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Abstract
Large and globally operating enterprises can be confronted with situations where local variability models representing the
constraints of individual countries and markets have to be integrated to support a centralized variability management. For
example, a car producer operating in the U.S. as well as the European market, could be interested in having a centralized
variability (feature) model representing the variability spaces of all supported markets. To achieve this goal, existing local
feature models and the corresponding knowledge bases have to be integrated in such a way that the configuration spaces
remain the same, for example, for the European market, we would request to support exactly the same set of car configurations
that are supported by the corresponding local feature model. In this paper, we introduce an algorithmic approach that
supports the merging of feature models in such a way that the semantics of the original feature models is preserved. We
present our algorithm and the results of a solver performance analysis which has been conducted on the basis of real-world
feature models.
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1. Introduction
Feature models (FMs) are an intuitive way of represent-
ing commonality and variability properties of complex
systems [1, 2, 3]. Specifically, in scenarios where com-
panies are operating on a global basis, integration sce-
narios can arise where country or region-specific feature
models have to be integrated to support a more glob-
alized variability management. Think about a scenario
where a car producer operating in the European and
the US market decides to centralize variability manage-
ment activities. On the technical (feature model) level,
formerly region- or country-specific models have to be
integrated in a systematic fashion in one centralized vari-
ability model. In this paper, we present an algorithmic
approach to integrate (merge) two different (“old”) feature
models (e.g., the feature model 𝐹𝑀𝑈𝑆𝑜𝑙𝑑 could denote a
local feature model of a US car provider) in a semantics-
preserving way where the solution (configuration) spaces
of the local feature models are “transferred” to an in-
tegrated feature model which reflects exactly the same
set of solutions: solutions(𝐹𝑀𝑈𝑆𝑜𝑙𝑑)∪ solutions(𝐹𝑀𝐸𝑈𝑜𝑙𝑑)
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equals solutions(𝐹𝑀𝑛𝑒𝑤). In this context, we assume that
𝐹𝑀𝑈𝑆𝑜𝑙𝑑 and 𝐹𝑀𝐸𝑈𝑜𝑙𝑑 represent the local feature models
of a globally operating car manufacturer and 𝐹𝑀𝑛𝑒𝑤 is the
result of merging the local feature models (and related
knowledge bases).

Knowledge base merging has been approached in var-
ious ways. For example, the alignment of knowledge
bases is based on the idea of knowledge base integra-
tion by identifying concepts in different knowledge bases
that represent the same underlying concept but are rep-
resented by different names. Knowledge base alignment
is specifically performed in situations where numerous
knowledge bases have to be integrated [4]. Knowledge
base merging is based on a set of predefined merging
operations [5, 6], for example, consistency-based merg-
ing follows the goal of deriving a maximally consistent
set of logical formulae that represent the union of the
formulae of the original knowledge bases. Such integra-
tions basically follow the idea of generating maximally
satisfiable subsets (of rules) [7], i.e., sets that cannot be
further extended (with original rules) without making
the resulting knowledge base inconsistent.

Feature model merging [8, 9, 10, 11, 12, 13] is also in the
line of the ideas of the previously mentioned approaches.
Feature models can become quite large and complex [14],
which makes the development and maintenance of sin-
gle models a challenging task. Following the idea of
separation of concerns [15], Aydin et al. [16] propose
an approach to construct stakeholder-individual feature
models which are then merged for the purpose of provid-
ing a unified view on the feature space. In the context
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Figure 1: Example basic feature model from the automotive domain where type refers to the car type which can be (lim)ousine,
(com)bi, (cit)y, and suv. Furthermore, the car color can be (b)lack or (w)hite, the engine can be 1l, 1.5l, and 2l. Fuel can be
(d)iesel, (e)lectric, (g)asoline, and (h)ybrid, representing the supported types of fuel. Finally, a coupling unit is regarded as an
optional feature.

of such a merging process, different “issues” have to be
resolved, for example, some stakeholders regard a feature
as optional while others think it should be mandatory.
Furthermore, depending on the given scenario, feature
naming can also become an issue if no “maximum fea-
ture set” has been specified ahead of the merging process.
For such scenarios, Aydin et al. [16] propose a standard
merging procedure that is able to generate a reference
feature model, which then serves as a basis for further
discussions and decision-making.
With a similar motivation, i.e., making large feature

model development easier, Acher et al. [8], propose a
set of integration operations for “local” feature models
which basically support the goal of integrating local mod-
els into a global one. In this context, the authors also
specify feature model relationships on a logical basis,
for example, one feature model 𝐹𝑀1 is the specializa-
tion of a feature model 𝐹𝑀2 if the configuration space
of 𝐹𝑀1 is a subset of the configuration space of 𝐹𝑀2
– see also Thüm et al. [17, 3]. The authors also intro-
duce a merge operation where the introduced semantics
does not support semantics preservation but requires
that the result of the merging operation is equivalent
or a superset of the solution (configuration) spaces of
the two original feature models, i.e., solutions(𝐹𝑀1) ∪
solutions(𝐹𝑀2) ⊆ solutions(merge(𝐹𝑀1, 𝐹𝑀2)). Such a
semantics of a merge operation is also considered in the
contributions of Broek et al. [10], Carbonell et al. [11],
and She et al. [18].
Following the union merge semantics introduced

in Schobbens et al. [12], the feature model merg-
ing approach presented in this paper focuses on the
preservation of the semantics of the source feature
models used as an input for the merging procedure.
In other words, it supports a semantics-preserving
merging where the configuration space of the feature
model resulting from a merging operation is exactly
the union of the configuration spaces of the original
feature models: solutions(𝐹𝑀1) ∪ solutions(𝐹𝑀2) =
solutions(merge(𝐹𝑀1, 𝐹𝑀2)) which is more restrictive

compared to the union semantics introduced by Acher
et al. [8].

Compared to related work on feature model semantics
preservation [10, 13], our approach provides a generaliza-
tion in terms of (1) supporting arbitrary constraint types
(in contrast to specific feature model related constraints
such as requires and incompatible) and (2) taking into
account redundancy-freeness in terms of assuring that
redundant constraints as a result of a merging procedure
can be detected and eliminated from the feature model. In
our approach, the original feature models and the result-
ing feature model (result of the merging operation) are
represented as constraint satisfaction problems (CSPs)
[19]. To demonstrate the applicability of our approach,
we present the results of a corresponding performance
analysis.
The remainder of this paper is structured as follows.

In Section 2, we introduce a working example consisting
of simplified feature models from the automotive domain.
Using this example, we discuss our algorithmic approach
to semantics-preserving feature model merging in Sec-
tion 3. To show the performance of our approach, we
report the results of a corresponding performance evalu-
ation (see Section 4). Finally, we conclude the paper with
a discussion of existing threats to validity (Section 5) and
a corresponding summary of the contributions of this
paper (Section 6).

2. Example Scenario
Wenow introduce a simplified example of a featuremodel
merging scenario. Our basic underlying assumption is
that the original feature models are consistent, i.e., it
is possible that at least one solution can be identified
and also that the feature set of the original models are
the same, i.e., the differences are primarily observable in
terms of the constraints defined in the individual mod-
els. In our example from the automotive domain, the
original feature models are denoted as 𝐹𝑀𝑈𝑆𝑜𝑙𝑑 (the orig-
inal US feature model) and 𝐹𝑀𝐸𝑈𝑜𝑙𝑑 which denotes the



original European Union feature model. In this context,
we assume that these feature models are consistent, i.e.,
non-void [20], meaning that at least one configuration
can be identified for each of those models. Finally, we
denote the resulting model (the merging result) as 𝐹𝑀𝑛𝑒𝑤.
Figure 1 represents the basic feature model (i.e., con-

figuration model [21]) that in the following will be used
as a working example. This feature model represents all
relevant features that can be used to define variability
knowledge, i.e., we assume that the same set of features
is used to represent variability knowledge in 𝐹𝑀𝐸𝑈𝑜𝑙𝑑
and 𝐹𝑀𝑈𝑆𝑜𝑙𝑑. Differences in the two variability models
can exist in terms of constraints representing individual
configuration spaces. In the following, we specify con-
straints that define the properties of the two original fea-
ture models 𝐹𝑀𝐸𝑈𝑜𝑙𝑑 and 𝐹𝑀𝑈𝑆𝑜𝑙𝑑 represented in terms
of individual constraint satisfaction problems (CSPs) rep-
resenting the European and the US feature model [19].1

These CSPs are defined in terms of variables with corre-
sponding domain definitions (e.g., type(lim,com,sit,suv)
denotes the variable type with the allowed values) and a
corresponding set of constraints [22].

Note that region is an additional variable representing
a contextual information, i.e., to which region a gener-
ated configuration belongs to. Contexts follow the idea
of separation of concerns [15] which supports a kind of
decentralized modeling [23]. For example, using the con-
text variable region, the constraint 𝑐1𝑢𝑠 ∶ 𝑓 𝑢𝑒𝑙 ≠ ℎ would
be expressed as 𝑐1𝑢𝑠 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝑈 𝑆 → 𝑓 𝑢𝑒𝑙 ≠ ℎ explicitly
indicating that this constraint has to hold for configura-
tions generated on the basis of the 𝐹𝑀𝑈𝑆𝑜𝑙𝑑 CSP.

• 𝐹𝑀𝑈𝑆𝑜𝑙𝑑: {region(US), type(lim,com,cit,suv),
color(b,w), engine(1l, 1.5l, 2l), fuel(d, e,
g, h), coupling(yes,no), 𝑐1𝑢𝑠 ∶ 𝑓 𝑢𝑒𝑙 ≠ ℎ,
𝑐2𝑢𝑠 ∶ 𝑓 𝑢𝑒𝑙 = 𝑒 → 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = 𝑛𝑜,
𝑐3𝑢𝑠 ∶ 𝑓 𝑢𝑒𝑙 = 𝑑 → 𝑐𝑜𝑙𝑜𝑟 = 𝑏}

• 𝐹𝑀𝐸𝑈𝑜𝑙𝑑: {region(EU), type(lim,com,cit,suv),
color(b,w), engine(1l, 1.5l, 2l), fuel(d, e,
g, h), coupling(yes,no), 𝑐1𝑒𝑢 ∶ 𝑓 𝑢𝑒𝑙 ≠ 𝑔,
𝑐2𝑒𝑢 ∶ 𝑓 𝑢𝑒𝑙 = 𝑒 → 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = 𝑛𝑜,
𝑐3𝑒𝑢 ∶ 𝑓 𝑢𝑒𝑙 = 𝑑 → 𝑡𝑦𝑝𝑒 ≠ 𝑐𝑖𝑡}

To show the differences between the feature models
𝐹𝑀𝐸𝑈𝑜𝑙𝑑 and 𝐹𝑀𝑈𝑆𝑜𝑙𝑑, Table 1 provides an overview of
the number of solutions supported by the original (region-
specific) feature models.

3. Merging Feature Models
In order to be able to merge the two original feature mod-
els (𝐹𝑀𝐸𝑈𝑜𝑙𝑑 and 𝐹𝑀𝑈𝑆𝑜𝑙𝑑) in a semantics-preserving

1The feature name abbreviations of 𝐹𝑀𝐸𝑈𝑜𝑙𝑑 and 𝐹𝑀𝑈𝑆𝑜𝑙𝑑 are defined
in Figure 1.

Table 1
Number of consistent solutions (configurations) related to the
original and contextualized feature models.

Feature model #configurations

𝐹𝑀𝐸𝑈𝑜𝑙𝑑 108
𝐹𝑀𝑈𝑆𝑜𝑙𝑑 96

𝐹𝑀 ′ = 𝐹𝑀𝐸𝑈 ′
𝑜𝑙𝑑 ∪ 𝐹𝑀𝑈𝑆′𝑜𝑙𝑑 204

𝐹𝑀𝐸𝑈 ′
𝑜𝑙𝑑 ∩ 𝐹𝑀𝑈𝑆′𝑜𝑙𝑑 84

fashion, each constraint of the two original feature mod-
els (represented as CSPs) has to be contextualized using
the context variable region.2 Assuming the two regions
European Union and US, our context variable could be
defined as region(𝐸𝑈,𝑈 𝑆) denoting the variable region
with the allowed values {𝐸𝑈 , 𝑈 𝑆}. More precisely, each
constraint 𝑐[𝑖]𝑒𝑢 (𝑐[𝑖]𝑢𝑠) of the “EU” (“US”) CSP (derived
from the 𝐹𝑀𝐸𝑈𝑜𝑙𝑑 (𝐹𝑀𝑈𝑆𝑜𝑙𝑑) feature model) has to be
translated into a contextualized representation – see the
following example: 𝑐1𝑒𝑢 ∶ 𝑓 𝑢𝑒𝑙 ≠ 𝑔 would be translated
into a corresponding contextualized form 𝑐1𝑒𝑢′ ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 =
𝐸𝑈 → (𝑓 𝑢𝑒𝑙 ≠ 𝑔). The resulting contextualized variants
of the original knowledge bases 𝐹𝑀𝐸𝑈𝑜𝑙𝑑 and 𝐹𝑀𝑈𝑆𝑜𝑙𝑑
are denoted as 𝐹𝑀𝐸𝑈 ′

𝑜𝑙𝑑 and 𝐹𝑀𝑈𝑆′𝑜𝑙𝑑.

• 𝐹𝑀𝑈𝑆′𝑜𝑙𝑑: {region(US), type(lim,com,cit,suv),
color(b,w), engine(1l, 1.5l, 2l), fuel(d, e, g, h), cou-
pling(yes,no), 𝑐′1𝑢𝑠 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝑈 𝑆 → (𝑓 𝑢𝑒𝑙 ≠ ℎ),
𝑐′2𝑢𝑠 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝑈 𝑆 → (𝑓 𝑢𝑒𝑙 = 𝑒 → 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 =
𝑛𝑜), 𝑐′3𝑢𝑠 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝑈 𝑆 → (𝑓 𝑢𝑒𝑙 = 𝑑 → 𝑐𝑜𝑙𝑜𝑟 =
𝑏)}

• 𝐹𝑀𝐸𝑈 ′
𝑜𝑙𝑑: {region(EU), type(lim,com,cit,suv),

color(b,w), engine(1l, 1.5l, 2l), fuel(d, e, g, h), cou-
pling(yes,no), 𝑐′1𝑒𝑢 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝐸𝑈 → (𝑓 𝑢𝑒𝑙 ≠ 𝑔),
𝑐′2𝑒𝑢 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝐸𝑈 → (𝑓 𝑢𝑒𝑙 = 𝑒 → 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 =
𝑛𝑜), 𝑐′3𝑒𝑢 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝐸𝑈 → (𝑓 𝑢𝑒𝑙 = 𝑑 → 𝑡𝑦𝑝𝑒 ≠
𝑐𝑖𝑡)}

Note that the solution (configuration) spaces of the
contextualized feature models 𝐹𝑀𝐸𝑈 ′

𝑜𝑙𝑑 and 𝐹𝑀𝑈𝑆′𝑜𝑙𝑑
are the same as those of the original ones (assum-
ing a corresponding context setting, e.g., 𝑟𝑒𝑔𝑖𝑜𝑛 =
𝐸𝑈). Following this argumentation, solutions(𝐹𝑀𝐸𝑈𝑜𝑙𝑑) ∪
solutions(𝐹𝑀𝑈𝑆𝑜𝑙𝑑) = solutions(𝐹𝑀𝐸𝑈 ′

𝑜𝑙𝑑 ∪ 𝐹𝑀𝑈𝑆′𝑜𝑙𝑑)
which supports our goal of achieving a semantics-
preserving merging of the original knowledge bases (see
Table 1).

The algorithmic approach to support such a semantics-
preserving merging is shown in Algorithm 1 (MergeFM)
which itself is a Flama [24] prototype implementation. In
a first step (starting with line 6 of MergeFM), those con-
straints in the contextualized original knowledge bases

2In general, contexts can be represented by a set of variables (i.e.,
not necessarily one).



(in Algorithm 1 denoted as 𝐹𝑀′
1 and 𝐹𝑀′

2) can be decon-
textualized where such a contextualization is not needed
(𝑐 is a decontextualized version of 𝑐′): if ¬𝑐 is consistent
with 𝐹𝑀′

1 ∪ 𝐹𝑀′
2, there (obviously) exist solutions sup-

porting ¬𝑐. In such a case, the constraint 𝑐must be added
in a contextualized fashion to the resulting knowledge
base 𝐹𝑀, since some feature model configuration (in the
other knowledge base) supports ¬𝑐. If ¬𝑐 is inconsistent
with 𝐹𝑀′

1 ∪ 𝐹𝑀′
2 , 𝑐 can be added in decontextualized fash-

ion to the resulting knowledge base 𝐹𝑀. In a second step
(starting with line 14 of Algorithm 1), each constraint of
the resulting knowledge base has to be checked for redun-
dancy: in a logical sense, a constraint 𝑐 can be regarded as
redundant if 𝐹𝑀−{𝑐} is inconsistent with ¬𝑐whichmeans
that the constraint does not reduce the solution space of
FM and thus logically follows from the constraints in FM
(and can be deleted from the constraints in FM).

Algorithm 1MergeFM(𝐹𝑀′
1 , 𝐹𝑀′

2)∶ 𝐹𝑀
1: {𝐹𝑀′

1 , 𝐹𝑀′
2: two contextualized and consistent fea-

ture models}
2: {𝑐′: constraint c in contextualized form}
3: {𝐹𝑀: feature model as a result of MergeFM}
4: 𝐹𝑀 ← {};
5: 𝐹𝑀′ ← 𝐹𝑀′

1 ∪ 𝐹𝑀′
2;

6: for all 𝑐′ ∈ 𝐹𝑀′ do
7: if 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡({¬𝑐} ∪ 𝐹𝑀′ ∪ 𝐹𝑀) then
8: 𝐹𝑀 ← 𝐹𝑀 ∪ {𝑐};
9: else
10: 𝐹𝑀 ← 𝐹𝑀 ∪ {𝑐′};
11: end if
12: 𝐹𝑀′ ← 𝐹𝑀′ − {𝑐′};
13: end for
14: for all 𝑐 ∈ 𝐹𝑀 do
15: if 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡((𝐹𝑀 − {𝑐}) ∪ {¬𝑐}) then
16: 𝐹𝑀 ← 𝐹𝑀 − {𝑐};
17: end if
18: end for
19: 𝑟𝑒𝑡𝑢𝑟𝑛 𝐹𝑀;

When applying Algorithm 1 to 𝐹𝑀𝑈𝑆𝑜𝑙𝑑 and 𝐹𝑀𝐸𝑈𝑜𝑙𝑑,
the resulting knowledge base 𝐹𝑀𝑛𝑒𝑤 looks like as follows.
In the resulting knowledge base, the constraint 𝑐′2𝑢𝑠 has
been decontextualized. Also, as a result of applying Al-
gorithm 1, constraint 𝑐′2𝑒𝑢 can be regarded as redundant
and thus can be deleted from 𝐹𝑀𝑛𝑒𝑤.3

• 𝐹𝑀𝑛𝑒𝑤: {region(US,EU), type(lim,com,cit,suv),
color(b,w), engine(1l, 1.5l, 2l), fuel(d, e, g, h), cou-
pling(yes,no), 𝑐′1𝑢𝑠 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝑈 𝑆 → (𝑓 𝑢𝑒𝑙 ≠ ℎ),
𝑐′2𝑢𝑠 ∶ 𝑓 𝑢𝑒𝑙 = 𝑒 → 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = 𝑛𝑜, 𝑐′3𝑢𝑠 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 =

3Alternatively, 𝑐′2𝑢𝑠 could be deleted as a redundant constraint (instead
of 𝑐′2𝑒𝑢).

𝑈 𝑆 → (𝑓 𝑢𝑒𝑙 = 𝑑 → 𝑐𝑜𝑙𝑜𝑟 = 𝑏), 𝑐′1𝑒𝑢 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 =
𝐸𝑈 → (𝑓 𝑢𝑒𝑙 ≠ 𝑔), 𝑐′3𝑒𝑢 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝐸𝑈 → (𝑓 𝑢𝑒𝑙 =
𝑑 → 𝑡𝑦𝑝𝑒 ≠ 𝑐𝑖𝑡)}

On the algorithmic level, the resulting knowledge base
𝐹𝑀𝑛𝑒𝑤 is represented in terms of a constraint satisfaction
problem. One possibility of representing the integrated
knowledge base as the resulting integrated feature model
is depicted in Figure 2.

4. Performance Evaluation
In this section, we discuss the results of an initial perfor-
mance analysis we have conducted to evaluate MergeFM
(Algorithm 1) 4. For this analysis, we applied 8 real-world
variability models with varying sizes collected from the
S.P.L.O.T. feature model repository [25] and the Diverso
Lab’s benchmark5 [26]. Table 4 shows the characteristics
of these models (denoted as 𝜙). In order to generate “to-
be-merged” feature models (𝐹𝑀′

1 and 𝐹𝑀′
2) with differ-

ent shares of contextualized constraints from individual
𝜙s, we determined the needed number of relationships
or cross-tree constraints. We then modified these se-
lected relationships/cross-tree constraints by changing
their type, for example, changing mandatory to optional,
changing alternative to or, or changing requires to ex-
cludes. The resulting models (𝐹𝑀′

1 ∪ 𝐹𝑀′
2 = 𝐹𝑀′) are

represented as constraint satisfaction problems [19] that
differ individually in terms of the number of constraints
(#constraints) and the degree of contextualization (ex-
pressed as percentages in Tables 2 and 3). In order to
take into account deviations in time measurements, we
repeated each experimental setting 10 times where in
each repetition cycle the constraints in the individual
(contextualized) knowledge bases 𝐹𝑀′ were ordered ran-
domly. All analyses have been conducted with an Apple
M1 Pro (8 cores) computer with 16-GB RAM. For evalu-
ation purposes, we used the Choco solver6 to perform
the needed consistency checks.
The number of consistency checks needed for decon-

textualization is linear in terms of the number of con-
straints in 𝐹𝑀′. A performance evaluation of MergeFM
with different knowledge base sizes and degrees of con-
textualized constraints in 𝐹𝑀 is depicted in Table 2. In
MergeFM, the runtime (measured in terms of millisec-
onds needed by the constraint solver7 to find a solution)
increases with the number of constraints in 𝐹𝑀′ and de-
creases with the number of contextualized constraints in

4The dataset, the implementation of algorithms, and evaluation pro-
grams can be found at https://github.com/AIG-ist-tugraz/FMMerging.

5https://github.com/flamapy/benchmarking
6choco-solver.org
7For the purposes of our evaluation we generated variability models
represented as constraint satisfaction problems formulated using
the Choco constraint solver – www.choco-solver.org.



Figure 2: Example integrated feature model derived from 𝐹𝑀𝑛𝑒𝑤. This model includes contextual information (the region)
represented as feature(s). Simple contextualized constraints such as 𝑐′1𝑢𝑠 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝑈 𝑆 → (𝑓 𝑢𝑒𝑙 ≠ ℎ) are translated directly
into a corresponding feature model constraint (as excludes relationship), for the representation of more complex constraints
such as 𝑐′3𝑒𝑢 ∶ 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝐸𝑈 → (𝑓 𝑢𝑒𝑙 = 𝑑 → 𝑡𝑦𝑝𝑒 ≠ 𝑐), the corresponding feature model constraint is textually annotated with
the context information (e.g., region=EU). This graphical representation of contexts in feature models follows the idea of
contextual diagrams as introduced by Felfernig et. al [23].

Table 2
Avg. runtime (in seconds) of MergeFM measured with different configuration knowledge base sizes (of 𝐹𝑀 ′

1 and 𝐹𝑀 ′
2) and

shares of related contextualized constraints (10-50% contextualization).

feature model (𝜙) #constraints(𝜙) 10% 20% 30% 40% 50%

IDE 13 0.008 0.007 0.007 0.006 0.006
Arcade 66 0.060 0.056 0.054 0.052 0.054
FQA 101 2.560 2.341 2.794 2.812 3.684
Invest 233 3.018 3.860 4.879 5.781 5.915
Win8 405 154.825 171.516 165.988 158.998 149.323
EMB 1,029 1,621 1,361 1,138 1,043 972
EA 2,670 3,810 3,870 3,899 4,023 4,032

Linux 13,972 45,641 52,711 47,516 56,536 57,034

Table 3
Avg. runtime (msec) of the merged configuration knowledge bases (𝐹𝑀) to calculate a configuration measured with different
knowledge base sizes (of 𝐹𝑀) and shares of contextualized constraints in 𝐹𝑀 (10-50% contextualization).

feature model (𝜙) #constraints(𝜙) 10% 20% 30% 40% 50%

IDE 13 0.050 0.042 0.039 0.037 0.037
Arcade 66 0.069 0.057 0.060 0.053 0.055
FQA 101 0.072 0.069 0.071 0.072 0.079
Invest 233 4.755 2.992 2.742 2.346 2.293
Win8 405 3.832 4.058 5.385 4.695 4.413
EMB 1,029 22.034 24.190 25.029 25.603 26.980
EA 2,670 40.501 41.227 43.741 45.311 51.483

Linux 13,972 143.698 199.822 143.756 159.515 112.986

Table 4
Feature models used for MergeFM evaluation (IDE=IDE product line, Arcade=Arcade Game PL, FQA=Feature model for
Functional Quality Attributes, Invest=Feature model for Decision-making for Investments on Enterprise Information Systems,
Win8=Accessibility options provided by Windows 8 OS, EMB=EMB Toolkit, EA=EA 2468, Linux=Linux kernel version 2.6.33.3).

feature model (𝜙) IDE Arcade FQA Invest Win8 EMB EA Linux

#features 14 61 178 366 451 1,179 1,408 6,467
#hierarchical constraints 11 32 92 41 267 862 1,389 6,322
#cross-tree constraints 2 34 9 192 138 167 1,281 7,650
#CSP constraints 13 66 101 233 405 1,029 2,670 13,972



𝐹𝑀. The increase in efficiency can be explained by the
fact that a higher degree of contextualization includes
more situations where the inconsistency check in Line
7 (Algorithm 1) terminates earlier (a solution has been
found) compared to situations where no solution could
be found. In addition, Table 3 indicates that the perfor-
mance of solution search does not differ depending on the
degree of contextualization in the resulting knowledge
base 𝐹𝑀.
Consequently, integrating individual variability mod-

els can trigger the following improvements. (1) De-
contextualization in 𝐹𝑀 can lead to less cognitive efforts
when adapting / extending knowledge bases (due to a
potentially lower number of constraints [27] and a lower
degree of contextualization). (2) Reducing the overall
number of constraints in 𝐹𝑀 can also improve runtime
performance of the resulting integrated knowledge base.

5. Threats to Validity
We are aware that our evaluation is in fact based on
real-world feature models, however, synthesized vari-
ants thereof have been used for MergeFM evaluation
purposes. Furthermore, our approach is based on the
assumption that the “to-be-merged” feature models have
the same set of features, i.e., we assume feature equiv-
alence. In this context, we assume that in real-world
scenarios further streamlining tasks (e.g., feature name
alignment) have to be completed before MergeFM can be
activated. Our basic assumption behind redundancy elim-
ination and de-contextualization in MergeFM is that the
understandability and maintainability of feature mod-
els can be improved – although already confirmed by
related work [27], further research is needed to better un-
derstand major impact factors that make feature models
(and underlying knowledge bases) easier to understand
and maintainable.

6. Conclusions and Future Work
In this paper, we have introduced an approach to the
consistency-based merging of variability models repre-
sented as constraint satisfaction problems. The approach
helps to build semantics-preserving feature models in the
sense that the solution spaces of the resulting knowledge
bases (result of the merging process) correspond to the
union of the solution spaces of the original knowledge
bases. Such an approach can be useful in the mentioned
integration scenario but as well in situations where differ-
ent parts (representing different contexts) of a knowledge
are developed in a de-centralized fashion and integrated
thereafter. Besides the preservation of the original se-
mantics, our approach also helps to make the resulting

knowledge base compact in the sense of deleting redun-
dant constraints and not needed contextual information.
The runtime performance of our approach is shown on
the basis of a first performance analysis with real-world
feature models. Future work will include the evaluation
of our concepts with further knowledge bases and the
development of alternative merging algorithms with the
goal to further improve runtime performance. Further-
more, we will evaluate different alternative feature model
representations that help to represent contextualized con-
straints – one such representation has been discussed in
this paper.
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