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Abstract
The Job Shop Scheduling Problem (JSP) is a pivotal challenge in operations research and is essential for evaluating the effec-
tiveness and performance of scheduling algorithms. Scheduling problems are a crucial domain in combinatorial optimization,
where resources (machines) are allocated to job tasks to minimize the completion time (makespan) alongside other objectives
like energy consumption. This research delves into the intricacies of JSP, focusing on optimizing performance metrics and
minimizing energy consumption while considering various constraints such as deadlines and release dates. Recognizing the
multi-dimensional nature of benchmarking in JSP, this study underscores the significance of reference libraries and datasets
like JSPLIB in enriching algorithm evaluation. The research highlights the importance of problem instance characteristics,
including job and machine numbers, processing times, and machine availability, emphasizing the complexities introduced by
energy consumption considerations.

An innovative instance configurator is proposed, equipped with parameters such as the number of jobs, machines, tasks,
and speeds, alongside distributions for processing times and energy consumption. The generated instances encompass
various configurations, reflecting real-world scenarios and operational constraints. These instances facilitate comprehensive
benchmarking and evaluation of scheduling algorithms, particularly in contexts of energy efficiency. A comprehensive set of
500 test instances has been generated and made publicly available, promoting further research and benchmarking in JSP.
These instances enable robust analyses and foster collaboration in developing advanced, energy-efficient scheduling solutions
by providing diverse scenarios.
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1. Introduction
The Job Shop Scheduling Problem (JSP) stands as a cor-
nerstone in the realm of operations research and opti-
mization, representing a fundamental challenge pivotal
for evaluating algorithmic effectiveness and performance.
In essence, JSP revolves around the intricate task of al-
locating jobs to machines within a manufacturing en-
vironment to optimize a plethora of performance met-
rics, ranging from makespan and flow time to tardiness,
resource utilization, and energy consumption [1]. The
process of benchmarking in JSP is multi-dimensional, ne-
cessitating the definition and evaluation of metrics such
as makespan, energy consumption, and tardiness to as-
sess scheduling efficiency and resource utilization [2].
Reference libraries and datasets like JSPLIB play an in-
dispensable role in these benchmarking endeavours, fur-
nishing researchers with a rich array of instances sourced
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from seminal works and experimental studies, thereby
enriching the evaluation of algorithms [3].

A profound understanding of problem instance char-
acteristics significantly shapes benchmarking efforts in
JSP. Factors such as the number of jobs and machines,
variability in processing times, machine availability, and
precedence relationships exert notable influences on al-
gorithm performance [4]. Furthermore, incorporating
energy consumption considerations, contingent upon
machine speed and operational attributes, introduces an
added layer of complexity to these instances [5]. The del-
icate balance between energy consumption and schedul-
ing decisions emerges as paramount in achieving energy
efficiency goals without compromising production tar-
gets [6].

In recent years, the spotlight on addressing energy ef-
ficiency within the realm of JSP has intensified, driven by
its profound environmental and economic implications
[7]. Strategies involving integrating speed-adjustable
machines and vehicles have been explored as avenues
to optimize energy consumption while upholding pro-
ductivity levels [8]. Concurrently, developing advanced
algorithms and optimization techniques tailored to tackle
energy-related challenges has seen significant advance-
ments, considering factors such as machine speed, idle
time, and energy requirements [9]. Real-world implemen-
tations of these energy-efficient strategies have yielded
tangible benefits, manifesting in substantial cost savings
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and positive environmental impacts [10].
In conclusion, the imperative of energy efficiency in

JSP research has become increasingly pronounced, paral-
leling the traditional focus on performance metrics [11].
Benchmarking is a linchpin in evaluating the efficacy
of energy-efficient scheduling strategies, furnishing in-
valuable insights into their ramifications on production
efficiency and energy consumption [12]. Manufacturers
can embark toward more sustainable and economically
viable operations by harnessing advanced optimization
techniques and leveraging real-world implementations.

2. Instance Configuration
Test sets play a vital role in JSP research by providing
a standardized platform for comparing algorithmic ap-
proaches. Their diversity enables researchers to evaluate
various algorithms, from heuristics to exact methods,
identifying strengths, weaknesses, and potential limi-
tations across different contexts [13]. However, as in-
dustrial systems evolve, the complexity of real-world
problems increases, necessitating the development or
expansion of test sets to simulate real-world scenarios
better.

To address this need, the proposed instance configura-
tor operates with the following parameters:

• 𝐽 = {0, . . . , 𝑛}: the set of jobs.

• 𝑀 = {0, . . . ,𝑚}: the set of machines.

• 𝑆 = {0, . . . , 𝑠}: the set of speeds, indexed by 𝑠 in 𝑆.

• 𝑇𝑗 : the set of tasks in job 𝑗, indexed by 𝑡𝑗𝑡 ∈ 𝑇𝑗 , ∀𝑗 ∈
𝐽, ∀𝑡 ∈𝑀 .

• 𝐷𝑗𝑡: the due date of task job 𝑡𝑗𝑡 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈𝑀 .

• 𝑅𝑗𝑡: the release date of task job 𝑡𝑗𝑡 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈𝑀 .

• 𝑃𝑗𝑡𝑠: the processing time of task job 𝑡𝑗𝑡, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈
𝑀, ∀𝑠 ∈ 𝑆.

• 𝐸𝑗𝑡𝑠: the energy consumption for processing task job
𝑡𝑗𝑡, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈𝑀, ∀𝑠 ∈ 𝑆.

The process of configuring instances, managed by Al-
gorithm 1, is initiated by receiving several input parame-
ters: the number of instances to generate 𝑄, the number
of machines 𝑀 , the count of jobs 𝐽 , the number of tasks
𝑡, the types of release and due dates 𝑟𝑟𝑑𝑑, random seeds
𝑠𝑒𝑒𝑑𝑠, and the distribution 𝑑𝑖𝑠𝑡.

Subsequently, the algorithm executes a series of steps
to generate instances systematically. The random seed is
initialized to ensure reproducibility, and an empty list 𝐺
is created to store the generated instances (Line 2). The

Algorithm 1 Instance Configurator
input: Quantity of instances 𝑄, Number of machines
𝑀 , Number of jobs 𝐽 , Number of tasks 𝑇 , Release and
due date type 𝑟𝑟𝑑𝑑, Random seed 𝑠𝑒𝑒𝑑, Distribution 𝑑𝑖𝑠𝑡
output: Generated instances 𝐺

1: 𝑆𝑒𝑡𝑆𝑒𝑒𝑑(𝑠𝑒𝑒𝑑)
2: 𝐺← [ ]
3: for 𝑞 from 1 to 𝑄 do
4: 𝑂 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐽𝑜𝑏𝑠𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠(𝑇, 𝐽,𝑀)
5: 𝑃 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇 𝑖𝑚𝑒𝑠(𝐽,𝑀, 𝑆)
6: 𝐸 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐸𝑛𝑒𝑟𝑔𝑦(𝐽,𝑀, 𝑆)
7: 𝑅,𝐷 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝐷𝐷𝑎𝑡𝑒(𝐽,𝑀, 𝑑𝑖𝑠𝑡)
8: 𝐺← 𝐺 ∪ 𝐽𝑆𝑃 (𝑂,𝑃,𝐸,𝑅,𝐷)
9: end for

10: return 𝐺

algorithm generates jobs and tasks within a loop iterating
through each instance 𝑞 from 0 to 𝑄− 1 (Line 4).

Next, each job operation’s processing times and energy
consumption are generated.

𝑓(𝑥) = ⌊𝑒−
𝑥

100 × 100⌋ (1)

𝑔(𝑥) = 4.0704× log(2)

log(1 + (𝑥× 2.5093)3)
(2)

The functions responsible for generating the process-
ing times (line 5) and energy consumption (line 6) for the
combination of jobs, machines, and speeds are managed
by functions 𝑓(𝑥) 1 and 𝑔(𝑥) 2, as illustrated in Figure 1
as studied in [14]. These functions balance the variables
to establish a correlation between processing time and
energy consumption. In these equations, 𝑥 represents the
processing time for Equation 𝑓(𝑥) 1 and the energy con-
sumption for Equation 𝑔(𝑥) 2. Speeds are generated by
obtaining the energy consumption percentage for each
speed using Equation 𝑓(𝑥) 1, which models an inverse
relationship between processing time and energy con-
sumption. This involves dividing the interval [0.5, 3] into
|𝑆| − 1 equal parts, where the boundaries of these new
intervals correspond to the energy consumption percent-
ages for each speed. Subsequently, Equation 𝑔(𝑥) 2 is
utilized to determine the fraction of time corresponding
to each speed.

Release and due dates are computed using functions
based on the chosen distribution (Line 7). Each distri-
bution offers distinct characteristics suited for modeling
various real-world scenarios.

The exponential distribution, defined by its probability
density function 𝑓(𝑥;𝜆) = 𝜆𝑒−𝜆𝑥, is ideal for modeling
the time until an event occurs, such as machine failures or
job arrivals, assuming a constant hazard rate 𝜆 > 0. Its
mean is 1

𝜆
. The Gaussian distribution, with mean 𝜇 and

standard deviation 𝜎, has a probability density function



Figure 1: Distribution of processing times and the relationship between time and energy

𝑓(𝑥;𝜇, 𝜎) = 1

𝜎
√
2𝜋

𝑒
− (𝑥−𝜇)2

2𝜎2 . This distribution repre-
sents naturally occurring variations in processing times
or delays. The uniform distribution generates values
evenly within a specified range, defined by the proba-
bility density function 𝑓(𝑥; 𝑎, 𝑏) = 1

𝑏−𝑎
, where 𝑎 and 𝑏

are the lower and upper bounds, respectively. It provides
a straightforward way to explore a range of scenarios
without bias towards any particular value. These distri-
butions were selected due to their unique properties and
common use in modeling different real-world data types,
enhancing the diversity and comprehensiveness of the
generated instances [15].

Additionally, a random start is chosen for each job
within a specified range for the release and due date in-
tervals. The time interval between release and due dates
is determined based on the median processing time. A
random value within the corresponding interval is gen-
erated depending on the chosen distribution. This com-
prehensive approach ensures the creation of instances
encompassing a wide range of scenarios, facilitating ro-
bust analyses and evaluations.

These steps culminate in constructing a JSP instance
(Line 8), incorporating the generated data. Finally, the
algorithm returns the list 𝐺 containing the generated
instances. This systematic approach ensures the creation
of instances that cover diverse scenarios, which is crucial
for comprehensive analyses and evaluations.

3. Generated Problems
A comprehensive set of random instances has been gen-
erated following the procedure described in Algorithm
1. These instances exhibit diverse characteristics: the
number of jobs ranges from thirty to two hundred fifty,
and the number of machines ranges from three to twenty.
Normal, exponential, and uniform distributions were uti-
lized in the generation process.

Each instance was extended by relaxing release and
due date restrictions. Leveraging three different speed
scales, variations of each problem were created, maintain-

ing identical data but with different operational speeds.
Specifically, two additional instances were derived from
each original: one incorporating the first, third, and fifth-
speed scaling and another utilizing only the third-speed
scaling.

In addition to varying job and machine counts, the in-
stances encompass different operational complexities and
constraints. For instance, some involve jobs with prece-
dence constraints, necessitating certain jobs to be fin-
ished before others begin. This complexity challenges al-
gorithms to find optimal solutions efficiently. The chosen
distributions—normal, exponential, and uniform—offer
a spectrum of scenarios, ranging from predictable and
evenly spread job times to highly variable and unpre-
dictable duration. This diversity ensures that the gener-
ated instances serve as robust benchmarks to evaluate
the performance of scheduling algorithms under varied
conditions.

Moreover, a collection of 500 test instances has been
generated and made publicly accessible through [16].
These instances incorporate mixed distributions and
speed scalings, providing researchers with a compre-
hensive dataset to evaluate the efficacy of scheduling
algorithms. The research group aims to foster collabora-
tion and innovation in planning and scheduling research
by facilitating access to these instances. Researchers can
use these standardized problems to compare methods
and contribute to advancing scheduling solutions.

In summary, the generated instances cover a wide
range of job and machine configurations, distribution
types, and speed variations, making them suitable for
diverse scheduling and planning research applications.
Their availability for public use enhances their utility,
promoting collaboration and enabling continuous im-
provement and benchmarking in the field.
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