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Abstract
Allocating tasks to computing nodes in a network is an important configuration problem. In the case of fail-safe networks,
such configuration must be changed during operation if a computing node fails. Hence, a fast configuration is required. In
this paper, we formulate a tasks-to-computing-nodes assignment problem and its constraints using answer set programming.
We performed an initial experimental evaluation utilizing several smaller to mid-size problem instances to show whether
logic reasoning based on answer set programming is feasible for practical applications. We discovered that reasoning is fast
if a solution exists but not when there is no solution. Further constraints help to decide that a problem instance is unsolvable
early in the search, which improves the outcome.
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1. Introduction
There has been plenty of work in the area of configuration
and recommender systems, including service configura-
tion [1], governance systems [2], or product configura-
tion [3] to refer to recent work. However, answer set
programming for representing models used for config-
uration and reasoning to obtain valid configuration has
recently gained more attention, e.g., see [3, 4, 5]. In this
paper, we contribute to this research direction and intro-
duce a model and an evaluation for configuring networks
comprising computing nodes for executing pre-defined
tasks. The underlying problem is related to scheduling
and shift designs [6].

The main motivation behind our work comes from
practical applications, where, for example, tasks, i.e., pro-
grams, have to be deployed on computing nodes in a
network. Although this problem can be seen as a static
one that must only be solved before the operation, we
may require to re-configure such a task assignment dur-
ing operation whenever a computing node fails (see, e.g.,
[7]). Such re-configuration tasks have to be carried out
under time restrictions. To evaluate whether modern
reasoning methods like answer set programming can be
used for this task, we conduct an experimental evalua-
tion. This evaluation comprises several instances of the
corresponding task to computing node assignment prob-
lems considering various sizes of nodes and tasks. The
evaluation utilizes the answer set programming solver
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clingo [8]. The question we want to answer is regard-
ing the approach’s limitations regarding the problem size.
Can we use answer set programming (and in particular
clingo) to provide task assignments fast enough to be
used during operation?

We structure this paper as follows. First, we introduce
the underlying configuration problem and clingo im-
plementation. Afterward, we discuss the experimental
evaluation, i.e., the basic setup and the results obtained.
Finally, we conclude the paper.

2. Problem description
We start defining the task to node assignment problem.
We assume we have 𝑘 computing nodes 𝑛1, . . . , 𝑛𝑘 and
𝑛 tasks 𝑡1, . . . , 𝑡𝑛 to be assigned to the nodes. For each
node 𝑛𝑖, we know the maximum number of tasks 𝑐(𝑛𝑖)
it can hold and the available memory 𝑚(𝑛𝑖). For each
task 𝑡𝑗 , we know its memory consumption 𝑚(𝑡𝑗). From
this knowledge, we obtain several constraints an as-
signment must fulfill to be valid. In the following, we
formalize these constraints assuming that the function
𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑛𝑖) returns a set of tasks that is assigned to a
node 𝑛𝑖

First, the required memory from the tasks assigned to
a node shall never exceed the available memory of this
node. These constraints can be formalized as follows:

∀𝑖 ∈ {1, . . . , 𝑘} :

⎛⎝ ∑︁
𝑡𝑗∈𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑛𝑖)

𝑚(𝑡𝑗) ≤ 𝑚(𝑛𝑖)

⎞⎠
(1)

Second, the number of tasks assigned to a node shall
never exceed the maximum number of tasks the node
can hold, i.e., formally, we write:

∀𝑖 ∈ {1, . . . , 𝑘} : (|𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑛𝑖)| ≤ 𝑐(𝑛𝑖)) (2)
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A solution to the tasks to computing nodes assignment
problem is an assignment of all tasks to all nodes such
that ∀𝑗 ∈ {1, . . . , 𝑘} : ∃𝑖 ∈ {1, . . . , 𝑛} : 𝑡𝑗 ∈
𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑛𝑖), there is no tasks assigned to two different
nodes, i.e., ∀𝑖, 𝑗 ∈ {1, . . . , 𝑘}, 𝑖 ̸= 𝑗 : 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑛𝑖) ∩
𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑛𝑗) = ∅, and all constraints are fulfilled. Such
an assignment is a valid one and may not exist. For ex-
ample, if the number of tasks exceeds the number of free
slots of the nodes or if the required memory for the tasks
is not provided, there is no solution. Hence, we have
two necessary conditions that must hold for obtaining a
solution, i.e.:

𝑛 ≤
𝑘∑︁

𝑖=1

𝑐(𝑛𝑖) (3)

𝑛∑︁
𝑗=1

𝑚(𝑡𝑗) ≤
𝑘∑︁

𝑖=1

𝑚(𝑛𝑖) (4)

It is worth noting that similar problems have additional
constraints, e.g., stating that tasks need to be together
in the same computing node. We may also introduce
optimality criteria like preferring solutions requiring the
least amount of computing nodes. Furthermore, we may
also consider variants of the problem, i.e., reconfiguration
of assignments. In the context of this paper, we do not
tackle such extensions. We solely focus on answering
the question regarding the applicability of the answer
set program to solve the problem within a reasonable
amount of time.

After outlining the problem in general, we present a
solution using answer set programming where we rely
on the syntax of the clingo solver1 [8], which is similar
to the Prolog language. Due to space restrictions, we
do not give an introduction to answer set programming
(ASP). Instead, we refer to introductory literature into
ASP, e.g., [9].

A clingo model for the node assignment problem
comprises three parts. First, we define the number of
computing nodes and tasks and their capacities and re-
quirements. For every node, e.g., n2, we use three facts,
where the predicate tcapacity denotes the maximum
number of tasks, and mcapacity the maximum available
memory for the given task.:

node(n2). tcapacity(n2,1). mcapacity(n2,20).

For each task, e.g., t1, we add two facts, where the
predicate memory is for defining the required memory
of the given task to a pre-defined value:

task(t1). memory(t1,30).

Second, we generate all potential solutions. For this
purpose, we introduce a predicate for a node assignment

1See https://potassco.org/about/

of a task. Let us call this predicate select that takes a
task T as the first parameter and node N as the second.
In clingo, the generate part for the node assignment
problem is given as follows:

{ select(T,N) : node(N) } = 1 :- task(T).

This rule generates a grounded predicate that assigns
tasks to each computing node. Obviously, not all as-
signments are correct when considering the constraints.
Hence, in the last part, we formalize the first two con-
straints of the general problem, i.e., Equations 1 and 2,
but not the other Equations 3 and 4. For this purpose, we
introduce a predicate nrTasksAssigned that holds the
number of tasks that are assigned to a particular node and
a predicate memRequired that holds the required mem-
ory for a node considering the assigned tasks. The infor-
mation regarding the predicates can be obtained from the
selected task for a node (select predicate) and the mem-
ory required for a task. For the latter, we introduce the
predicate memory. The predicate nrTasksAssigned
can be formalized in clingo as follows:

nrTasksAssigned(N,M) :-
M = #count {T:select(T,N)},
node(N).

Similar, we can define the memRequired predicate:

memRequired(N,M) :-
M = #sum {NM:select(T,N), memory(T,NM)},
node(N).

Using these predicates, we can formulate the con-
straints:

:- nrTasksAssigned(N,M), tcapacity(N,C), M>C.
:- memRequired(N,M), mcapacity(N,C), M > C.

The first constraint states that it is impossible to as-
sign more tasks to a node than the node can hold. The
second constraint states that the memory requirements
of all tasks should not exceed the memory capacity of
the computing node.

3. Experimental evaluation
The following experimental evaluation aims to investi-
gate the runtime behavior for finding one solution of the
task to computation node assignment problem using the
ASP solver clingo. In particular, we are interested in
the number of nodes that can be handled requiring less
than a fixed boundary of time, e.g., 0.01 or 0.1 seconds.
In the following, we outline the experimental setup and
present and discuss the obtained results.

https://potassco.org/about/
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Figure 1: Solving runtime of consistent instances

Experimental setup: To develop several instances of
the task assignment problem, we wrote a Java program
for generating such instances automatically. We ranged
the number of nodes from 5 to 100. The number of tasks
for each instance was randomly chosen between the num-
ber of nodes and double the number of nodes. The ca-
pacity of each node was randomly set from 1,2, . . . , 10.
The memory provided by each node was randomly cho-
sen from 20, 40, 60,. . . , 200. The memory required by
every task was randomly set from 10, 20, and 30. With
this setup, we generated only satisfiable instances, i.e.,
problem instances where a solution exists. For a category
of instances comprising 𝑛 nodes, we called the instance
generator 10 times. Finally, we received 200 different
problem instances.

We conducted the experiments using an Apple Mac-
Book Pro, with an Apple M1 CPU comprising 8 cores and
16 GB of main memory, running under macOS Sonoma
Version 14.4.1. For computing solutions, we relied on
clingo version 5.7.1 and applied the standard setup.

Experimental results: After generating the prob-
lem instances, we ran clingo to compute one solu-
tion, i.e., we ran clingo using the prompt clingo
–time-limit=10 –outf=2 for each file. Hence, we
set a time limit of 10 seconds and obtained all results in
JSON format. After analyzing the results for correctness,
we summarized the outcome, i.e., the runtime for each
category of a particular number of nodes. Figure 1 de-
picts the minimum, maximum, and average runtime for
all 10 runs for each category.

We see that when using ASP solving utilizing clingo
we can provide one solution even for larger instances
of 100 computing nodes in a reasonable amount of time.
However, when using the approach during operation, and
especially for systems with harder requirements regard-
ing answering time, e.g., real-time systems, a runtime of
almost 3 seconds might not be feasible. We would like
answers in less than 0.1 or 0.01 seconds for such systems,

which can be achieved for 20 or 13 nodes, respectively.
Motivated by the results, we performed further ex-

periments, considering problems that likely cannot be
solved. Unfortunately, in this case, we often ran into
reaching the solving time limit of 10 seconds, even start-
ing with small examples only considering 5 computing
nodes. Instances with more than 7 nodes that might be
unsatisfiable always reach the 10-second limit. For those
instances where unsatisfiability could be established, the
runtime varies between 0.003 and 6.255 seconds. The
latter was obtained for a problem instance comprising
7 computing nodes. Hence, unsatisfiable instances can
hardly be identified when considering more computing
nodes, which might also be an issue for practical applica-
tions.

We carried out another experiment to tackle the men-
tioned problem of potential unsatisfiability. We selected
3 problem instances for which we could not compute
a result. Two instances had 7 nodes, and one had 15
nodes. For these problem instances, we added further
constraints that cover Equations 3 and 4. For all three
clingo files that correspond to the problem instances,
we added the following code:

totalCapacity(C) :- C=#sum{T:tcapacity(N,T)}.
totalMemReq(C) :- C=#sum{M:memory(T,M)}.
totalMem(C) :- C=#sum{N:mcapacity(CN,N)}.
:- totalCapacity(C), C < 21.
:- totalMemReq(Ctask), totalMem(Cnode),

Ctask > Cnode.

Note that the 21 in the above code represents the num-
ber of tasks2. We adapted this value for each instance
and set it to 21, 28, and 60 respectively. When running
clingo on the three files, we obtained an immediate
response of unsatisfiability. In all cases, this response
was less than 0.025 seconds. Hence, adding further con-
straints that allow distinguishing satisfiable from unsat-
isfiable cases as early as possible solves the problem.

In summary, clingo allows for fast computation of
solutions if they exist. The reasoning for the mentioned
tasks-to-computing-nodes assignment problem is fast
enough for at least smaller examples to ensure a timely
response. However, whether this is good enough depends
on the application domain. The challenges we obtained in
the case of unsatisfiability can be solved by setting a time
limit for clingo and introducing additional constraints.
Results from this case study may also apply to other
configuration problems.

Threats to validity: There are many threats to valid-
ity worth mentioning. The experimental evaluation is
2The number of tasks for a particular problem instance can also
be obtained using clingo. The command #count{T:task(T)}
delivers this number. However, we set the number manually for
the three experiments.



limited in the number of problem instances. There might
be satisfiable instances that may take longer than re-
ported for a given number of computing nodes. However,
we do not expect a very large deviation from the results.
Furthermore, we only considered one rather simple con-
figuration problem. In case of more complex problems,
we expect different runtimes. Nevertheless, the effect of
adding constraints to determine unsatisfiability as early
as possible should still be visible. This might also hold
for the observation that unsatisfiability might be hard
to identify and, therefore, require more computing time.
We carried out all experiments using clingo’s standard-
setting. There might be differences to observe when
changing parameters and setup. There might also be
differences when considering other versions of clingo,
the hardware, or the operating system. Finally, the repre-
sentation of the problem in clingo might also influence
the performance.

4. Conclusions
In this paper, we used the configuration problem of as-
signing tasks to computing nodes to answer whether
answer-set programming is feasible for practical appli-
cations. For smaller problem instances, answer set pro-
gramming might be feasible, providing a fast response
within a fraction of a second. For larger instances, we
may not be able to provide a solution within a reasonable
answer time. Furthermore, we identified a challenge, i.e.,
the extended runtime required for providing an answer
in case of unsatisfiability, and a solution, i.e., the effect of
additional constraints on reducing the runtime. In future
research, we want to extend the configuration problem to
capture the case of task assignments for computing net-
works at runtime. For this purpose, we want to formulate
a corresponding re-configuration problem. Furthermore,
we want to extend the experimental evaluation using
more example instances and additional constraints and
consider computing optimal solutions concerning a given
optimization criteria, e.g., using the least number of com-
puting nodes.
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