In order to model the fact that equipment and platform
are available in limited quantities, we define the class
Stock. Such a class is associated to a set of Platforms
and a set of Equipments. The FCP takes an instance of
Stock as an input. Even if it is clear that the stock will
impose hard constraints on FCP, the precise formalization
of these constraints is left for future work.

4.2. Formalization
We first formalize the inputs of the agent configuration
problem, then define the decision variables and illustrate
the formalization on the toy example.

4.2.1. Inputs

Let cat be a catalog. The FCP associated to this catalog
has two inputs:

• A stock associated with cat, denoted scat, and de-
fined by a pair (Ps,Qs) where:

– Ps = (pi)i∈[1..nP] is a vector of size nP such
that for each platform type i ∈ [1..nP] in cat,
pi ∈ N∗ defines how many type i platform
instances are in the stock.

– Qs = (q j) j∈[1..nQ] is a vector of size nQ
such that for each equipment type j ∈
[1..nQ] in cat, q j ∈ N∗ defines how many
type j equipment instances are in the stock.

• A vector of agents pattern Tcat. Such a vector can
for instance come from the output resulting from
the ACP solving.

4.2.2. Decision Variables

Given a catalog cat, a stock scat on this catalog, and Tcat
a vector of the agent patterns, a fleet is a tuple fscat ,Tcat =
(na,Af) where:

• na is the size of the fleet.

• Af = (ai)i∈[1..na] is the finite vector of size na of
agents in the fleet such as, for each i ∈ [1..na],ai ∈
[1..nT] is the index of the agent pattern of the
agent i in the fleet.

Note that the model allows to have the same agent
pattern present several times in Af, representing the fact
that there are some identical agents in the fleet.

4.3. Toy Problem FCP
We consider the mission m defined in Subsection 2.3,
the catalog cat and the agent patterns Tcat defined in
Subsection 3.3.

We define the stock scat the following way.

• The platform instance vector is Ps =
(︁
2 1

)︁
,

meaning that there are 2 instances of type 1 plat-
form ("UAV" - Ê) and 1 instance of type 2 plat-
form ("rover" - �) in the stock.

• The equipment instances vector is Qs =
(︁
2 1

)︁
.

In this example, there are two instances of type
1 equipment ("camera" - �) and one instance of
type 2 equipment ("trunk" - �) in the stock.

With this stock, it is possible to configure several fleets of
agents. For instance, we define two fleets as follows:

• f1
scat ,Tcat

= (1,(a2)), is a fleet composed of a single
agent with the pattern a2 (a rover equipped with
one camera and one trunk - �+ �+ �).

• f2
scat ,Tcat

= (2,(a1,a2)), is a fleet composed of two
agents with the respective patterns a1 (a UAV
equipped with one camera - Ê+ �) and a2 (a
rover equipped with one camera and one trunk -
�+ �+ �).

5. Plan Configuration Problem
In this section, we present the model associated with the
Plan Configuration Problem (PCP), which aims at decid-
ing the agents’ positions and tasks all along the mission.

5.1. Description
The plan configuration is the last problem to solve in order
to get a solution for the multi-level configuration problem.
As illustrated on Fig. 6, it takes as input a Mission and a
Fleet. Its output is a Plan which consists of an AgentPlan
for each Agent in the fleet. For each agent in the fleet, an
AgentPlan describes exhaustively at any given time step
the position of the agent and the task currently executed,
if any.

5.2. Formalization
We first formalize the inputs of the plan configuration
problem and then define the decision variables.

5.2.1. Inputs

For a catalog cat, a stock on this catalog, scat, the PFD
associated to this stock requires two additional inputs:

AgentFleet

Plan AgentPlanPCP

Mission

*

*

1

1
1

1

output

Legend

FCP Solution
PCP Input

PCP Decision

Figure 6: UML representation of the PCP.

• a mission m,

• a fleet fscat ,Tcat .

5.2.2. Decision Variables

In order to represent the position of each agent in the so-
lution plan, we use binary decision variables (Vpl matrix)
that indicate whether an agent is at a given position at
each time step. Similarly, for each task, we use binary
decision variables indicating whether an agent executes
this task at the time step (Tpl matrix).

Formally, for a catalog cat, a stock on this catalog, scat,
a mission m, a fleet fscat ,Tcat , a plan is a tuple plm, fscat ,Tcat

=

(H,Tpl,Vpl) where:

• H ∈ N∗ is the temporal plan horizon.

• Tpl = (tpli, j,h)i, j,h∈[1..na]×[1..nT]×[1..H] is the allo-
cation of tasks over agents for each time steps,
represented as a tensor of size na · nT ·H. For
each agent i ∈ [1..na], each task j ∈ [1..nT] and
each time step h ∈ [1..H], tpli, j,t = 1 if the agent
ai ∈ Af is executing the task j at the time h. It
equals 0 otherwise.

• Vpl = (vpli, j,h)i, j,h∈[1..na]×[1..nV]×[1..H] is the posi-
tion of the agents for each time steps, defined by a
tensor of size na ·nT ·H. For each agent i ∈ [1..na],
each task j ∈ [1..nT] and each time step h ∈ [1..H],
vpli, j,t equals 1 if the agent ai ∈Af is at the vertex
j at the time h. It equals 0 otherwise.

Through this plan formalization, moves of agents are
not explicitly described, but this piece of information
could be retrieved through their positions.

5.3. Toy problem PCP
We consider the definitions of mission m, catalog cat,
introduced in the three previous examples.

c

r

_

k

4

4

Ê

�

Ê

�

(a) Step 1

c

r

_

k

4

4

Ê

�

Ê

�

☼

g

(b) Step 2

c

r

_

k

4

4

Ê

�

Ê

�

(c) Step 3

Figure 7: Execution of plan plm, fscat ,Tcat
from Example 5.3: starting from the base, the UAV moves to the ruins while the rover

moves to the aid camp; then, they both perform the required tasks in their respective locations; finally, they both come back to
the base.

We consider the following plan for the fleet
f 2
scat ,Tcat

= (2,(a1,a2)):

plm, fscat ,Tcat
= (3,

(︁
Tpl1 Tpl2

)︁
),
(︁
Vpl1 Vpl2

)︁
), il-

lustrated in Fig. 7, where:

• Tpl1 =
(︃

0 1 0
0 0 0

)︃
is the task allocation matrix

of the first agent of the fleet, that has pattern a1
(platform Ê). It performs the task "explore the
ruins" (☼) at time step 2.

• Vpl1 =

⎛⎝1 0 1
0 1 0
0 0 0

⎞⎠ describes the movement of

the first agent of the fleet, that has pattern a1. It
starts at the "base" (c) than goes to the "ruins"
(r) and comes back to the "base" (c).

• Tpl2 =
(︃

0 0 0
0 1 0

)︃
is the task allocation matrix

of the second agent of the team, with pattern a2
(platform �). It performs the task "deliver sup-
plies" (g) at the time step 2.

• Vpl2 =

⎛⎝1 0 1
0 0 0
0 1 0

⎞⎠ describes the movement of

the second agent of the team, with pattern a2. It
starts at the "base" (c) than goes to the "aid camp"
(_) and comes back to the "base" (c).

Note that the time steps used in that example plan give
a macro view of the agents actions. It would be possible
to have a much finer discretization of the time in order to
handle temporal constraints such as task duration, or edge
traversal duration.

6. Conclusion
In this paper, we model and formalize the multi-level
configuration problem for a fleet of heterogeneous agent.
This problem is decomposed into three problems, ACP,
FCP and PCP and for each of them, we formally define
their inputs and their decision variables and we illustrate
them on a toy problem. We focus on Search and Rescue
missions where tasks have to performed on some nodes
of a given graph.

The work presented in this paper is a first step for solv-
ing the multi-level configuration problem. As mentioned
in the paper, the next step is to formally define the set of
constraints and the eventual criteria associated to ACP,
FCP and PCP. To do so, it will be possible to study the
literature associated with each problem, such as [1] for
ACP, [3, 6] for FCP and [7, 8, 9] for PCP.

Then, we have presented the three configuration prob-
lems independently but in practice, they are interleaved.
For instance the output of ACP is an input of FCP, and the
output of FCP is an input for PCP. In the other direction,
the evaluation of solutions produced by PCP and FCP can
influence the choices made in ACP. If the evaluation of
the overall multi-level configuration solution is not satis-
factory, there might be several interactions between each
level before converging (if any convergence is possible).
In order to avoid these interactions, it would be possible
to solve all the configuration problems simultaneously.
Some works have started contributing towards that ob-
jective [10, 11, 12, 2]. Following those works, we aim
at proposing a global solver/architecture for solving the
multi-level configuration problem.

Finally, we have considered here a simple model of
a Search and Rescue mission. It would be possible to
make it more realistic in several ways. For instance, it
would be possible to consider: more complex mission (e.g.
with multiple bases), autonomy constraints on agents forc-
ing them to recharge in some specific locations, more

complex tasks (e.g. requiring multiple capabilities, or
requiring synchronisation between multiple agents), a
non-deterministic setting (e.g. uncertainty on tasks dura-
tion) and a dynamic environment (e.g. discover the edges
trafficability, agent’s loss).

Acknowledgments
The authors would like to thank the ONERA, ISAE-
SUPAERO and ENAC Federation for its support of this
work. This work is partly founded by the ONERA fed-
erative project on cooperative and interactive intelligent
multi-robot systems (SICICOD).

References
[1] É. Vareilles, S. Roussel, G. Picard, PERFECT: per-

formant and robust read-to-fly fleet configuration:
from robot to mission plan, in: J. M. Horcas, J. A.
Galindo, R. Comploi-Taupe, L. Fuentes (Eds.), Pro-
ceedings of the 25th International Workshop on Con-
figuration (ConfWS 2023), Málaga, Spain, Septem-
ber 6-7, 2023, volume 3509 of CEUR Workshop
Proceedings, CEUR-WS.org, 2023, pp. 104–107.

[2] C. Lei, W.-H. Lin, L. Miao, A two-stage robust opti-
mization approach for the mobile facility fleet sizing
and routing problem under uncertainty, Computers
& Operations Research 67 (2016) 75–89.

[3] G. Weiss, Multiagent systems, Second Edition, MIT
press, 2013.

[4] G. Radzki, P. Golinska-Dawson, G. Bocewicz,
Z. Banaszak, Modelling robust delivery scenarios
for a fleet of unmanned aerial vehicles in disaster
relief missions, Journal of Intelligent & Robotic
Systems 103 (2021) 1–18.

[5] T. Calamoneri, F. Corò, S. Mancini, A realistic
model to support rescue operations after an earth-
quake via uavs, IEEE Access 10 (2022) 6109–6125.

[6] J. F. Hübner, J. S. Sichman, O. Boissier, Moise+
towards a structural, functional, and deontic model
for mas organization, in: Proceedings of the first in-
ternational joint conference on Autonomous agents
and multiagent systems: part 1, 2002, pp. 501–502.

[7] J. Blythe, An overview of planning under uncer-
tainty, Artificial Intelligence Today: Recent Trends
and Developments (2001) 85–110.

[8] Ç. Koç, T. Bektaş, O. Jabali, G. Laporte, Thirty
years of heterogeneous vehicle routing, European
Journal of Operational Research 249 (2016) 1–21.

[9] L. Berghman, Y. Kergosien, J.-C. Billaut, A re-
view on integrated scheduling and outbound vehicle
routing problems, European Journal of Operational
Research 311 (2023) 1–23.

[10] R. F. Lemme, E. F. Arruda, L. Bahiense, Opti-
mization model to assess electric vehicles as an al-
ternative for fleet composition in station-based car
sharing systems, Transportation Research Part D:
Transport and Environment 67 (2019) 173–196.

[11] R. Pinto, A. Lagorio, R. Golini, Urban freight
fleet composition problem, IFAC-PapersOnLine
51 (2018) 582–587.

[12] H. R. Sayarshad, R. Tavakkoli-Moghaddam, Solv-
ing a multi periodic stochastic model of the rail–car
fleet sizing by two-stage optimization formula-
tion, Applied Mathematical Modelling 34 (2010)
1164–1174. doi:https://doi.org/10.1016/j.
apm.2009.08.004.

http://dx.doi.org/https://doi.org/10.1016/j.apm.2009.08.004
http://dx.doi.org/https://doi.org/10.1016/j.apm.2009.08.004

	1 Introduction
	2 Mission
	2.1 Description
	2.2 Formalization
	2.3 Toy Problem Mission

	3 Agent Configuration Problem
	3.1 Description
	3.2 Formalization
	3.2.1 Inputs
	3.2.2 Assumptions
	3.2.3 Decision Variables

	3.3 Toy Problem ACP

	4 Fleet Configuration Problem
	4.1 Description
	4.2 Formalization
	4.2.1 Inputs
	4.2.2 Decision Variables

	4.3 Toy Problem FCP

	5 Plan Configuration Problem
	5.1 Description
	5.2 Formalization
	5.2.1 Inputs
	5.2.2 Decision Variables

	5.3 Toy problem PCP

	6 Conclusion

