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Abstract
One of the core goals in the research field of configuration space learning is building precise predictive models that allow
for reliably estimating the performance of a configuration without requiring costly tests. The models used for this purpose
are usually machine learning-based. However, the models show significant deviations in their performance depending on
the investigated Software Product Line (SPL), the applied data preprocessing, and the number of sample configurations
collected. Thus, we investigate the impact of different preprocessing methods and their behavior when using different SPLs,
machine learning models, and sample sizes. Performance comparisons on this scale are usually not conducted due to their
prohibitively expensive execution time requirements, even for smaller SPLs. Thus, we used three fully enumerated spaces as
our training data, which allows for more generalized results. Our results show that the average factors between the worst and
best-performing preprocessing methods are 2.05 (BerkeleyDBC), 1.17 (7z), and 1.84 (VP9). Further, no single preprocessing
method tested was able to outperform all others, nor was this the case within one specific SPL or model type. This underlines
the importance of testing new approaches with multiple preprocessing methods.
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1. Introduction
The discovery of configurations that optimize the perfor-
mance of any given Software Product Line (SPL) is one
of the core goals of configuration space learning. The
performance of a model can take many forms and rely
heavily on the use case. For instance, one may optimize a
SPL to perform a core task very efficiently or optimize for
the size of the compiled SPL binary. This optimization
usually takes place in steps. The first step is sampling
configurations from the configuration space of the SPL
and measuring the target property, which often entails
compiling and running tests or benchmarks, a very time
and resource-intensive undertaking. One can use these
samples to train a prediction model, which is then used
to find a configuration that optimizes the target property.
In this paper, we focus on the creation and training of
the prediction model. Many factors can impact the per-
formance of a performance prediction model for SPLs,
from the SPL itself to the sampling approach used to col-
lect the training data. However, our focus lies on one
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of the factors often neglected in SPL performance pre-
diction: Preprocessing. We will define any necessary
terms used in this paper in Section 2. Preprocessing has
proven itself inmany other domains that employmachine
learning-based prediction models. However, literature
reviews such as Gong and Chen [1] show that less than
half of the investigated studies within the field of config-
uration performance learning use preprocessing, further
discussed in Section 3. Accordingly, we thus conduct an
in-depth investigation on the influence of preprocessing
on performance prediction models for SPLs. To this end,
we measure the performance of 4 preprocessing methods
in the context of 3 SPLs, 5 machine learning models, and
20 different sizes of training sets. We discuss the details
of the experimental evaluation in Section 4, followed by
a discussion of the results in Section 5.

2. Definitions
Software Product Line (SPL). SPLs, as a concept started
to gain widespread popularity at the beginning of the
2000s [2]. Engström and Runeson [3] describe SPLs as
the paradigm of forming derivate products from a set of
generic components. A SPL has multiple features, each
supporting an individual domain of values, which allows
for the generation of diverse products using the same
components.
Configuration. In the context of a SPL, a configuration
defines for each feature the corresponding feature value.
However, there may exist additional constraints within
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the SPL. Thus, we speak of a valid configuration if none
of the assigned values is inconsistent with any of the
constraints.
Configuration Space. The configuration space of a SPL
describes the space spanned by all valid configurations
of the SPL. The size of configuration spaces commonly
grows exponentially with the number of features, and we
speak of colossal configuration spaces if its size is≫ 1010
[4].

3. Related Work
The three fully enumerated configuration spaces pro-
vided by Oh et al.[4] facilitate the comprehensive perfor-
mance analysis and comparison we conducted. They use
them to show that relatively simple approaches like uni-
form random sampling can outperform well-established
tools like SPL Conquerer [5] to find near-optimal configu-
rations for SPLs. We build on this idea and conduct a com-
parison of different preprocessing methods. The reason-
ing behind conducting this comparison is the alarming
result of Gong and Chen [1]. They performed a literature
review on deep configuration performance learning and
reported that 44 out of 85 investigated studies used the
data as it was without any preprocessing. This limited
utilization implies a lack of awareness of the impact of
preprocessing methods. This lack of awareness may then
aggravate the difficulty of reproducing and validating
the results of published works. Dacrema et al. [6], for
example, investigated 18 new approaches published re-
cently, of which they could only reproduce 7. Of the 7
reproduced approaches, they showed that they can out-
perform 6 by using relatively simple other approaches.
The importance of preprocessing methods in many do-
mains has long since been established. Wu et al.[7], for
example, shows that preprocessing improves the perfor-
mance of streamflow forecasts. Rasekhi et al. [8] report
improvements in the prediction of epileptic seizures by
using preprocessing.
We further include in our tests different sample sizes,
which allows us to investigate the reaction of the pre-
processing methods to changing sample sizes. Acher et
al.[9] sampled and measured 95854 Linux configurations,
a minute fraction of the configuration space of 215000
(2.818 ∗ 104515) configurations spaned by Linux. They re-
ported to have needed 15000 hours of computation time
to collect the samples. Guo et al. [10] uses tree-based
models to predict configuration performances. Martin et
al.[11] focus on using transfer learning across different
versions of the Linux kernel to predict the performances
of the versions. They mention preprocessing only for
encoding configurations into formats compatible with
their machine-learning approach.
The literature reviews of Gong and Chen [1] and Pereira

Name Value
Vendor Lenovo
Product 20N6001GGE
CPU Intel Core i7-8665U (4x 1,90 GHz)
RAM 32GB (DDR4)
OS Manjaro Linux
Kernel version 6.1.80.-1-MANJARO

Table 1
Specifications of the machine used in the experiments

et al. [12] named multiple data sampling approaches
used in configuration performance learning. However,
both identified random sampling as the most popular ap-
proach. Pereira et al. [13] conducted a dedicated study on
sampling approaches for learning configuration spaces.
They suggest using uniform random sampling as long as
it is computationally feasible. Accordingly, we adapted
it for our comparison.

4. Experimental Setup
This section will discuss the exact experimental setup
for data collection and which machine learning models,
preprocessing methods, and datasets we were using. All
measurements were collected using the same machine
with specifications as they are listed in Table 1. We use
Mean Absolute Percentage Error (MAPE) to evaluate the
model performances, which is one of the most commonly
used metrics in literature [1] [12] [13]. The code was im-
plemented in Python using the widely used scikit-learn1

library [14]. We used Uniform Random Sampling (URS)
to generate the training sets of different sizes for model
learning. We can perform URS by selecting configura-
tions randomly from the set of valid configurations. The
size of the training sets range from 50 to 1000 in steps of
50. However, the tests for all models and preprocessing
methods use, within the same iteration, the same training
set of a specific size. After the performance of all models
using the preprocessing applied to the training sets is
measured, these measurements are repeated 15 times,
each time with new training sets selected with URS. The
average of the resulting MAPE values in the 15 iterations
is the value we use when we discuss the results.

4.1. Datasets
For our comparison, we use a dataset of fully enumerated
configuration spaces. Thus, the dataset includes all valid
configurations for a given SPL. In addition, a value, like
execution times of benchmarks or similar, representing
the performance of each configuration was measured.
We use three such datasets based on three configurable

1https://scikit-learn.org/stable/index.html



software projects: BerkeleyDBC2, 7z3, and VP94. The
datasets are used in the work of Oh et al.[4], and they
were made available in their resources5. Oh et al.[4] pro-
vided the following description of the three datasets.
BerkeleyDBC is an embedded database system with 9

Name Domain
DIAGNOSTIC 0 | 1
HAVE_STATISTICS 0 | 1
HAVE_REPLICATION 0 | 1
HAVE_CRYPTO 0 | 1
HAVE_SEQUENCE 0 | 1
HAVE_VERIFY 0 | 1
HAVE_HASH 0 | 1
CACHESIZE CS16MB | CS32MB |

CS64MB | CS512MB
PAGESIZE PS1K | PS4K | PS8K |

PS16K | PS32K

Table 2
BerkeleyDBC variable names and their respective domains

variables and 2560 configurations. Benchmark response
times were measured. We visualize the variable names
and their domains in Table 2.
7z is a file archiver with 9 variables and 68640 configura-
tions. Compression times were measured. We visualize
the variable names and their domains in Table 3.
VP9 is a video encoder with 12 variables and 216000

configurations. Video encoding times were measured.
We visualize the variable names and their domains in
Table 4.
Although these three configuration spaces do not ap-
proach the sizes of colossal configuration spaces like
Linux, which spans a configuration space with 215000
configurations[9], they still have sizes where an enumer-
ation is no longer an option, and thus fall in the purview
of the research field of configuration space learning. De-
pending on the complexity of the tests and the underlying
system, procuring very few samples may already be very
costly. Acher et al.[9], for example, reported 15000 hours
of computation to build and measure 95854 Linux con-
figurations. We selected these datasets due to two main
advantages. The first is avoiding the extreme compu-
tation times of collecting such data, and the second is
that using them allows us to test multiple iterations of
training sets of different sizes.

4.2. Models
We selected five different types of machine-learning mod-
els, each representing a different general approach to
2https://www.oracle.com/database/technologies/related/berke-
leydb.html

3https://www.7-zip.org/download.html
4https://www.webmproject.org/vp9/
5https://zenodo.org/records/7776627

Name Domain
root 0 | 1
CompressionMethod LZMA | LZMA2 | PPMd |

BZip2 | Deflate
x x_0”, ”x_2 | x_4 | x_6 | x_8

| x_10
BlockSize BlockSize_1”, ”Block-

Size_2 | BlockSize_4
| BlockSize_8 | Block-
Size_16 | BlockSize_32
| BlockSize_64 | Block-
Size_128 | BlockSize_256
| BlockSize_512 | Block-
Size_1024 | Block-
Size_2048 | Block-
Size_4096

Files Files_0 | Files_10 |
Files_20 | Files_30 |
Files_40 | Files_50 |
Files_60 | Files_70 |
Files_80 | Files_90 |
Files_100

tmOff 0 | 1
mtOff 0 | 1
HeaderCompressionOff 0 | 1
filterOff 0 | 1

Table 3
7z variable names and their respective domains

maximize the usefulness of our results. In our implemen-
tations, we used models from the scikit-learn6 python
library [14]. For the sake of reproducibility, we did not
perform any parameter tuning on the models and used
their respective default settings if not explicitly stated
otherwise.
The first model is a Multi-Layer Perceptron (MLP) model,
a feedforward neural network approach. We set the max-
imum of iterations to 1000 and activated early stopping
for our tests. MLPs are, according to Gong and Chen [1],
the most popular approach when conducting deep con-
figuration performance learning. However, it is a very
data-intensive approach that needs comparatively large
training sets to perform well.
The secondmodel is a K-Nearest Neighbors (KNN) model,
a memory-based approach. Themodel finds the k-nearest
neighbors to a configuration from the training set, in our
case the default value 5. The KNN model predicts the
performance of the configuration by calculating the aver-
age of the performances of the configuration’s k nearest
neighbors. In our case, the average was weighted by the
distance between the neighbor and the configuration.
The third model is a Random Forest (RF), an ensemble
method employing several decision trees generated using
the training data to predict the performance of an un-

6https://scikit-learn.org/stable/index.html

https://zenodo.org/records/7776627


Name Domain
root 0 | 1
lagInFrames lagInFrames_0 | lag-

InFrames_8 | lagIn-
Frames_16

endUsage variableBitrate | constant-
Bitrate | constrainedQual-
ity

AdaptiveQuantizationMode off | variance | complexity
| cyclicRefresh

TileColumns TileColumns_0 |
TileColumns_3 |
TileColumns_6

cpuUsed cpuUsed_0 | cpuUsed_2 |
cpuUsed_4 | cpuUsed_6 |
cpuUsed_8

Threads Threads_2 | Threads_4 |
Threads_6 | Threads_8 |
Threads_10

bitRate bitRate_300 | bitRate_600
| bitRate_900 | bi-
tRate_1200 | bitRate_1500

FrameBoost 0 | 1
lossless 0 | 1
AutoAltRef 0 | 1
Quality good | realtime

Table 4
VP9 variable names and their respective domains

known data point. We use bagged trees, which means we
train all underlying decision trees to solve the problem
using all features. The final result is in the context of
classification decided based on a majority vote. However,
in our context of regression, we calculate the final result
by taking the mean of all results produced by the decision
trees.
The fourth model is a Support Vector Machine (SVM),
a well-established model based on statistical learning
frameworks. We use a radial basis function as our kernel
type.
The final model is an ElasticNet (EN) model, a derivate
of linear regression models. The model combines L1 and
L2 priors as a regularizer.

4.3. Preprocessing
We used several preprocessing methods to test their im-
pact on the different models and training sizes. For the
sake of this comparison, we do not distinguish between
actual preprocessing methods like Standardization and
encodings such as the One Hot Encoding.
The first preprocessing method discussed we call default
(DEF). It provides a baseline for mostly unaltered data
and leaves numeric values untouched. The boolean val-
ues are, however, encoded with 0 and 1 for false and true,
respectively. If all values of a domain can be converted

into numbers this is done (e.g. CS32MB = 32, Table 2).
If this is not possible, the string values are encoded us-
ing label encoding [15, 16], which assigns an increasing
numeric value for each unique string in a domain. This
format is the default state of the data. Thus, we apply all
preprocessing methods mentioned hereafter to the data
in this format.
The second preprocessing method is Min Max Scaling
(MMS) [17, 18], which reduces the scale of a given fea-
ture to be between 0 and 1. We achieve this by applying
Equation 1 on every feature of the configuration, where
min and max are the minimum and maximum recorded
numbers for this feature, respectively. When we apply
this to the features encoded using label encoding, the
result is a derivative of the former called scaled label
encoding [19, 20].

𝑓𝑖(𝑥𝑖) =
𝑥𝑖 − 𝑚𝑖𝑛𝑖

𝑚𝑎𝑥𝑖 − 𝑚𝑖𝑛𝑖
(1)

The third preprocessing method is Standardization (STD)
[21, 22], which is achieved by calculating the mean and
standard deviation of each feature and applying Equation
2

𝑓𝑖(𝑥𝑖) =
𝑥𝑖 − 𝜇𝑖
𝜎𝑖

(2)

This results in the mean of every feature in the training
set being now 0 and the standard deviation being 1.
The final preprocessing method is One Hot Encoding
(OHE) [23, 24], which changes the domain of all features
to a boolean domain. We achieve this by increasing the
dimensions of the data by an encoding of the domain.
Thus, if, for example, feature 𝑓 has the domain 0, 6, 12,
it would have been replaced with the features 𝑓0, 𝑓6, 𝑓12
each of the three resulting boolean features are mutu-
ally exclusive and encode one possible value assigned to
feature 𝑓.

5. Results
In this section, we showcase the measurements collected
as described in the experimental setup section and dis-
cuss them. To this end, we will discuss the results of each
dataset separately and what observations we made.
Firstly, we start with a discussion of our smallest SPL,
BerkeleyDBC. All performance results are visualized in
Figure 1. In the results for MLP, we see that OHE is per-
forming best among all preprocessingmethods regardless
of sample size. However, we can also see a shift in the per-
formances of the preprocessing approaches. STD started
as the worst-performing preprocessing method. Despite
that, with increasing sample size, it outperformed MMS
and DEF. Accordingly, the results of STD approached the
results of the best performer OHE for the larger sample
sizes. However, when looking at Figure 2 and Figure



Figure 1: The performances of each preprocessing method applied to each model and a comparison between the top performers
of each model aplyed to the BerkeleyDBC dataset.

Figure 2: The performances of each preprocessing method applied to each model, and a comparison between the top
performers of each model applied to the 7z dataset.



Figure 3: The performances of each preprocessing method applied to each model, and a comparison between the top
performers of each model applied to the VP9 dataset.

3, we see that this behavior does not occur in the other
datasets, but, in contrast to other approaches, the results
of STD remain either relatively stable or improve with
increasing sample sizes. We see a similar behavior on a
smaller scale with MMS and DEF. MMS performed ini-
tially worse than DEF, overtaking it as soon as sample
sizes became larger than 200 and achieving similar re-
sults from sample sizes 500 and larger. The other models,
in contrast, showed more pronounced preferences for
preprocessing methods. For the KNN model, DEF was
the best-performing preprocessing method, followed by
STD, MMS, and OHE. RF showed the best performance
of all models with almost indistinguishable differences
of 0.01% between the preprocessing methods on average.
For the SVM model, DEF performed the worst with com-
paratively little improvement with larger sample sizes.
The remaining preprocessing methods, from worst to
best, MMS, STD, and OHE show relatively similar re-
sults, improving with increasing sample sizes. For the
EN model, OHE performs best, and the remaining three,
from worst to best, MMS, DEF, and STD show relatively
similar results. The sample size has a comparatively small
impact on the performances. Results with sample sizes
of 200 and larger only show a minor oscillation and re-
main otherwise stable. The comparison between models
shows that RF outperforms the other models. All models

except for EN show significantly better performances
with larger sample sizes. However, MLP was impacted
the most by the sample size. It overtook the performance
of SVM at a sample size of 450 and EN at 900.
Secondly, we will discuss the next larger SPL, 7z. We
provide the results for this dataset in Figure 2. The first
observation we can make is that the overall quality of
the predicted results decreased. This matches our ex-
pectations, since we are predicting the performance of a
larger SPL using an equivalent setup. Another observa-
tion we can make is that three of the five tested models
showed strong oscillations in their performances or, for
some preprocessing methods, a worsening of the perfor-
mance with increasing sample size. The MLP model, for
example, showed for the best and second best performing
preprocessing methods, MMS and STD, respectively, no
significant changes with increasing sample sizes. DEF
and OHE showed meanwhile a decrease in performance
with increasing sample sizes. The EN and SVM models
showed strong oscillations with increasing sample sizes.
However, the performances of the preprocessing meth-
ods all follow that same pattern, which suggests that the
cause for this may lie in the model or the SPL rather than
the preprocessing approaches. In the case of the SVM, the
performances remained very similar. The preprocessing
performances in the ENmodel follow the same oscillation



Model Preprocessing BerkeleyDBC 7z VP9
MLP DEF 25.68% 114.76% 273.94%
MLP MMS 26.29% 99.97% 144.24%
MLP STD 31.12% 99.98% 129.80%
MLP OHE 10.27% 104.41% 117.11%
KNN DEF 1.44% 119.01% 182.27%
KNN MMS 4.29% 82.30% 158.79%
KNN STD 2.85% 78.42% 124.31%
KNN OHE 4.47% 79.99% 241.55%
RF DEF 0.54% 9.51% 15.14%
RF MMS 0.55% 9.54% 14.97%
RF STD 0.55% 9.50% 15.23%
RF OHE 0.54% 10.82% 18.32%
SVM DEF 6.44% 91.46% 249.59%
SVM MMS 6.07% 91.33% 101.45%
SVM STD 6.04% 91.29% 100.35%
SVM OHE 6.03% 91.36% 116.08%
EN DEF 5.19% 176.36% 246.24%
EN MMS 5.31% 177.54% 273.19%
EN STD 5.09% 169.40% 267.77%
EN OHE 2.54% 173.59% 226.60%

Table 5
Average MAPE value over all tested sample sizes from 50 to 1000 with steps of 50

pattern while being displaced with a relatively constant
margin along the y-axis, with STD performing best. The
KNN model performed as expected, showing constant
improvements with increasing sample sizes for all pre-
processing methods. However, it is notable that the best
performer on the BerkelyDBC dataset DEF performs the
worst now, with the former second-best performing STD
taking its place as the best performer. The RF model re-
mains again the best performer with a significant margin.
The preprocessing performances are again very similar,
but STD performs significantly better for the smallest
tested sample size, thus outperforming the others.
Thirdly, we will discuss the largest SPL we investigated,
VP9. The results collected for VP9 are shown in Figure 3.
Our first observation is that the results for VP9 are closer
to the results from BerkeleyDBC. There are again some
oscillations in the results of MLP, but they are compara-
tively minor and show a clear trend to improvement with
increasing sample sizes. We see again that the perfor-
mance of the EN model remains unaffected by increasing
sample sizes, except for some minor oscillations. The
SVM model shows a similar pattern as it did with the
BerkeleyDBC dataset. The DEF preprocessing method
performs once more the worst and shows as the only
method with no significant improvement with increas-
ing sample size. KNN shows to be once more consistent,
showing stable improvement with increasing sample size,
STD performing best once more. The RF model performs
once more best by a significant margin. The preprocess-
ing methods have little impact on its performance, but
some improve the prediction performance earlier, the

best performing being MMS.
Finally, we will discuss the results and our observations
in general. To this end, we provide the average perfor-
mances of all models and preprocessing approaches in
Table 5. The first observation must be that preprocessing
methods have a significant impact on the prediction per-
formances. BerkeleyDBC has an average factor of 2.05
between the best and worst-performing preprocessing
methods. In comparison, 7z and VP9 have an average fac-
tor of 1.17 and 1.84 respectively. This observation holds
for all tested models, even for the best-performer RF.
However, RF shows this impact only with the larger SPLs
like 7z and VP9. In general, the differences are maximized
at low sample sizes and become then smaller with increas-
ing sample sizes. We observe a similar situation with the
SVM model, except DEF, which was largely unsuited.
DEF was in two out of three tested SPLs performing the
worst, showing insignificant improvement with increas-
ing sample sizes. For MLP, KNN, and EN, on the other
hand, we can see significant performance differences
on every sample size tested, with, in general, more pro-
nounced differences when applying smaller sample sizes.
We also observe multiple occasions where misrepresen-
tation of performances could occur when conducting
tests with only one preprocessing method. For instance,
one can conclude that SVMs outperform MLPs on the
BerkeleyDBC dataset for sample sizes smaller or equal
to 1000 when conducting tests only with DEF or MMS.
However, when testing with STD or OHE, we see that
MLP outperforms SVMs on the BerkeleyDBC dataset for
sample sizes greater than 650 or 400, respectively. From



this, we conclude that a sound comparison between two
or more predictive models should compare their perfor-
mances when using their best-performing preprocessing
methods. Omitting the preprocessing method used may,
by extension, lead to poorly reproducible results.
MLP showed to work on average best with OHE. The
performance of this model strongly correlated with the
sample size, and it usually started with comparatively
high MAPE scores that became more competitive with
increasing sample sizes. Furthermore, it is prone to os-
cillation. KNN showed to work on average best with
STD. It was one of the most stable and robust models,
achieving constant improvement with increasing sample
sizes, even in the context of SPLs like 7z that triggered
oscillation in most other models. However, its prediction
quality places it in the middle field. RF showed to work
on average best with MMS. This model outperformed
every other model significantly in every aspect we mea-
sured. Its worst performance using the smallest tested
sample size of 50 outperforms, in all but two cases, the
best performances of all other models. This performance
is then improved further with increasing sample size. The
model usually reaches a plateau relatively early on aver-
age at a sample size of 350, after which its improvement
slows significantly. SVM showed to work on average
best with STD. The model improves like RF on average
with a sample size up to 600 steadily, after which the
model starts to plateau in its improvement, except for the
already mentioned DEF. EN showed to work on average
best with OHE. This model showed, on average, com-
paratively minor improvements with increased sample
size.

6. Threats to validity
This paper compared multiple machine learning-based
models and explicitly did not perform any parameter tun-
ing for any one of the models. We used, if not stated
explicitly differently, always the default parameters de-
fined by the scikit-learn7 library [14]. Thus, we must
acknowledge that fine-tuning the model parameters, es-
pecially for the more complex models like MLP, likely
will improve the performances of the models employed.
However, the measured results are still valid and valuable
for comparing the model performances concerning the
preprocessing methods and the sizes of the training sets
employed.

7. Conclusion
We tested 15 scenarios of machine learning-based per-
formance prediction in the context of SPLs by measur-

7https://scikit-learn.org/stable/index.html

ing the performance of five different machine learning
models on three SPLs with training sets of increasing
sizes. Except for two, all scenarios tested showed, in part,
radical changes in prediction quality depending on the
preprocessing method used. These changes were most
pronounced when we measured the model performances
with only a few samples to use as training sets and be-
came less distinctive with training sets of increased size.
On average, the disparity between the worst and the
best performing preprocessing method were factors of
2.05 (BerkeleyDBC), 1.17 (7z), and 1.84 (VP9). While we
identified the on average best performing preprocessing
methods for each model we tested, we also see, as visu-
alized in Table 5, that no single method outperforms all
others for each dataset, which holds as well if we only
focus on a single model. Thus, having shown both the
significant impact and the inconsistency in the perfor-
mance of preprocessing methods, we draw the following
conclusions. Results that do not state which, if any, pre-
processing method was employed become hard to repro-
duce. Further, the disregard of preprocessing methods
may pose a threat to the validity of results. In summary,
preprocessing methods are a high-impact, low-effort, and
inconsistent part of the field of SPL performance predic-
tion, and all these properties make them essential to be
considered and tested.
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