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Abstract
The Job Shop Scheduling Problem (JSP) is central to operations research, primarily optimizing energy efficiency due to its profound
environmental and economic implications. Efficient scheduling enhances production metrics and mitigates energy consumption, thus
effectively balancing productivity and sustainability objectives. Given the intricate and diverse nature of JSP instances, along with
the array of algorithms developed to tackle these challenges, an intelligent algorithm selection tool becomes paramount. This paper
introduces a framework designed to identify key problem features that characterize its complexity and guide the selection of suitable
algorithms. Leveraging machine learning techniques, particularly XGBoost, the framework recommends optimal solvers such as GUROBI,
CPLEX, and GECODE for efficient JSP scheduling. GUROBI excels with smaller instances, while GECODE demonstrates robust scalability
for complex scenarios. The proposed algorithm selector achieves an accuracy of 84.51% in recommending the best algorithm for solving
new JSP instances, highlighting its efficacy in algorithm selection. By refining feature extraction methodologies, the framework aims to
broaden its applicability across diverse JSP scenarios, thereby advancing efficiency and sustainability in manufacturing logistics.
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1. Introduction
The Job Shop Scheduling Problem (JSP) is a cornerstone
issue in operations research and optimization, serving as a
critical benchmark for assessing the performance of various
algorithms. JSP entails the complex task of scheduling jobs
on machines in a manufacturing environment to optimize
several performance metrics, such as makespan, flow time,
tardiness, resource utilization, and energy consumption [1].
Effective benchmarking of JSP solutions requires a multi-
faceted evaluation of these metrics, particularly focusing
on makespan, energy consumption, and tardiness to gauge
scheduling efficiency and resource utilization [2]. Tools like
JSPLIB play a vital role in these benchmarking efforts by
providing researchers with diverse instances derived from
significant studies and experiments, thereby enhancing the
evaluation of algorithms [3].

Understanding the characteristics of problem instances
is essential for effective benchmarking in JSP. Critical fac-
tors include the number of jobs and machines, variability
in processing times, machine availability, and precedence
relationships, all of which significantly impact algorithm
performance [4]. Additionally, considering energy consump-
tion, which varies based on machine speed and operational
factors, adds another layer of complexity [5]. Achieving a
balance between energy consumption and scheduling de-
cisions is crucial for attaining energy efficiency without
compromising production goals [6].

JSP’s focus on energy efficiency has intensified in recent
years due to its substantial environmental and economic im-
pacts [7]. Researchers have investigated strategies such as
employing speed-adjustable machines and vehicles to mini-
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mize energy consumption while maintaining productivity
[8]. Advanced algorithms and optimization techniques have
been developed to address these energy-related challenges,
taking into account factors like machine speed, idle time,
and energy requirements [9]. Real-world implementations
of these strategies have demonstrated tangible benefits, in-
cluding cost savings and positive environmental effects [10].

In addition to traditional optimization methods, machine
learning techniques are increasingly being utilized to rec-
ommend algorithms for solving problems within the JSP
family. For instance, Müller et al. designed a system capable
of selecting the most suitable solver for addressing Flex-
ible JSP by leveraging machine learning approaches [11].
Similarly, Strassl and Musliu [12] analyzed JSP instances
without energy consumption from the literature to extract
features that inform algorithm performance, resulting in a
homogeneous set of instances with consistent characteris-
tics. These features were then used to train various models,
with Random Forest achieving the highest accuracy at 90%
[12].

In conclusion, the integration of machine learning tech-
niques into JSP research provides new avenues for improv-
ing algorithm selection and performance, particularly in
handling complex and varied instances. This integration en-
hances the efficiency and effectiveness of job shop schedul-
ing by combining the strengths of traditional optimization
approaches with innovative machine learning methods. The
ongoing advancements in this field are driving both aca-
demic research and practical applications toward more sus-
tainable and innovative solutions.

2. Problem Description and Model
Formulation

The JSP tackled in this study emphasizes its intricate energy
considerations. The JSP poses a significant computational
challenge, being NP-complete due to its difficulty finding
optimal solutions within reasonable time frames.

The core challenge of the JSP involves optimizing task
allocation across multiple jobs and machines while minimiz-
ing key criteria, notably the total job completion time. How-
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ever, achieving this optimization is complex due to various
real-world constraints and dependencies, contributing to
the JSP’s NP-completeness. The combinatorial explosion of
possible job and machine combinations further complicates
the problem, making exhaustive exploration impractical as
the number of jobs and machines grows.

2.1. Mixed Integer Programming
The JSP involves various sets, parameters, variables, and
constraints crucial for formulation and solution:

Sets:

• 𝐽 = {1, . . . , 𝑛}, the set of jobs.
• 𝑀 = {1, . . . ,𝑚}, the set of machines.
• 𝑆 = {1, . . . , 𝑠}, the set of speeds.
• 𝑇𝑗 , ∀𝑗 ∈ 𝐽 , the set of tasks in job 𝑗. In standard JSP
𝑇𝑗 = 𝑀 .

Parameters:

• 𝐷𝑗𝑡, ∀𝑗 ∈ 𝐽 , ∀𝑡 ∈ 𝑇𝑗 , the due date of task job 𝑡𝑗𝑡.
• 𝑅𝑗𝑡, ∀𝑗 ∈ 𝐽 , ∀𝑡 ∈ 𝑇𝑗 , the release date of task job
𝑡𝑗𝑡.

• 𝑃𝑗𝑡𝑠, ∀𝑗 ∈ 𝐽 , ∀𝑡 ∈ 𝑇𝑗 , the processing time of task
job 𝑡𝑗𝑡 on machine 𝑡 with speed 𝑠.

• 𝐸𝑗𝑡𝑠, ∀𝑗 ∈ 𝐽 , ∀𝑡 ∈ 𝑇𝑗 , the energy consumption for
processing task job 𝑡𝑗𝑡 with speed 𝑠.

Variables:

• 𝑐𝑗𝑡, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇𝑗 , the completion time of task
job 𝑡𝑗𝑡

• 𝑡𝑡𝑗𝑡, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇𝑗 , tardiness of task job 𝑡𝑗𝑡 with
respect to its due date

• 𝑥𝑚𝑗𝑡𝑠 ∈ {0, 1}, ∀𝑚 ∈ 𝑀 , ∀𝑗 ∈ 𝐽 , 𝑡 ∈ 𝑇𝑗 , binary
sequencing variables (i.e., 𝑥𝑚𝑗𝑡𝑠 = 1 denotes that
task 𝑡 of job 𝑗 is performed with speed 𝑠 on machine
𝑚)

• 𝑦𝑚𝑖𝑗𝑝𝑞 ∈ {0, 1}, ∀𝑚 ∈ 𝑀 , ∀𝑖, 𝑗 ∈ 𝐽 , ∀𝑝, 𝑞 ∈
𝑇𝑖, 𝑇𝑗 , 𝑖 ̸= 𝑗, binary assignment variables (i.e.,
𝑦𝑖𝑗𝑝𝑞 = 1 denotes that task 𝑝 of job 𝑖 precedes task
𝑞 of job 𝑗 on machine 𝑚)

𝜑* = argmin
𝜑 ∈ Φ

[𝑀𝐾(𝜑), 𝐸𝐶(𝜑), 𝑇𝑇 (𝜑)] (1)

subject to:

∑︁
𝑚∈𝑀

𝑥𝑚𝑗𝑡𝑠 = 1 (2)

∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇𝑗 ∀𝑠 ∈ 𝑆

∑︁
𝑚∈𝑀

𝑦𝑚𝑖𝑗𝑝𝑞 = 1 (3)

∀𝑖, 𝑗 ∈ 𝐽, ∀𝑝, 𝑞 ∈ 𝑇𝑖, 𝑇𝑗 ,

𝑖 ̸= 𝑗, 𝑝 ≤ 𝑞

𝑡𝑡𝑚𝑗𝑡 ≥ 𝑐𝑚𝑗𝑡 −𝐷𝑗𝑡 (4)
∀𝑚 ∈ 𝑀,∀𝑗 ∈ 𝐽,

∀𝑡 ∈ 𝑇𝑗 , 𝑥𝑚𝑗𝑡 = 1

𝑐𝑚𝑗𝑡 ≥ 𝑅𝑗𝑡 + 𝑃𝑚𝑗𝑡𝑠 (5)

∀𝑚 ∈ 𝑀, ∀𝑗 ∈ 𝐽,

∀𝑡 ∈ 𝑇𝑗 , ∀𝑠 ∈ 𝑆, 𝑥𝑚𝑗𝑡𝑠 = 1

𝑐𝑚𝑗𝑠 ≥ 𝑐𝑚𝑖𝑝 + 𝑃𝑚𝑖𝑝𝑠 (6)
∀𝑚 ∈ 𝑀, ∀𝑖, 𝑗 ∈ 𝐽,

∀𝑝, 𝑞 ∈ 𝑇𝑖, 𝑇𝑗 , ∀𝑠 ∈ 𝑆,

𝑖 ̸= 𝑗 ∧ 𝑝 < 𝑞 ∧ 𝑦𝑚𝑖𝑗𝑝𝑠 = 1

𝑐𝑚𝑗𝑡 ≥ 0 , 𝑡𝑚𝑗𝑡 ≥ 0 (7)
∀𝑚 ∈ 𝑀,∀𝑗 ∈ 𝐽∀𝑡 ∈ 𝑇𝑗

This model seeks the optimal solution 𝜑* that minimizes
the three measures mentioned in equation 1. considering
the constraints associated: the maximum makespan of all
task jobs 𝑀𝐾(𝜑), the total energy consumption 𝐸𝐶(𝜑),
and the total tardiness 𝑇𝑇 (𝜑). The simultaneous optimiza-
tion of these objectives requires a delicate balance between
the various considerations and constraints of the problem.
Therefore, two approaches to optimizing the problem so-
lutions are proposed, allowing us to analyze the methods’
behavior better.

2.2. Mono-objective optimization
This section presents the mono-objective optimization for
a specific scheduling problem involving multiple jobs and
machines, emphasizing key performance metrics such as
makespan, energy consumption, and total tardiness.

𝑓𝑚 = max
𝑗∈𝐽

𝑚∈𝑀

(𝑐𝑗𝑚) (8)

𝑓𝑒 =
∑︁
𝑗∈𝐽

∑︁
𝑡∈𝑇𝑗

𝐸𝑗𝑡 (9)

𝑓 𝑡𝑡 =
∑︁
𝑚∈𝑀

∑︁
𝑗∈𝐽

∑︁
𝑡∈𝑇𝑗

𝑡𝑡𝑚𝑗𝑡 (10)

Equation 8 represents the makespan, which is the maxi-
mum completion time among all machines, by calculating
the total processing time of all job tasks on each machine
and selecting the maximum value across all machines. Equa-
tion 9 describes energy consumption by computing the total
energy consumed by all job tasks across all machines. Lastly,
Equation 10 is formulated to show the total tardiness, which
represents the number of time units of each job or operation
that are performed outside its time window, i.e., the period
of time between the release date and the due date.

𝑚𝑖𝑛
𝑓𝑚 −𝑚−

1

𝑚+
1 −𝑚−

1

+
𝑓𝑒 −𝑚−

2

𝑚+
2 −𝑚−

2

+
𝑓 𝑡𝑡

𝑚+
1

(11)

Minimizing the objective Function 11 aims to find a so-
lution that achieves a balanced trade-off among the com-
ponents. The values 𝑚+

1,2 and 𝑚−
1,2 are used to normalize

the 𝜑* solution obtained in the three-dimensional objective
space. This allows a correct comparison between the values
of the objective function in minimizing the problem, giving
the same weight to all the parts, and avoiding any of the
variables dominating the search.

𝑚+
1 =

∑︁
𝑗∈𝐽

(
∑︁
𝑚∈𝑀

max
𝑠∈𝑆

(𝑃𝑗𝑚𝑠)) (12)



𝑚+
2 =

∑︁
𝑚∈𝑀

(
∑︁
𝑗∈𝐽

max
𝑠∈𝑆

(𝐸𝑗𝑚𝑠)) (13)

𝑚−
1 =max

𝑗∈𝐽
(
∑︁
𝑚∈𝑀

min
𝑠∈𝑆

(𝑃𝑗𝑚𝑠)) (14)

𝑚−
2 =

∑︁
𝑚∈𝑀

(
∑︁
𝑗∈𝐽

min
𝑠∈𝑆

(𝐸𝑗𝑚𝑠)) (15)

Equations between 12 and 15 determine both maxi-
mum (𝑚+

1 and 𝑚+
2 ) and minimum (𝑚−

1 and 𝑚−
2 ) values

for makespan and energy consumption respectively. For
makespan, these values signify the maximum and minimum
completion times across all machines, accounting for the
maximum and minimum processing times of job tasks on
each machine. Similarly, in terms of energy consumption,
they represent the maximum and minimum energy utilized
among all machines, considering the maximum and mini-
mum energy consumption of all job tasks on each machine.

3. Algorithm Selector
The selection of algorithms for a given problem 𝐽𝑆𝑃 in-
volves identifying the most appropriate algorithm from a
collection capable of solving 𝐽𝑆𝑃 , taking into account the
specific characteristics of 𝐽𝑆𝑃 . Rubinoff [13] formalized
this process of algorithm selection. Rubinoff defined key
elements, including the problem space 𝑋 , representing all
instances of 𝐽𝑆𝑃 ; the algorithm space 𝐴, encompassing
algorithms capable of solving any 𝑗𝑠𝑝 ∈ 𝑋 ; and a perfor-
mance metric 𝑦, which quantifies algorithm effectiveness
for solving 𝑗𝑠𝑝 ∈ 𝑋 .

The core objective is to establish a function 𝑆 : 𝑋 →
𝐴 that, for each problem instance 𝑗𝑠𝑝 ∈ 𝑋 , selects the
optimal algorithm from 𝐴 based on metric 𝑦. To effectively
characterize each 𝑗𝑠𝑝, a feature set 𝐹 is constructed to
represent 𝑝 and assist in the decision-making process for
𝑆. Consequently, 𝑆 is defined as a composite function 𝑆 =
𝑇 ∘ 𝐺, where 𝐺 : 𝑋 → R|𝐹 | maps 𝑝 to its feature vector
in R|𝐹 |, and 𝑇 : R|𝐹 | → 𝐴 selects the algorithm from 𝐴
based on this feature representation. The choice of 𝐹 is
critical as it must be informative and accurately represent
the characteristics of 𝐽𝑆𝑃 .

Considering the modeling of algorithm selectors in Figure
1, an algorithm selector structure is proposed, where it can
be seen that it is composed of a training phase, in which
the features of a set of instances are processed to generate
a set of data and are solved using three solvers: GECODE,
CPLEX, and GUROBI. Once the instances have been solved,
the extracted features are related to the best algorithm that
has solved that instance, and different machine learning
models are trained in order to validate which is the one
that obtains the best accuracy and thus use it to recommend
future instances.

The following subsections detail each of the training pro-
cesses.

3.1. Feature processing
For each instance, we extract the typical characteristics of a
JSP (Job Shop Scheduling) problem, such as the number of
jobs |𝐽 |, the number of machines |𝑀 |, the type of Release
date, and Due date constraint 𝑅𝑑/𝐷𝑑, and the number of
speeds |𝑆|. Additionally, we extract other features that are
obtained in a less direct manner and aim to be as informa-

tive as possible about the complexity of the instance they
represent. The extra features extracted are:

max(𝑃 ) (16)

mean(𝑃 ) (17)

min(𝑃 ) (18)

The maximum processing time (16) represents the longest
time required to complete any single operation within the
job set. The mean processing time ( Equation 17) gives
the average duration of the operations, providing an over-
all sense of the job length. The minimum processing time
(Equation 18) shows the shortest time needed for any oper-
ation, indicating the fastest job segment.

max(𝐸) (19)

mean(𝐸) (20)

min(𝐸) (21)

The maximum energy consumption (Equation 19) indi-
cates the highest energy required for any single operation.
The mean energy consumption (Equation 20) provides the
average energy used across all operations, reflecting the
overall energy profile. The minimum energy consumption
(Equation 21) shows the lowest energy usage for an opera-
tion, highlighting the least energy-intensive job segment.

∑︁
𝑗∈𝐽

(︃∑︁
𝑚∈𝑀

max
𝑠∈𝑆

(𝑃𝑗𝑚𝑠)

)︃
(22)

Maximum makespan (Equation 22) represents the maxi-
mum makespan of the instance obtained, assuming that all
operations are performed serially with their maximum pro-
cessing time. This value gives the longest possible duration
to complete all jobs, assuming no parallel processing.

max
𝑗∈𝐽

(︃∑︁
𝑚∈𝑀

min
𝑠∈𝑆

(𝑃𝑗𝑚𝑠)

)︃
(23)

Minimum makespan (Equation 23) represents the
makespan of the solution obtained by considering that the
operations can be performed in parallel and do not overlap.
This makespan represents a lower bound of the possible
makespan in a solution, indicating the shortest time to com-
plete all jobs if perfectly parallelized.

∑︁
𝑚∈𝑀

(︃∑︁
𝑗∈𝐽

max
𝑠∈𝑆

(𝐸𝑗𝑚𝑠)

)︃
(24)

∑︁
𝑚∈𝑀

(︃∑︁
𝑗∈𝐽

min
𝑠∈𝑆

(𝐸𝑗𝑚𝑠)

)︃
(25)

The sum of the maximum (Equation 24) and minimum
(Equation 25) energy consumption is obtained by adding
for each operation its maximum and minimum energy con-
sumption, respectively. These values provide insights into
the total energy requirements of the job set under extreme
conditions.⎧⎪⎨⎪⎩

−1 𝑅𝑑/𝐷𝑑 = 0∑︁
𝑗∈𝐽

(︃∑︁
𝑚∈𝑀

max
𝑠∈𝑆

(𝑃𝑗𝑚𝑠)

)︃
𝑅𝑑/𝐷𝑑 = 1

(26)



Figure 1: Structure of the proposed recommender system.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 𝑅𝑑/𝐷𝑑 = 0

∑︁
𝑗1,𝑗2∈𝐽
𝑗1 ̸=𝑗2

max(0,min(𝐷𝑑𝑗1 , 𝐷𝑑𝑗2 )−max(𝑅𝑑𝑗1 , 𝑅𝑑𝑗2 ))

𝐷𝑑𝑗1 −𝑅𝑑𝑗1

|𝐽|·(|𝐽|−1)
𝑅𝑑/𝐷𝑑 = 1

∑︁
𝑗1,𝑗2∈𝐽
𝑗1 ̸=𝑗2

∑︁
𝑚∈𝑀

max(0,min(𝐷𝑑𝑗1𝑚, 𝐷𝑑𝑗2𝑚)−max(𝑅𝑑𝑗1𝑚, 𝑅𝑑𝑗2𝑚))

𝐷𝑑𝑗1𝑚 −𝑅𝑑𝑗1𝑚

|𝐽|·(|𝐽|−1)·|𝑀| 𝑅𝑑/𝐷𝑑 = 2

(28)

Maximum Tardiness (Equation 26) represents the max-
imum possible delay in a solution. If there are no release
or due date constraints (𝑅𝑑/𝐷𝑑 = 0), it is set to -1. Other-
wise, it sums the maximum processing times, indicating the
worst-case delay scenario.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 𝑅𝑑/𝐷𝑑 = 0

∑︁
𝑗∈𝐽

𝐷𝑑𝑗 −𝑅𝑑𝑗∑︀
𝑚∈𝑀 𝑃𝑗𝑚

|𝐽| 𝑅𝑑/𝐷𝑑 = 1

∑︁
𝑗∈𝐽

∑︁
𝑚∈𝑀

𝐷𝑑𝑗𝑚 −𝑅𝑑𝑗𝑚
𝑃𝑗𝑚

|𝐽|·|𝑀| 𝑅𝑑/𝐷𝑑 = 2

(27)

Time-Window (Equation 27) represents the number of
times a job or operation can be performed within its time
window. This metric varies based on the type of release and
due date constraints: no constraints, job-level constraints, or
operation-level constraints, indicating flexibility in schedul-
ing.

Overlap (Equation 28) represents the degree of overlap be-
tween the time windows of the jobs or operations. This met-
ric assesses how much the scheduling windows for different

jobs or operations coincide, which impacts the complexity
and difficulty of scheduling.

3.2. Machine Learning Models
Once the instances have been vectorized and solved, a tabu-
lar data set is constructed with the characteristics of each
instance and the solver that has found the best solution,
that is, the one that has obtained the lowest value of the
objective function.

This dataset has been separated into two subsets, a train-
ing subset with a size of 80% and a test subset with the
remaining 20%. In addition, it has been ensured that the
same number in proportion of instances exists in the two
subsets.

The training dataset has been used to validate different
models using five-fold cross-validation. The validated mod-
els are the following:

• Logistic Regression: This is a statistical method for
analyzing a dataset in which one or more indepen-
dent variables determine an outcome. The outcome
is measured with a dichotomous variable (i.e., two
possible outcomes). Logistic regression is particu-
larly useful for binary classification problems and



provides insights into the relationships between the
variables and the probability of the outcomes.

• Decision Tree: This is a decision support tool that
uses a tree-like model of decisions and their possi-
ble consequences, including chance event outcomes,
resource costs, and utility. A decision tree is built by
splitting the dataset into subsets based on the value
of input features, with the goal of making the most
informative splits. This method is easy to interpret
and visualize, making it useful for understanding
the structure of the data.

• Gaussian Naive Bayes: This is a probabilistic classi-
fier based on Bayes’ theorem, with the assumption
that the features are independent given the class
label and that they follow a Gaussian distribution.
Despite its simplicity, Gaussian Naive Bayes can per-
form well in various situations, especially when the
assumption of independence roughly holds true.

• K-Nearest Neighbors (KNN): This is a non-
parametric method used for classification and re-
gression. For classification, the input consists of
the 𝑘 closest training examples in the feature space,
and the output is a class membership. The object
is assigned to the class most common among its 𝑘
nearest neighbors.

• Random Forest: This is an ensemble learning method
for classification and regression that constructs mul-
tiple decision trees during training and outputs the
mode of the classes (classification) or mean predic-
tion (regression) of the individual trees. Random
forests improve the predictive accuracy and control
over-fitting by averaging multiple trees, reducing
the model’s variance.

• XGBoost [14]: This is an optimized distributed gradi-
ent boosting library designed to be highly efficient,
flexible, and portable. It implements machine learn-
ing algorithms under the gradient boosting frame-
work, which builds models in a stage-wise fashion
and generalizes them by optimizing for a differen-
tiable loss function. XGBoost is known for its speed
and performance, making it a popular choice for
structured/tabular data.

• Multi-Layer Perceptron (MLP): This is a class of feed-
forward artificial neural networks that consist of at
least three layers of nodes: an input layer, a hid-
den layer, and an output layer. Except for the input
nodes, each node (or neuron) uses a nonlinear activa-
tion function. MLPs are capable of learning complex
mappings from inputs to outputs and are trained
using backpropagation.

4. Evaluation
All experiments were conducted on a system equipped with
an Intel 3.60 GHz 12th generation Core i7 CPU and 64 GB
of RAM. The implementation was developed in Python 3.11.
Well-known solvers such as GUROBI [15], CPLEX [16], and
GECODE [17], which are implemented on Minizinc, were
utilized.

To evaluate the quality of the solutions obtained, the
mono-objective function shown in Equation 11 is used to
compare the best solutions from the solvers. Other impor-
tant results, such as the average objective function, solving

time, optimum, satisfaction rate, and the number of un-
solved solutions, are presented above.

4.1. Instances
Instance creation is one of the most important aspects of
evaluation as it allows a specific number of instances to be
configured to ensure the most comprehensive evaluation
possible, taking into account all possible combinations the
problem may encounter in real-life scenarios.

The JSP Benchmark used for testing is composed of the
number of jobs (𝐽 ) and machines (𝑀 ) to determine each
job’s tasks. These variables can take any natural number.
In this test set, the set {5, 10, 20, 25, 50, 100} is considered
for 𝐽 . The release and due date can take values {0, 1, 2},
speed scaling can take values {1, 3, 5}, and statistical distri-
butions considered are {uniform, normal, exponential}. For
each configuration, 10 instances are generated with different
seeds to ensure substantial variation between them. There-
fore, a total of 6(𝐽)×6(𝑀)×3(𝑟𝑑𝑑𝑑)×3(𝑠𝑠)×3(𝑑𝑖𝑠𝑡)×
10(𝑄) = 9720 instances are obtained.

Figure 2: Distribution of timeout and relationship between time
and energy.

The time allocated for resolving each instance depends
on the specific characteristics of the problem. An example
of this allocation is illustrated in Figure 2. In this exam-
ple, an instance with 50 jobs, 10 machines, no Release Date
or Due Date, and a single speed per machine is allocated
149 seconds. The principle is that if the maximum allo-
cation time for an instance is 300,000 milliseconds, each
characteristic’s impact on the allocation should be equiv-
alent. Therefore, each characteristic contributes at most
300, 000/4 = 75, 000 milliseconds. In this manner, for the
given example, if the Release Date and Due Date are as-
signed at the operation level (RDDD = 2), they contribute
75,000 milliseconds. If they are absent (RDDD = 0), they
contribute 50 milliseconds. When assigned at the job level,
the contribution is determined by exponential interpolation
between these two cases.

4.2. Results
Upon defining the problem instances and setting appropriate
search time limits for each solver, the focus shifted toward
analyzing and interpreting the outcomes. This involved
evaluating the efficacy of the solvers employed, assessing
solution quality, and considering the broader implications
within the problem domain.



Figure 3: Quantity of optimum, satisfied and unresolved in-
stances by each solver.

Figure 3 illustrates the distribution of solved instances
among GUROBI, CPLEX, and GECODE across three cate-
gories: optimal (best solution), satisfied (feasible but not
optimal), and unresolved (not solved).

GUROBI emerged as the top performer overall, solv-
ing the highest number of optimal solutions and consis-
tently demonstrating its ability to find acceptable solutions
even when optimal ones were unfeasible. This underscores
GUROBI’s robust capability in efficiently managing a di-
verse array of problem types. Conversely, GECODE excelled
in finding feasible solutions, significantly outperforming
other solvers in achieving satisfactory solutions. Moreover,
GECODE showed the fewest instances left unresolved, high-
lighting its reliability in tackling complex problems without
abandoning them.

In contrast, CPLEX, while proficient, faced challenges
with more complex problem instances, leading to a higher
incidence of unresolved cases. Although it achieved rea-
sonable numbers of optimal and satisfactory solutions, its
performance consistency was observed to be less reliable
compared to GUROBI and GECODE.

Table 1 compares solution times and objective function
values from GUROBI, CPLEX, and GECODE across differ-
ent job and machine configurations. This analysis reveals
insights into each solver’s performance characteristics, high-
lighting strengths and limitations in solving optimization
problems.

For 5 to 20 jobs, GUROBI consistently shows shorter so-
lution times and competitive objective values compared to
CPLEX and GECODE. Its efficiency and precision make it
highly effective in simpler problem instances.

In medium-sized scenarios (20 to 50 jobs), GUROBI main-
tains an edge, particularly with fewer machines, though
CPLEX occasionally performs better in specific configura-
tions. GUROBI generally achieves superior objective func-
tion values in varied problem setups.

In complex cases (50 to 100 jobs), GECODE demonstrates
exceptional scalability despite encountering timeouts in
some instances. GUROBI and CPLEX struggle more often
with timeouts as problem size and complexity increase, yet
GUROBI often maintains competitive objective values.

These insights underscore the importance of selecting
solvers based on problem specifics. GUROBI excels in
smaller to medium-sized instances, balancing efficiency
and high-quality solutions. CPLEX performs well in cer-

tain medium-sized setups but faces scalability challenges.
GECODE shines in complex problems, offering robust scal-
ability and reliability despite occasional computational hur-
dles. These findings aid practitioners in optimizing solver
choices and considering trade-offs between solution quality,
efficiency, and problem complexity.

4.3. Complexity analysis
Observing the results obtained by the methods used, a rela-
tionship is observed between the parameters employed and
the complexity of the instances. This part of the study fo-
cuses on the in-depth analysis of each parameter to observe
its contribution to the overall complexity of the instances.

(a) by number of machines

(b) by number of jobs

Figure 4: Number of instances solved

To delve deeper into the data presented in Table 1, Fig-
ure 4 provides a general overview of the number of solved
instances. Organizing the data by the number of machines,
as shown in subfigure 4a, it is evident that as the number of
machines increases, the number of solved instances progres-
sively decreases except for the case of 5 machines, where
all instances are solved for all possible job configurations.
Looking at subfigure 4b, which is organized by the number
of jobs for all possible machine configurations, it can be
seen that all instances are solved for 5 and 10 jobs, but there
is a notable decrease for the rest. Focusing on the set of 20
and 25 jobs, it can be observed that there is a slight decrease
from 25 machines onwards; later, the reasons for this are
analyzed. For instances with 50 and 100 jobs, the decrease
in the number of solved instances is exponential. Only all
instances are solved for a configuration of 5 machines for
100 jobs and 5 and 10 machines for 50 jobs. This figure



Jobs Machines Solve Time Objective
GUROBI CPLEX Gecode GUROBI CPLEX Gecode

5

5 6499.47 9393.54 76754.74 0.58053 0.57924 0.7748
10 22177.73 35193.18 77122.47 0.46884 0.46842 0.64781
20 50222.29 57898.63 81637.16 0.42377 0.42422 0.58867
25 55920.19 59732.08 79771.76 0.41208 0.41279 0.5677
50 69226.88 71453.81 95645.56 0.39632 0.40691 0.53307
100 110177.22 123730.15 154180.72 0.38944 0.42882 0.51176

10

5 72263.13 76261.31 85388.49 0.56284 0.56433 0.77965
10 69831.23 71671.93 86539.69 0.44524 0.4482 0.64365
20 71619.72 74610.4 89860.43 0.38908 0.39532 0.5713
25 73930.71 78202.9 91969.19 0.3798 0.39247 0.54207
50 89935.3 95355.06 109638.51 0.36431 0.38019 0.49456
100 146282.37 152079.82 168202.69 0.35029 0.30281 0.35159

20

5 80190.01 88650.74 89079.98 0.65727 0.67151 0.83772
10 80369.98 89368.09 89895.89 0.48249 0.48393 0.71326
20 91070.63 83648.86 92953.44 0.40615 0.36374 0.60325
25 92555.52 86596.51 96516.25 0.38184 0.3135 0.58104
50 109441.69 97752.14 78306.1 0.35987 0.24087 0.20729
100 164169.07 161843.67 112923.84 0.29168 0.06245 0.00733

25

5 73156.78 86322.15 91381.59 0.64018 0.63401 0.84305
10 78504.99 83658.47 92142.26 0.57263 0.46831 0.73123
20 99400.75 83989.35 95774.25 0.46229 0.36985 0.62663
25 104469.18 76519.47 102202.35 0.42563 0.30161 0.61462
50 118524.24 127129.68 59800.26 0.31818 0.21552 0.13974
100 168354.77 Timeout 113885.23 0.28319 Timeout 0.01021

50

5 101811.91 86469.46 110038.97 0.70258 0.49251 0.86043
10 115365.19 71684.29 110542.27 0.56627 0.21168 0.75717
20 108631.5 117752.67 78930.63 0.37003 0.12673 0.66168
25 105251.06 120220 72639.27 0.43698 0.16123 0.57382
50 136252.05 Timeout 59343.32 0.47363 Timeout 0.14455
100 153826.43 Timeout 122941.2 0.91743 Timeout 0.04168

100

5 Timeout 114685.56 183151.94 Timeout 0.32913 0.86754
10 Timeout Timeout 180057.66 Timeout Timeout 0.77187
20 Timeout Timeout 139246.52 Timeout Timeout 0.68049
25 Timeout Timeout 122740.76 Timeout Timeout 0.59173
50 Timeout Timeout 116506.13 Timeout Timeout 0.4602
100 Timeout Timeout 157021.85 Timeout Timeout 0.13594

Table 1
Comparison of mean resolution time and mean objective function obtained with different solvers.

illustrates how the number of jobs and machines affects the
possibility of obtaining a solution to the problem at hand.

4.4. Algorithm selector results

Model Accuracy (%)
Logistic Regression 76.08
Gaussian Naive Bayes 48.93
Decision Tree 79.48
𝐾-Nearest Neighbors 78.34
Random Forest 82.87
XGBoost 83.26
MLP 82.81

Table 2
Table showing the training results of the different models

Table 2 shows the validation results of the tested models.
As can be seen, XGBoost is the model with the best valida-
tion accuracy. Training this model with the total training
data set and testing it with the test set finally yields an accu-
racy of 84.51%. This indicates that XGBoost performs well
during the validation phase and generalizes effectively to

unseen data. The high accuracy suggests that XGBoost’s
ensemble learning approach, which combines multiple de-
cision trees to improve performance, is particularly well-
suited to this dataset. Moreover, the performance difference
between XGBoost and other models like Random Forest and
MLP, which also showed strong results,

Figure 5: Confusion matrix for the algorithm selector predictions
(true algorithms on the y-axis, predicted algorithms on the x-axis).

The confusion matrix in Figure 5 presents the algorithm
selector’s classification results. Each cell value represents
the number of instances where the algorithm selector pre-
dicted the algorithm in the corresponding column for a



problem best solved by the algorithm in the corresponding
row. For instance, the selector correctly identified GUROBI
for 611 out of the total instances where GUROBI was the
best choice. Similarly, GECODE was correctly identified 396
times. However, there are misclassifications, such as pre-
dicting GUROBI when CPLEX was optimal, which occurred
70 times.

An in-depth analysis of the precision and recall metrics
provides further insights into the performance of the al-
gorithm selector. GECODE achieved a precision of 90.20%,
indicating that 90.20% of the instances predicted as GECODE
were correctly identified. Its recall was 86.84%, signifying
that 86.84% of the actual GECODE instances were correctly
detected. This high precision and recall demonstrate the
algorithm selector’s robustness in identifying GECODE in-
stances accurately.

On the other hand, CPLEX showed a precision of 62.76%,
meaning that only 62.76% of the predictions for CPLEX were
accurate, and a recall of 73.75%, which indicates that 73.75%
of the actual CPLEX instances were correctly classified. The
lower precision for CPLEX suggests a higher rate of false
positives, which could imply that the algorithm selector
often misclassifies other algorithms as CPLEX.

For GUROBI, the precision was 89.85%, reflecting that
89.85% of the GUROBI predictions were correct, and the
recall was 86.66%, meaning that 86.66% of the actual GUROBI
instances were identified correctly. These values indicate a
strong performance, similar to GECODE, highlighting the
selector’s efficiency in recognizing GUROBI accurately.

These metrics, precision, and recall, are crucial for eval-
uating the algorithm selector’s effectiveness, as they pro-
vide a more comprehensive understanding of its perfor-
mance beyond simple accuracy. They highlight the selec-
tor’s strengths in accurately identifying certain algorithms
while also pointing out areas where misclassification occurs,
thus providing a clear direction for further improvements.

5. Conclusions
This study explores the complexities of JSP, emphasizing
its NP-completeness and diverse optimization goals such as
makespan, energy consumption, and tardiness. The prob-
lem presents significant computational challenges due to
its combinatorial nature, making timely optimal solutions
crucial in operations research and manufacturing.

An innovative aspect of this research is integrating ma-
chine learning techniques to enhance algorithm selection
for JSP instances. By extracting comprehensive features like
job and machine characteristics, release dates, and energy
requirements, models such as XGBoost and Random Forest
were effectively trained. These models accurately recom-
mend suitable solvers like GUROBI, CPLEX, and GECODE,
streamlining decision-making for solving diverse and com-
plex scheduling problems.

GUROBI proved particularly efficient for smaller to
medium-sized instances, consistently delivering optimal
and satisfactory solutions across different configurations.
Meanwhile, GECODE demonstrated robust scalability, ex-
celling in complex scenarios despite occasional computa-
tional challenges. This analysis underscores the importance
of selecting solvers based on specific problem parameters
to optimize solution quality and computational efficiency.

Looking ahead, the study suggests refining feature extrac-
tion methodologies to enhance the algorithm selector’s accu-

racy across a broader range of JSP scenarios. Advancements
in solver performance under varying constraints promise
to expand the practical utility of scheduling optimization
tools in real-world manufacturing settings, emphasizing
efficiency and sustainability.

Although the results obtained are not as high as those
reported in the literature, it should be noted that the energy-
aware JSP constitutes a more complex problem compared
to the standard JSP and flexible JSP found in the literature.
Furthermore, this study uses a smaller set of features than
those used in other studies, yet the accuracy achieved is not
significantly lower.

In conclusion, this work advances both academic under-
standing and practical applications by integrating traditional
optimization techniques with modern machine-learning ap-
proaches. It offers tools that can significantly benefit re-
search and industrial practices, addressing contemporary
challenges in operations management and manufacturing
logistics.

References
[1] H. Xiong, S. Shi, D. Ren, J. Hu, A survey

of job shop scheduling problem: The types and
models, Computers & Operations Research 142
(2022) 105731. doi:https://doi.org/10.1016/j.
cor.2022.105731.

[2] D. B. M. M. Fontes, S. M. Homayouni, J. F. Gonçalves,
A hybrid particle swarm optimization and simulated
annealing algorithm for the job shop scheduling prob-
lem with transport resources, European Journal of Op-
erational Research 306 (2023) 1140–1157. doi:https:
//doi.org/10.1016/j.ejor.2022.09.006.

[3] D. M. Torres, F. Barber, M. A. Salido, Psplib-
energy: a extension of psplib library to assess the
energy optimization in the rcpsp, Inteligencia
Artificial 17 (2014) 48–61. doi:10.4114/intartif.
vol17iss54pp48-61.

[4] M. M. S. El-Kholany, M. Gebser, K. Schekotihin, Prob-
lem decomposition and multi-shot asp solving for job-
shop scheduling, 2022.

[5] C. Perez, M. A. Salido, D. Gurrea, A metaheuristic
search technique for solving the warehouse stock man-
agement problem and the routing problem in a real
company, in: Artificial Intelligence XXXVII, Springer
International Publishing, Cham, 2020, pp. 187–201.

[6] M. Dai, D. Tang, A. Giret, M. A. Salido, Multi-objective
optimization for energy-efficient flexible job shop
scheduling problem with transportation constraints,
Robotics and Computer-Integrated Manufacturing 59
(2019) 143–157. doi:https://doi.org/10.1016/j.
rcim.2019.04.006.

[7] C. Pérez, L. Climent, G. Nicoló, A. Arbelaez, M. A.
Salido, A hybrid metaheuristic with learning for
a real supply chain scheduling problem, Engi-
neering Applications of Artificial Intelligence 126
(2023) 107188. doi:https://doi.org/10.1016/j.
engappai.2023.107188.

[8] M. A. Salido, J. Escamilla, A. Giret, F. Barber,
A genetic algorithm for energy-efficiency in job-
shop scheduling, Int J Adv Manuf Technol 85
(2016) 1303–1314. doi:https://doi.org/10.1007/
s00170-015-7987-0.

[9] K. Jyothi, R. B. Dubey, Minimizing non-processing en-

http://dx.doi.org/https://doi.org/10.1016/j.cor.2022.105731
http://dx.doi.org/https://doi.org/10.1016/j.cor.2022.105731
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2022.09.006
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2022.09.006
http://dx.doi.org/10.4114/intartif.vol17iss54pp48-61
http://dx.doi.org/10.4114/intartif.vol17iss54pp48-61
http://dx.doi.org/https://doi.org/10.1016/j.rcim.2019.04.006
http://dx.doi.org/https://doi.org/10.1016/j.rcim.2019.04.006
http://dx.doi.org/https://doi.org/10.1016/j.engappai.2023.107188
http://dx.doi.org/https://doi.org/10.1016/j.engappai.2023.107188
http://dx.doi.org/https://doi.org/10.1007/s00170-015-7987-0
http://dx.doi.org/https://doi.org/10.1007/s00170-015-7987-0


ergy consumption/total weighted tardiness &amp; ear-
liness, and makespan into typical production schedul-
ing model-the job shop scheduling problem, Journal
of Intelligent & Fuzzy Systems 45 (2023) 6959–6981.
doi:10.3233/JIFS-222362.

[10] A. Ham, M.-J. Park, K. M. Kim, Energy-aware flexible
job shop scheduling using mixed integer programming
and constraint programming, Mathematical Problems
in Engineering 2021 (2021) 1–12. doi:10.1155/2021/
8035806.

[11] D. Müller, M. G. Müller, D. Kress, E. Pesch,
An algorithm selection approach for the flexi-
ble job shop scheduling problem: Choosing con-
straint programming solvers through machine learn-
ing, European Journal of Operational Research 302
(2022) 874–891. doi:https://doi.org/10.1016/j.
ejor.2022.01.034.

[12] S. Strassl, N. Musliu, Instance space analysis and
algorithm selection for the job shop scheduling
problem, Computers & Operations Research 141
(2022) 105661. doi:https://doi.org/10.1016/j.
cor.2021.105661.

[13] J. R. Rice, The algorithm selection problem. this work
was partially supported by the national science foun-
dation through grant gp-32940x. this chapter was
presented as the george e. forsythe memorial lec-
ture at the computer science conference, february 19,
1975, washington, d. c., in: Advances in Comput-
ers, volume 15 of Advances in Computers, Elsevier,
1976, pp. 65–118. doi:https://doi.org/10.1016/
S0065-2458(08)60520-3.

[14] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting
system, in: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD ’16, ACM, 2022, p. 785–794.
doi:10.1145/2939672.2939785.

[15] Y. Zeiträg, J. Rui Figueira, G. Figueira, A coopera-
tive coevolutionary hyper-heuristic approach to solve
lot-sizing and job shop scheduling problems using ge-
netic programming, International Journal of Produc-
tion Research (2024). doi:10.1080/00207543.2023.
2301044.

[16] D. Rooyani, F. M. Defersha, An efficient two-stage ge-
netic algorithm for flexible job-shop scheduling, IFAC-
PapersOnLine 52 (2019). doi:10.1016/j.ifacol.
2019.11.585.

[17] L. Ingmar, C. Schulte, Making compact-table com-
pact, in: Principles and Practice of Constraint Pro-
gramming, Springer International Publishing, Cham,
2018, pp. 210–218.

http://dx.doi.org/10.3233/JIFS-222362
http://dx.doi.org/10.1155/2021/8035806
http://dx.doi.org/10.1155/2021/8035806
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2022.01.034
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2022.01.034
http://dx.doi.org/https://doi.org/10.1016/j.cor.2021.105661
http://dx.doi.org/https://doi.org/10.1016/j.cor.2021.105661
http://dx.doi.org/https://doi.org/10.1016/S0065-2458(08)60520-3
http://dx.doi.org/https://doi.org/10.1016/S0065-2458(08)60520-3
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1080/00207543.2023.2301044
http://dx.doi.org/10.1080/00207543.2023.2301044
http://dx.doi.org/10.1016/j.ifacol.2019.11.585
http://dx.doi.org/10.1016/j.ifacol.2019.11.585

	1 Introduction
	2 Problem Description and Model Formulation
	2.1 Mixed Integer Programming
	2.2 Mono-objective optimization

	3 Algorithm Selector
	3.1 Feature processing
	3.2 Machine Learning Models

	4 Evaluation
	4.1 Instances
	4.2 Results
	4.3 Complexity analysis
	4.4 Algorithm selector results

	5 Conclusions

