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Abstract
Constraint Satisfaction Problems (CSPs) are a core technology that solves many real-world problems, especially for configu-
ration tasks. A key success factor in this context is an efficient knowledge acquisition process where domain experts and
knowledge engineers (developers of CSPs) should develop an agreement on the correctness of the expanding knowledge base
as soon as possible. In this paper, we show how large language models (LLMs) can be applied to the automated generation of
solutions for constraint satisfaction problems thus reducing overheads related to CSP development and maintenance in the
future.
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1. Introduction
Knowledge acquisition for knowledge-based systems, es-
pecially constraint-based systems, is a complex task. It
includes the formalization of partly tangible knowledge
with a knowledge model, such as a configuration, con-
straint, or feature model [1, 2]. Constrained-based sys-
tems, in particular, are often used to implement configu-
ration systems, due to their ability to compute possible
values for configurations or even directly configurations
themselves [3]. Hence, modeling a configuration prob-
lem as a constraint satisfaction problem (CSP) is a typical
approach for computing configurations. This type of
modeling is similar to developing programs in a high-
level programming language but also incorporates logical
semantic elements.

Currently in software engineering, the use of large
language models (LLMs) is exploited to support program-
mers in their daily tasks, such as coding, code comple-
tion, reviewing code, API programming, generating test
cases, documentation, or identifying design patterns as
well as learning programming languages or understand-
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ing legacy code [4]. This is achieved through general
LLMs such as ChatGPT1 or specific ones like for cod-
ing trained LLMs such as CoPilot2, or software agents
like CREWAI3 and AutoGenStudio4, or software assisting
engineers such as Devine AI5 or its open source corre-
spondent Devika6.

An example of developing a small game with a graph-
ical user interface is GPT-Engineer7, which prompts in
natural languages and provides the game logic and the
graphical interface through HTML and CSS coding. Es-
pecially the combination of an LLM with a compiler or
interpreter in a chain leads to a self-evaluation where
a code, which is generated code by an LLM, is directly
checked through the interpreter, and the resulting er-
ror message is taken as the next prompt for the LLM.
Through iterating this (e.g., with a supporting tool such
as LangCHAIN8) a syntactically correct program is cre-
ated. However, broader tasks, such as reviewing a soft-
ware architecture or refactoring code distributed over
multiple files are hindered by the limited size of a prompt
(the context window) to a given number of tokens such
as 128, 000 input tokens for GPT-4. In summary, apply-
ing LLMs to software development still has to cope with
issues such as limited context windows, maintainability

1Chat Generative Pre-Trained Transformer
2https://github.com/features/copilot. All URLs accessed in May 2024
3https://www.crewai.com/
4https://microsoft.github.io/autogen/blog/2023/12/01/
AutoGenStudio

5https://preview.devin.ai/
6https://github.com/stitionai/devika
7https://github.com/gpt-engineer-org/gpt-engineer
8https://python.langchain.com/docs/get_started/introduction
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of AI-created code, and applicability in project planning
or software architecture.

Inspired by these approaches, for constraint satisfac-
tion problems the following questions arise:

• Which knowledge acquisition and engineering
tasks can be supported by LLMs?

• Can knowledge models be generated by LLMs?
How is quality ensured?

• Which alternative implementations of a knowl-
edge model are the most comprehensible or main-
tainable?

However, a main ingredient of LLMs is of course a
prompt that triggers the generation of text, here of knowl-
edge models. Hence, for a knowledge model, the ques-
tions are also:

• What type of prompts do we need?
• What has to be presented to the LLM?
• Is natural language text describing the problem

enough?
• Should examples of the formal modeling lan-

guage, which shall be used for formalization, be
given?

• Or the complete language specification?

This paper explores the innovative use of LLMs to
automatically generate constraint models in constraint
programming languages like PyChoco9. Constraint pro-
gramming involves defining problems in terms of vari-
ables, related variable domains, and constraints that must
be satisfied. Popular problems in this domain include, e.g.,
the N-queens problem, Magic Square, Map Coloring, and
the Traveling Salesperson Problem (TSP). To tackle such
problems, we propose a generalized approach (Section
3) where an LLM is leveraged to generate a constraint
model based on a provided prompt.

We test our approach based on several constraint sat-
isfaction problem examples (Section 4). In this paper, we
mainly concentrate on known examples from the con-
straint community given by well-known descriptions,
not that much on new examples formulated in natural
language. Although the task of starting with known prob-
lems is untypical for configuration problems, in our view,
this step is necessary for exploring the possibilities of
LLMs for knowledge modeling in general. This approach
of using commonly known constraint and configuration
problems builds a baseline for further work.

With our proposed approach, we aim to streamline the
process of model creation in constraint programming,
making it faster and more accessible by harnessing the
capabilities of LLMs. The main idea is to define a general
prompt once which describes the problem context and

9https://pypi.org/project/pychoco/

then reuse this general prompt for specific knowledge
engineering tasks at hand.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the state-of-the-art in
LLM-based knowledge modeling. In Section 3, we sketch
our proposed LLM-based CSP generation approach. In
Section 4, we provide details regarding the LLM prompt-
ing approach based on different example CSP tasks. A
discussion (Section 5) and a conclusion (Section 6) ends
the paper.

2. State of the Art in LLMs and
Knowledge Modeling

Many real-world problems can be interpreted as con-
straint satisfaction problems (CSPs). Knowledge engi-
neers have the task of formalizing domain-specific con-
straints into corresponding constraint-based represen-
tations. This formalization step is often effortful and
more assistance and automation are required in the mod-
eling process which can be regarded as a major challenge
for constraint-based systems [5]. Due to recent develop-
ments in the area of large language models (LLMs), we
could envision agent-based approaches that support the
(semi-)automated generation of CSPs [6]. In the follow-
ing, we discuss related work on the application of LLMs
to knowledge modeling.

The idea of exploiting synergy potentials of
knowledge-based systems and language models for
knowledge-base generation has been proposed a.o. by
Petroni et al. [7], Ding et al. [8], and Razniewski et al. [9].
Suchanek and Luu [10] motivate the integration of LLMs
with data-driven and knowledge-based approaches to
exploit the advantages of both worlds, specifically, to
let data-driven approaches act as a basis for grounding
the LLM output in reality. In the work presented in our
paper, a simple form of grounding is the usage of test
cases to assure intended CSP semantics. A similar line of
research is presented in Nayak and Timmapathini [11]
where object and relation identification based on LLMs
is investigated.

Ahmed and Choudhury [12] introduce the idea of ap-
plying LLMs to the generation of optimization problems.
The motivation behind this is to make related problem
formulation tasks more accessible to domain experts, i.e.,
to decrease the need for specialized mathematical knowl-
edge to make problem formulations feasible. Based on
a given dataset comprising different example problem
definitions (and solutions), LLMs are used to generate op-
timization problem definitions for new problems defined
in a textual fashion. A major difference compared to our
work is that model fine-tuning is primarily based on a
"human in the loop" approach whereas we focus more
on automated fine-tuning giving LLM feedback on the

https://pypi.org/project/pychoco/


syntactical (is the generated CSP correct or what were
the compilation issues?) and the semantic level with test
cases. A related approach is the application of LLMs
to support different types of strategic reasoning tasks,
for example, in the context of economic simulations and
game theory [13].

A very similar approach provides [14]. This ‘Program
of Thoughts’ named approach also combines an LLM
with an external Python interpreter, however, in [14] for
computing numerical problems. Furthermore, the verifi-
cation of the generated Python program is not discussed.

The adaptation of LLMs for logical reasoning tasks [15]
can be performed either based on LLM fine-tuning where
LLMs are trained (and adapted) for specific problem set-
tings [16] or based on (automated) prompt adaptation
[17]. Intending to improve the quality of code generation,
Pan et al. [15] follow the idea of using constraint (and
SAT) solver execution errors as feedback channels (in the
prompting process) to increase the quality of code gen-
eration. The feedback approach presented in our paper
extends the work of Pan et al. [15] in terms of addition-
ally providing test cases that help to improve the quality
of the generated CSP also on the semantic level.

In [18], various prompts are used to create source code
with built-in variability. Specific prompts enable the gen-
eration of code in different programming languages, al-
lowing for application configuration. However, a human
developer would execute these prompts, no iterative pro-
cess ensures the correctness of the resulting code.

The automated generation of CSPs can also be re-
garded as a specific type of ontology construction where
concept hierarchies are derived based on different LLM
prompts representing concept hierarchy-specific queries
(see, for example, the work of Funk et al. [19]). An exam-
ple of such a query is the following: What are all of the
most important subcategories of the category A?

3. Methodology
Our approach for generating constraint models using
LLMs is a structured, iterative process designed to create
syntactically and semantically (almost) correct models.
This begins by defining a general LLM prompt that can
encompass the varying specifics of different constraint
problems. For instance, the prompt can be tailored to a
specific constraint problem but always solicits a PyChoco
interpreter that solves the problem.

The process, furthermore, involves using an iterative
loop where the LLM generates a constraint model based
on the provided prompt. This generated model is then
verified through a constraint interpreter or compiler. If
the syntax of the model is incorrect, the result of the
Python interpreter call is automatically taken as a prompt
for a next iteration and the model is adjusted by the LLM

and the process repeats. This loop continues until the
syntax is correct.

Once a syntactically correct model is produced, the
next step is to verify its semantics. This is done by run-
ning a series of test cases specific to the problem domain.
Successful completion of test cases indicates a correct
semantic implementation (at least concerning the test
cases).

This approach, thus, executes an iterative prompting
of an LLM, where only a human user provides the first
prompt, while the results of a Python interpreter are
automatically used by the LLM as successive prompts. A
complete example of such an iterative dialog including
in-between generated answers of the LLM (”Assistant”)
is presented in the Appendix Section 2.

This methodology can be further detailed through the
following steps:

Leveraging Existing Knowledge Problems: To cre-
ate useful constraint models, we use logical problems
that are well understood and documented on the internet.
Examples include classic problems such as the N-queens
problem, Map Coloring, or the Traveling Salesperson
Problem. These problems are selected due to their well-
known constraints and solution strategies.

Integration with Constraint Solvers: Once the log-
ical problems are defined, we connect these models to a
constraint system, here PyChoco - other suitable solvers
could be used. This involves mapping the logical prob-
lem’s constraints to the syntax and structures of the cho-
sen constraint language and, thus, facilitating automated
solving.

Syntax Verification Loop: An iterative process is set
up where the LLM generates a constraint model based
on the initial prompt. This model is then verified for
syntactic correctness using the constraint interpreter or
compiler. If errors are identified, the prompt is automat-
ically adjusted by the LLM, by using an error message
as a next prompt and the LLM regenerates the model.
This loop continues until a syntactically correct model is
achieved.

Semantic Verification with Test Cases: After
achieving a syntactically correct model, the focus shifts
to ensure semantic correctness. This involves introduc-
ing test cases specific to the defined problem. The LLM-
generated model runs through these test cases to ver-
ify that it not only adheres to syntactic rules but also
correctly implements the problem’s logic. Iteration con-
tinues until the model passes all semantic verification
tests.

Generalizability: The ultimate goal of our approach
is to establish a generalizable method for generating con-
straint models using LLMs. By systematically using an
iterative loop for both syntactic and semantic verification
that employs examples and logical problem definitions,
we aim to create a robust framework that can be adapted



tool Python_REPL, description: A Python shell. Use this to run and verify your solution to the constraint problem.
Input should be a valid Python script using pychoco. The last line should be "verify_solutions(solutions, ...)" in order
to verify your solutions
System:
You are an agent designed to solve constraint problems, you write python code to solve and verify constraint problems.
You have access to a python REPL, which you can use to execute python code and verify your solution. If you get an
error, debug your code and try again. You only use the constraint solver pychoco. You conclude your python code
with a variable "solutions" and verify it with the method call "verify_solutions(solutions, <problem_name>", where
<problem_name> is given to you as the first word of the instructions. "solutions" should be a list of all solutions to the
constraint problem. If verification fails, you correct your solution.
Use the following example as a template for solving constraint problems with pychoco:
User: ints10. find numbers one to 10.
Assistant:

‘‘‘python
from pychoco.model import Model
from test_tool import verify_solutions

model = Model()
x = model.intvar(1, 10, "x")

solver = model.get_solver()
solutions = [s.get_int_val(x) for s in solver.find_all_solutions()]
verify_solutions(solutions, "ints10")
‘‘‘

Figure 1: General prompt including an example for the LLM on how to call the verification method. The first three lines (the
tool description) are needed to avoid iterations related to wrongly calling the method verify_solutions (see Appendix
Section 7 for created errors without those lines).

to various constraint languages and problems.
By following these steps, our approach leverages the

capabilities of LLMs to create accurate and efficient con-
straint models, providing a scalable solution for different
problem types.

4. Prompting Constraint Models
We divide prompts into a general part which is used
with each constraint problem, i.e., the system prompt (see
Section 4.1), and a query part which points to a specific
problem (see Section 4.2).

4.1. General Prompts
Prompting Syntactic Valid Models Figure 1 shows the
general prompt which we developed for querying for
constraint solutions. The prompt provides the following
explanations to the LLM:

1. what role it has (“You are an agent. . . “),
2. the explanation of the REPL10 as a tool (“You have

access. . . “),

10Read-Eval-Print-Loop

3. a hint of the behavior of the tool (“The python
REPL. . . “),

4. a hint of how to use the tool (“Use this. . . “),
5. to focus on that tool (“use only“).

Prompting Semantic Verification: To verify, if a
semantic correct solution can be computed with the gen-
erated constraint model, we include a verification scheme
that builds on tests. Those are specific for the constraint
problem at hand. However, the general prompt is en-
hanced with a call to the verification method, which is
parameterized with the name of the constraint problem.
The verification scheme is given by an example that ex-
plains the parameterization, a constraint model, and the
call to the verification method (Figure 1).

Prompt Refinement: For more understanding, of
why the LLM generates a certain code line in the model,
we have enforced the LLM to provide comments above
a code line (see Figure 2). This is done by explaining
in the prompt what a “Good python code example“11 is.
This is done, by repeating this text at various appropriate

11The italic style in the prompt is only for the human reader, i.e.,
only the text is given as prompt.



You are an agent designed to solve constraint problems, you write and execute python code to answer questions.
You have access to a python REPL, which you can use to execute python code. The python REPL will keep its state
between usage. Use this to gradually approach a final solution. Divide the solution into meaningful parts run them
part after part verifying that each part runs correctly. If you get an error, debug your code and try again only the last
part that failed. You only use the constraint solver pychoco. Only use the output of your code to answer the question.
Write for each code line a comment as needed to justify your reasoning for that code line. I will give you an example
of good python code, please, follow the code convention of the good python code example. This good python code
exampleis only an example. This good python code example has nothing to do with the constraint problem solution.
You might know the answer without running any code, but you should still run the code to get the answer. If it does
not seem like you can write code to answer the question, just return "I don’t know" as the answer. The user may
ask questions or give follow up instructions after you presented your solution. You then have to adjust you solution
accordingly.
good python code example:

"# Import necessary modules
import os

# Define the input and output file paths
input_file_path = \’numbers.txt\’
output_file_path = \’average.txt\’

# Function to read numbers from a file
def read_numbers_from_file(file_path):

# Initialize an empty list to store the numbers
numbers = []
# Open the file in read mode
with open(file_path, \’r\’) as file:

# Read each line in the file
for line in file:

# Strip any leading/trailing whitespace and convert to float
number = float(line.strip())
# Append the number to the list
numbers.append(number)

# Return the list of numbers
return numbers
main()"

Figure 2: Refining the prompt to provide comments for the generated model (slightly differently prompted).

positions in the prompt, as well as providing such an
example in the prompt.

4.2. Prompting Specific Problems
The query part simply consists of the name of the con-
straint problem and related specific problem descriptions,
see Listing 112.

N-Queens Problem
Problem: Positioning n queens with possible movements
known from chess on a𝑛*𝑛 chessboard13. Figure 1 shows
the used prompt.

12The code in the repository contains further problems such as magic
square that lead to similar observations.

13See files “chats/queen8_cs_agent_sol2_gpt-4-1106-preview_*“ in
the repository for results

Results: The LLM makes multiple Python REPL calls,
one that prints the solution, and one that follows the
system prompt on how to verify the solution. This leads
to the correct computation of the model including the
conversion of the solutions to a list of lists (see Figure 3).

Comments: The solution to the N-queens problem is
provided in the PyChoco documentation on the internet,
hence, the LLM was trained with it. However, a different
solution was found. Also, the 3-queen problem which
provides no solution was correctly represented. A further
observation was that the result is not deterministic, e.g., it
varies arithmetical constraints for diagonals (see Listing
2). Fixing the seed and setting the temperature to zero
does not make results deterministic.

The semantic verification test for the N-Queens prob-
lem is shown in Listing 3. Through the method



Listing 1: Queries for specific constraint problems

queen3 = "solve the 3-queen problem"
queen8 = "solve the 8-queen problem"
queenn = "solve the n-queen problem, use n=8 as test instance"
----------------------------------------------------------------------------
coloring = """
solve the map coloring problem for four regions, three colors and the given adjacency:
regions = [’A’, ’B’, ’C’, ’D’]
adjacency_list = {

’A’: [’B’, ’C’],
’B’: [’A’, ’C’, ’D’],
’C’: [’A’, ’B’, ’D’],
’D’: [’B’, ’C’]

}.
the solution should be a list of python dicts where each dict maps regions to color indices
"""
----------------------------------------------------------------------------
tsp = """solve the traveling salesman problem, use the following problem instance:
# Number of cities
C = 4

# Distance matrix
D = [[0, 10, 15, 20], [10, 0, 35, 25], [15, 35, 0, 30], [20, 25, 30, 0]]
the solution should be a list of valid solutions, each solution being a list of integers

representing the cities to be visited.
"""

verify_solutions called by the prompt, each solu-
tion (queens) is tested. This test is exhaustive because
it analytically tests the queens’ position, not leaving out
a constraint.
Map Coloring
Problem: Listing 1 describes the well-known Map Col-
oring as a query.

Results: A first model which contains the constraint
all_different raised an error14 but was corrected by
using another constraint modeling (i.e., with != instead
of all_different) through 2 iterations15. A further
run provides a one-shot success, however not recognized
as such, instead a solution was hallucinated for present-
ing to the user16. A further run firstly used the API
wrongly, but finds finally a correct solution17.

Comments: The solution can also be found on the
internet, however, this does not prevent from making
errors. Finally, also because the iterative approach is
used, a solution was found.
Traveling Salesperson Problem
Problem: Listing 1 describes the well-known TSP as a
query.
14It seems to be an implementation issue, see https://github.com/

chocoteam/choco-solver/issues/705
15coloring_cs_agent_sol2_gpt-4-1106-preview_ 20240529094847.txt
16coloring_cs_agent_sol2_gpt-4-1106-preview_ 20240529095157.txt
17coloring_cs_agent_sol2_gpt-4-1106-preview_ 20240529095612.txt

Results: In general, there are several recurring issues
when attempting to model constraints for the TSP (see
the error logs in Appendix Section 8). One major problem
is accurately modeling distance constraints, which often
leads to incorrect solutions. Similarly, the Hamiltonian
path constraints are difficult to model correctly, com-
pounding the problem. Additionally, there is frequent
misuse of the API. These misuses typically involve pro-
viding arguments in the wrong order or supplying an in-
correct number of arguments. As a result of these issues,
the solutions generated are often flawed. With GPT-4, no
solutions could be found with the resources at hand, but
with GPT-4o, some solutions were correctly identified.
However, no implementation was found that computes
all the test cases provided for verification. Overall, these
challenges underscore the complexity of effectively mod-
eling TSP constraints and highlight areas that require
significant improvements to find optimal solutions con-
sistently.

4.3. Implementation
The implementation, which utilizes LangChain and
Python, leverages ChatGPT-4 and ChatGPT-4o and is
available on a repository at Zenodo18. As a constraint

18https://doi.org/10.5281/zenodo.12794211

https://github.com/chocoteam/choco-solver/issues/705
https://github.com/chocoteam/choco-solver/issues/705
https://doi.org/10.5281/zenodo.12794211 


Assistant:
There was a mistake in the code. It seems I incorrectly used the
‘solver.find_solution()‘ method, which only finds one solution, and I
didn’t convert the solution to the expected list format before passing
it to the verification function. I need to find all solutions and convert
each solution to a list of integers representing the positions of the
queens.
Let me correct the code.

Python_REPL (tool call 1/1):

from pychoco.model import Model
from test_tool import verify_solutions
model = Model("8-Queens")
# Create an array of 8 variables representing the positions of queens on a
# chess board
queens = model.intvars(8, 1, 8)
# Add constraints
for i in range(8):

for j in range(i + 1, 8):
# Queens cannot be on the same row
model.arithm(queens[i], "!=" , queens[j]).post()
# Queens cannot be on the same diagonal
model.arithm(queens[i], "-", queens[j], "!=", i - j).post()
model.arithm(queens[i], "-", queens[j], "!=", j - i).post()

# Find all solutions
solver = model.get_solver()
solutions = []
for solution in solver.find_all_solutions():

solutions.append([solution.get_int_val(queens[i]) for i in range(8)])
verify_solutions(solutions, "queen8")

Python_REPL (tool response):
92 of the 92 solutions are correct. Expected 92 solutions
Assistant:
The 8-queens problem has been successfully solved, and all 92 solutions are correct.
tool calls: 6, text messages: 6

Figure 3: Constraint model for 8-queens problem and last output

solver, we used PyChoco as a Python API for the con-
straint solver Choco19. The resources of ChatGPT are
limited in respect of context/prompt length. This ap-
proach causes the LLM to stop responding when the chat
size extends the allowed number of tokens, which easily
can occur because the chat includes the entire previous
chat history. The resulting chats are included in the pa-
per’s appendix and the repository. The implementation
can be used to rerun the experiments, and the data can be
utilized for further investigation in prompt engineering.

5. Discussion
Overall, across all problems, after initiating multiple
chats, each with several iterations, a model that can com-

19https://choco-solver.org/

pute a single solution could be found (see Appendix sec-
tions 3 to 6). In Appendix Section 9, we document the
number of iterations per experiment, i.e., calls to the
Python interpreter (”Tool Calls”) and answers given by
the LLM (”Text Messages”). Nevertheless, for the TSP, we
could not find a model that computes all solutions. The
iteration was stopped by the LLM, if no changes occurred
or if too many tokens were used. So the paper’s result
is that in principle constraint models for well-known
problems can be computed, however, not in any cases.

An interesting observation is that the generated vari-
able names within the model are always semantically
meaningful (e.g., "queens") and not arbitrary. This likely
occurs because LLMs statistically favor names that have
been previously encountered.

In this paper, we use well-known constraint problems,

https://choco-solver.org/


Listing 2: Non-deterministic results

- correct
model.arithm(queens[i], "!=" , queens[j] + (j - i)).post()
model.arithm(queens[i], "!=", queens[j] - (j - i)).post()

- correct
model.arithm(qs[i], "-", qs[j], "!=" , j - i).post()
model.arithm(qs[j], "-", qs[i], "!=" , j - i).post()

- wrong
model.abs(queens - queens).ne(i - j).post() # Diagonal constraint
model.abs(queens - queens).ne(j - i).post() # Diagonal constraint

- wrong
model.arithm(queens[i], "-", queens[j], "!=", i - j).post()
model.arithm(queens[i], "+", queens[j], "!=", i + j + 2).post()

- does not find all solutions
diag1 = [model.int_offset_view(queens[i], i) for i in range(n)]
diag2 = [model.int_offset_view(queens[i], -i) for i in range(n)]
model.all_different(diag1).post()
model.all_different(diag2).post()

- wrong
model.arithm(queens[i], "!=" , queens[j]).post() # Different columns
model.arithm(queens[i], "-", i, "!=" , queens[j], "-", j).post() # Different diagonals (left-

top to right-bottom)
model.arithm(queens[i], "+", i, "!=" , queens[j], "+", j).post() # Different diagonals (left-

bottom to right-top)
- wrong

model.all_different([queens[i], queens[j]]).post()
model.arithm(queens[i], "-", queens[j], "!=" , j - i).post()
model.arithm(queens[i], "+", queens[j], "!=" , j - i).post()

Listing 3: Verifying a solutions for N-queens through testing the queens’ positions.

def is_valid_solution(queens):
n = len(queens)
assert type(queens) == list, "expected list of ints"
for i in range(n):

for j in range(i + 1, n):
# Check if queens are in the same row
if queens[i] == queens[j]:

return False
# Check diagonals: if the difference between the column indices equals
# the difference between the row indices, they’re in the same diagonal
if abs(queens[i] - queens[j]) == abs(i - j):

return False
return True

which, of course, can only be a first step for leveraging
LLMs in knowledge acquisition. The next steps would be
to supply new, unknown problems, also industrial ones,
e.g., by giving tables of correct variable combinations
(configurations) in table constraints and generating ab-
stracted constraint models. However, Listing 1 shows a
potential way of representing formally a problem as a
query which probably can be used for other tasks.

There are several general problems identified: the pro-
gram persistently uses the PyChoco API incorrectly and
often hallucinates PyChoco functions. This could not be

prevented by providing the API definition in the prompt,
because the complete definition extends the number of
possible tokens we could send to the LLM.

Additionally, the chats are not stable and can vary
significantly even with the same prompt. This instability
persists even with temperature set to 0 and a fixed seed,
making chats non-deterministic.

The used prompts should be further developed to
achieve the intended general generation of knowledge
models; in other words, prompt engineering for knowl-
edge modeling needs to be elaborated. Few-Shot Prompt-



ing [20] could be used to encourage the model to produce
more consistent outputs and adhere more closely to given
instructions.

The approach of first creating syntactically correct
models and then verifying them to ensure semantic ac-
curacy could be successfully demonstrated (see Listing
3). Because we use a test-driven semantic verification
this verification depends on the quality of the used test
cases. For example, the N-queen problem was exhaustive
because of an analytical-based verification and not an
enumeration of test cases. Furthermore, writing tests
for knowledge-based tasks is, in our experience, typi-
cally easier than writing knowledge models, hence, the
experts’ tasks of creating formal constraints and also con-
figuration models will, in our opinion, shift from writing
models to writing tests - and let us write the models
through an LLM. Thus, the knowledge model develop-
ing process probably, with the presented approach, can
be executed by domain experts not only by knowledge
engineers.

The paper offers, furthermore, an easy way to begin
with iterative LLM prompting. Moreover, it is suggested
to use the LLM for creating a new configuration language
by exploiting the hallucination capabilities.

6. Conclusions
The paper presents the first steps in supporting the for-
malization task in constraint modeling with LLMs, i.e.,
the mapping of a well-known problem into a constraint
representation of a certain constraint language, here Py-
Choco, with large language models. By taking various
constraint problems, formulating generally applicable
prompts, and doing so in an iterative manner which in-
cludes syntactic and semantic verification processes, the
LLM could generate appropriate and correct constraint
models. Through the iteration, in-between errors related
to syntax and semantics were automatically corrected.
Further work will include a quantitative evaluation of the
method, a comparison of different LLMs, as well as the
generation of constraint models for unknown problems.
In total, this paper provides a first step into a new kind
of constraint and configuration modeling approach with
LLMs.
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