
Challenges in Automotive Hardware-Software
Co-Configuration
Florian Jost1,*, Carsten Sinz2

1Mercedes-Benz AG, Leibnitzstr. 2, Böblingen, 71032, Germany
2Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany

Abstract
Car manufacturers offer their customers an enormous number of configuration options to individualize their vehicles. While
configuration options mostly covered physical components in the past, over the last years the number of software-related
options has increased immensely. Existing systems for car configuration should thus be optimized and extended to handle
the shift towards more software-related features, e.g. for automatic driver assistance systems. In this article, we highlight
different problems and properties combined systems of hardware-software configurations have to tackle in an automotive
context.

Keywords
Automotive Configuration, Hardware-Software Co-Configuration, Future Challenges

1. Introduction
Modern car manufacturers offer a vast number of config-
uration options for their products. In the past, these op-
tions covered parts and functionality that were primarily
based on physical components. With the ongoing elec-
trification of cars, the rate of functionality implemented
in software and thus also the variance in software is in-
creasing [1].

But not only the number of configuration options is in-
creasing, the same holds for the complexity of their in-
terdependencies. Some options are mutually dependent,
others are mutually exclusive. This results in an enor-
mous configuration space with more than 10100 possible
constructable (valid) configurations for a product line
[2]. The inherent complexity of the problem challenges
automotive manufactures in all stages of the product life-
cycle, from development, through production, sales to
after-sales. Due to the increasing importance of software
in this context, hardware-software co-configurations are
playing an increasingly substantial role.

In this publication, we describe upcoming or already ex-
isting problems that arise in the context of increasingly
software-driven vehicles.

ConfWS’24: 26th International Workshop on Configuration, Sep 2–3,
2024, Girona, Spain
*Corresponding author.
$ florian_benedikt.jost@mercedes-benz.com (F. Jost);
carsten.sinz@h-ka.de (C. Sinz)
� 0009-0006-9670-8856 (F. Jost); 0000-0001-9718-1802 (C. Sinz)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

2. State of the Art
Classically, the possible configurations through which
a car can be realized are represented by configuration
options. In addition to different color finishes, these can
also describe different engine designs, or optional extras
such as an improved infotainment system. An existing
order, i.e. a set of configuration options, can then be
translated into the physical parts that are needed to man-
ufacture the particular car instance.

Historically, with the increasing emergence of software
functionality and the associated ECUs (electronic con-
trol units) in the car, the existing hardware configuration
systems were adapted to also manage software config-
urations. But, as automotive software can have a wide
variety of requirements for the installed hardware (e.g.
sensors for autonomous driving systems), software con-
figuration cannot be treated independent of the hardware
configuration. However, this close connection is often
not reflected in current configuration systems, where
mostly software configuration is treated as a second con-
figuration step, after the physical components have been
selected and configured.

Additionally, software often comes with configurable
parameters that can be set to different values. As an ex-
ample, emergency call numbers differ from country to
country and have to be set accordingly. The basic func-
tionality of the software remains the same, independent
of the value the parameter is set to. Thus, instead of writ-
ing software for each possible parameter setting, an ECU
runs through an additional configuration step, where
correct parameter values are written to the ECU (special
bits get set in the programmable ROM of the ECU). The
high-level software then can adapt its functionality by
reading the corresponding bits in the ROM. In the au-

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:florian_benedikt.jost@mercedes-benz.com
mailto:carsten.sinz@h-ka.de
https://orcid.org/0009-0006-9670-8856
https://orcid.org/0000-0001-9718-1802
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


tomotive sector, this configuration step is often called
variant coding [3].

Typically, in the automotive industry, configuration op-
tions are realized through Boolean variables, so-called
codes, where each code is represented by a variable name
a.k.a. identifier. An option selected by a customer is then
reflected by setting the corresponding code to true. Be-
sides codes to register customer’s selections, internal
codes are used, for example, there can be codes repre-
senting spatial regions and codes indicating if the car
possesses left or right steering.

The set of valid configurations is described by a set of
Boolean formulas (rules, constraints) that all have to be
satisfied in a valid order. Such constraints can express,
e.g., mutual exclusivity, as in the selection of left-hand
or right-hand steering. But often constraints are much
more evolved, encompassing many dozens of codes.

Example:
𝑐1 → ¬𝑐2 ∧ ¬𝑐3

with codes 𝑐1, 𝑐2, 𝑐3. In other words, if we select code
𝑐1, codes 𝑐2 and 𝑐3 cannot be selected.

Handling of parameters is mostly done in separate
systems, where valid values (or sometimes even valid
combinations of values) are specified via tables listing
the admissible settings.

3. Challenges
Since software has become central in modern cars, the
question arises whether existing systems, into which the
software configuration is mostly just cobbled in, still meet
all the necessary or desired requirements.

Until today, the configuration process is still mostly
divided into two steps. First the hardware configuration,
then – on top of it – the software configuration. However,
it is questionable whether this two-step process is still
the best approach for existing and future use-cases.

In this section, we present various challenges that
prevail in current hardware-centric configuration sys-
tems and might require additional consideration in future
hardware-software co-configuration systems.

Hardware Upgrade. Automotive manufactures re-
cently started to offer subscription models for features
that are not present at the time of sale, but can be
retrofitted – often by a simple software switch – into
already delivered vehicles. For this, the manufacturers
need the possibility to enable functions for vehicles in the
field. Typically, this also requires a check, whether the
hardware of the car supports the extended functionality.

It might even be the case that an OEM (Original Equip-
ment Manufacturer) allows a retrofit including an update

of hardware components. This can occur as follows: In a
revision of an existing car series, the hardware is slightly
modified and a new software function becomes available.
Now, this software function could potentially also be
provided in the older model, if the necessary hardware
can be retrofitted. Checking whether such an update is
possible (and which parts have to be exchanged) requires
access to the exact configuration of the delivered car as
well as configuration systems that have knowledge about
constraints for historic configurations, possibly going
back to several years or even decades.

OTA Update. Over-the-air (OTA) software updates
present unique challenges for automotive manufacturers.
Firstly, the vehicle’s software configuration must be fully
defined in both hardware and software terms, ensuring
that only compatible software satisfying all dependencies
is delivered to the vehicle. Additionally, the delivered
software must be correctly configured through variant
coding, based on the underlying hardware configuration.
Therefore, a combined consideration of hardware and
software is highly important

Missing Expert. Up to day, software updates are still
performed in repair shops by an expert. Manufacturers
profit in this context from the expertise of the working
staff. Occurring errors can instantly be analyzed by a
qualified person. In the best case, the underlying error
can be directly fixed by the repair shop staff. Especially
in the case of OTA updates, this expertise is missing. In
particular, problem analysis and troubleshooting pose
a special challenge, as they all have to be done before
delivery of the update or – for residual errors – must be
fixable remotely, in the worst case by a downgrade to the
previous version.

Certification. The automotive sector is highly stan-
dardized and regulated. Automotive manufacturers must
guarantee that their products satisfy all kinds of stan-
dards from different domains. The regulations classically
certify a vehicle to satisfy predefined security and safety
standards. With the increasing use of driver assistant
systems in the automotive sector, the certification re-
quirements, especially in software, grow. In particular,
lawmakers want to know in the future exactly which soft-
ware is delivered in which car. An example is the UN ECE
regulation 156,1 describing the requirements for a soft-
ware update management system (SUMS) and the future
scope for type approval procedures under consideration
of the software.

1https://unece.org/transport/documents/2021/03/standards/un-reg
ulation-no-156-software-update-and-software-update

https://unece.org/transport/documents/2021/03/standards/un-regulation-no-156-software-update-and-software-update
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-156-software-update-and-software-update


Frequent Updates. Software updates can be much
more frequent than hardware revisions. As software is
in an increasing manner not only security but also safety
relevant, software updates may have the need to be rolled
out quickly. However, as software changes can impact
other components of the vehicle, an automatic validity
and conformity check of the target vehicle configuration
is required. In the best case, after a fix in an existing
software package, a package manager should compute a
new valid configuration, including the fixed software.

Vehicle function distribution. The distribution of
functions in a vehicle and their mapping to ECUs is still
done mostly manually. However, with the rapidly chang-
ing software architectures in vehicles, the distribution
is getting more and more complex. To simplify the ini-
tial process in development, algorithmic support is an
obvious solution. This requires a detailed specification
and documentation of dependencies of the software to
be distributed. This initial distribution, we call it static
vehicle function distribution, can also be extended to the
dynamic case, in which functions can be (re-)distributed
in real-time to corresponding computing nodes. This
allows an improved energy usage, as ECUs can be turned
off and on if needed – complex algorithms might even
be run in the cloud. For both use cases, a complete de-
scription of the hardware and software dependencies is
required.

Version Constraints. For software configurations, the
specific version of a software package and its dependen-
cies are vital information. In a major software release,
dependencies might change drastically, reflecting the
changed and extended behavior of the software. How-
ever, version constraints are mostly documented in a
numeric way, e.g. via Semantic Versioning.2 Whether
the currently employed Boolean formalization of con-
straints is still the best way to address the problem is
questionable.

Variance over time. If software updates can still be
carried out for older vehicles, new functionalities can also
be integrated into existing fleets if technically feasible.
Determining which vehicle configurations can still be
supplied with new software, as well as documenting and
verifying this, is a major challenge given the enormous
space of possible configurations. Enabling this variance
over larger timeframes will require new mechanisms and
considerations.

Software Packaging. In classic computer systems,
software configuration problems are often solved with
the help of package managers. However, automotive

2https://semver.org

software has additional constraints. In addition to the
hardware dependency, there are also complex parame-
terizations (variant coding) and the need for diagnostic
options. This raises the question of how to define soft-
ware components or packages in order to be able to adopt
existing concepts.

4. Related Work
How to handle hardware/software configurations in the
automotive sector has been an active point of research
and discussion for several years now [4, 5]. In a survey
of German car manufacturers, Sax et al. [6] claim that
new ways of checking the consistency of major, regular
software updates is an important aspect for not hindering
fast development of new functions in the future.

The configuration problem in the automotive industry
and solutions to it were already described in the early
2000s. Sinz [7] describes a rule system based on Boolean
logic. Here, not only checking individual configurations
is covered, but also ways to determine common proper-
ties of all valid configurations. Moreover, the mapping
from code sets into concrete physical components is also
considered. In a later publication, Sinz [8] also describes
the verification of such rule systems in order to detect
and minimize errors at an early stage. Astesana et al. [9]
on the other hand, describe vehicle configurations by us-
ing a CSP framework, with Renault as a case study. More
recent publications also deal with the topic of classic
configurations. Bischoff et al. [10] describes a graphical
editor for visualizing and editing item selection rules.

In addition to the control systems mentioned above, there
are other approaches to describing variability in general.
One of them is feature modeling. In this, the configura-
tion options (features) are often represented in the form
of trees, which represent the relations between the fea-
tures. The analysis of feature models is often performed
with the use of SAT solvers [11]. However, analysis ap-
proaches using SMT solvers have also been part of recent
research [12].

In the area of classic computer systems, configurations
are often found in the area of package management
and dependency solving. These are mostly so-called
component-based systems such as GNU/Linux distribu-
tions (e.g. Debian 3). These contain metadata for software
packages, which the package managers utilize in their
search for valid configurations. While most package man-
agers initially used ad-hoc solvers [13], nowadays more
efficient algorithms from the SAT or CSP community are
usually employed [14]. Pinckney et al. [15] recently pro-
posed a package solver, PacSolve, for NPM which uses

3https://www.debian.org

https://semver.org
https://www.debian.org


an SMT approach instead of SAT/CSP solvers. As an
alternative to SAT and SMT, there are also publications
that describe and solve package update problems with
Answer Set Programming [16, 17].

The distribution of different functions in the architecture
of a vehicle represents an enormous challenge in mod-
ern vehicles. Ruhnau et al. [18] take a first step towards
mastering this challenge by describing an ontology for
function distribution, covering both static and dynamic
distribution.

5. Conclusion
In this paper, we have described various challenges that
exist in the area of hardware/software configurations in
the automotive sector. Many of these challenges arise
from the increasing complexity and relevance of software
in vehicles. We have listed that research work already ex-
ists for some of the topics. For others, there are promising
approaches from related problem areas, the suitability of
which we will investigate in more detail in future work.

Acknowledgments
The research presented in this paper was done in the con-
text of the SofDCar (19S21002) project, which is founded
by the German Federal Ministry for Economic Affairs
and Climate Action.

References
[1] C. Fehling, M. Frank, O. Kopp, Digital sustainability

and digital diversification: The two key challenges
for automotive software development, in: IEEE
18th Intl. Conf. Software Architecture Companion
(ICSA-C), 2021, pp. 162–166.

[2] A. Kübler, C. Zengler, W. Küchlin, Model counting
in product configuration, in: Proc. of the 1st Intl.
Workshop on Logics for Component Configuration,
LoCoCo 2010, Edinburgh, UK, 2010, pp. 44–53.

[3] H. Takimizu, T. Fukaya, Y. Ito, N. Sakano, ECU
variant coding system, Mitsubishi Motors Technical
Review 18 (2006).

[4] O. Media, Effective hardware-software co-design
for automotive systems, 2014. URL: https://embedd
edcomputing.com/application/automotive/effect
ive-hardware-software-co-design-for-automotiv
e-systems.

[5] O. Burkacky, J. Deichmann, G. Doll, C. Knochen-
hauer, Effective hardware-software co-design for
automotive systems, 2018. URL: https://www.mcki
nsey.com/industries/automotive-and-assembly/

our-insights/rethinking-car-software-and-electro
nics-architecture.

[6] E. Sax, R. Reussner, H. Guissouma, H. Klare, A Sur-
vey on the State and Future of Automotive Software
Release and Configuration Management, Technical
Report 11, Karlsruher Institut für Technologie (KIT),
2017.

[7] C. Sinz, Baubarkeitsprüfung von Kraftfahrzeugen
durch automatisches Beweisen, Diplomarbeit, Uni-
versität Tübingen, 1997.

[8] C. Sinz, Verifikation regelbasierter Konfigura-
tionssysteme, Ph.D. thesis, Universität Tübingen,
Tübingen, Germany, 2003.

[9] J.-M. Astesana, L. Cosserat, H. Fargier, Constraint-
based vehicle configuration: A case study, in: 2010
22nd IEEE International Conference on Tools with
Artificial Intelligence, 2010, pp. 68–75.

[10] D. Bischoff, W. Küchlin, O. Kopp, Poseidon: A
graphical editor for item selection rules within fea-
ture combination rule contexts, in: PLM in Transi-
tion Times, Springer, Cham, 2023, pp. 3–14.

[11] D. Benavides, S. Segura, A. Ruiz-Cortés, Automated
analysis of feature models 20 years later: A litera-
ture review, Information Systems 35 (2010) 615–636.

[12] J. Sprey, C. Sundermann, S. Krieter, M. Nieke,
J. Mauro, T. Thüm, I. Schaefer, SMT-based vari-
ability analyses in FeatureIDE, in: Proceedings of
the 14th International Working Conference on Vari-
ability Modelling of Software-Intensive Systems,
ACM, 2020.

[13] P. Abate, R. D. Cosmo, R. Treinen, S. Zacchiroli, A
modular package manager architecture, Informa-
tion and Software Technology 55 (2013) 459–474.

[14] P. Abate, R. D. Cosmo, G. Gousios, S. Zacchiroli,
Dependency solving is still hard, but we are getting
better at it, in: 27th Intl. Conf. Software Analysis,
Evolution and Reengineering (SANER), IEEE, 2020.

[15] D. Pinckney, F. Cassano, A. Guha, J. Bell, M. Culpo,
T. Gamblin, Flexible and optimal dependency man-
agement via Max-SMT, in: 45th Intl. Conf. Software
Engineering (ICSE), 2023, pp. 1418–1429.

[16] M. Gebser, R. Kaminski, T. Schaub, aspcud: A linux
package configuration tool based on answer set pro-
gramming, Electronic Proceedings in Theoretical
Computer Science 65 (2011) 12–25.

[17] T. Gamblin, M. Culpo, G. Becker, S. Shudler, Us-
ing answer set programming for HPC dependency
solving, in: Proc. Intl. Conf. on High Performance
Computing, Networking, Storage and Analysis, SC
’22, IEEE Press, 2022.

[18] J. Ruhnau, M. Sommer, J. Henle, A. Walz, S. Becker,
E. Sax, Ontology for vehicle function distribution,
in: IEEE Intl. Systems Conf. (SysCon), Vancouver,
Canada, 17-20 April 2023, IEEE, 2023, p. 1–6.

https://embeddedcomputing.com/application/automotive/effective-hardware-software-co-design-for-automotive-systems
https://embeddedcomputing.com/application/automotive/effective-hardware-software-co-design-for-automotive-systems
https://embeddedcomputing.com/application/automotive/effective-hardware-software-co-design-for-automotive-systems
https://embeddedcomputing.com/application/automotive/effective-hardware-software-co-design-for-automotive-systems
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/rethinking-car-software-and-electronics-architecture
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/rethinking-car-software-and-electronics-architecture
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/rethinking-car-software-and-electronics-architecture
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/rethinking-car-software-and-electronics-architecture

	1 Introduction
	2 State of the Art
	3 Challenges
	4 Related Work
	5 Conclusion

