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Abstract
Autonomous intersection management (AIM) poses significant challenges due to the intricate nature of
real-world traffic scenarios and the need for a highly expensive centralised server in charge of simultan-
eously controlling all the vehicles. This study addresses such issues by proposing a novel distributed
approach to AIM utilizing multi-agent reinforcement learning (MARL). We show that by leveraging the
3D surround view technology for advanced assistance systems, autonomous vehicles can accurately
navigate intersection scenarios without needing any centralised controller. The contributions of this
paper thus include a MARL-based algorithm for the autonomous management of a 4-way intersection and
also the introduction of a new strategy called prioritised scenario replay for improved training efficacy. We
validate our approach as an innovative alternative to conventional centralised AIM techniques, ensuring
the full reproducibility of our results. Specifically, experiments conducted in virtual environments using
the SMARTS platform highlight its superiority over benchmarks across various metrics.
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1. Introduction

Connected autonomous vehicles (CAVs) represent a groundbreaking advancement in transport-
ation, poised to revolutionize mobility by redefining commuting, parking, travel, and urban
interaction [1, 2]. Equipped with advanced sensors and AI systems, CAVs navigate roads with
precision, reducing accidents caused by human error [3, 4]. This enhanced safety feature not
only saves lives but also makes mobility more accessible and inclusive for individuals with
disabilities or vulnerabilities [5, 6]. On a societal level, CAVs optimize traffic flow and minimize
congestion, reducing travel times and improving overall efficiency and stability [7, 8]. Addition-
ally, CAVs promise environmental sustainability by integrating electric and hybrid propulsion
systems, significantly reducing greenhouse gas emissions [9, 10].

Lately, significant strides in the development of CAVs have beenmade, largely attributed to the
utilization of multi-agent reinforcement learning (MARL) [11] within the framework of smart
mobility, showing promise in addressing autonomous intersection management (AIM) [12]. As
it is widely believed that the resolution of AIM is pivotal to overcome in order to advance the
adoption of CAVs, this control problem constitutes the primary focus for our study.
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A vast literature exists on AIM. The research in this field spans multiple fronts, each lever-
aging distinct methodologies to address the challenges of optimizing traffic flow and ensuring
safety in dynamic urban environments. By employing reinforcement learning (RL), AIM systems
can effectively learn and adapt intersection control strategies in response to changing traffic
conditions [13, 14]. These systems typically comprise priority assignment models, intersection
control model learning, and safe brake control mechanisms. Experimental simulations demon-
strate the superiority of RL-inspired AIM approaches over traditional methods, showcasing
enhanced efficiency and safety. Graph neural networks (GNNs) have also garnered attention
for their potential in AIM [15, 16]. Leveraging RL algorithms, GNNs optimize traffic flow at
intersections by jointly planning for multiple vehicles. These models encode scene represent-
ations efficiently, providing individual outputs for all involved vehicles. Game theory serves
then as a foundational framework for MARL approaches in AIM. Indeed, game-theoretic models
facilitate safe and adaptive decision-making for CAVs at intersections [17, 18]. By considering
the diverse behaviors of interacting vehicles, these algorithms ensure flexibility and adaptability,
thus enhancing autonomous vehicle performances in challenging scenarios. Finally, recursive
neural networks (RNNs) integrated in the MARL framework represent an interesting approach
in AIM research to learn complex traffic dynamics and optimize vehicle speed control [19].
Despite the advancements in AIM techniques, their implementation still faces important

challenges. One of the main obstacles is represented by the need for an expensive centralised
server which has to be positioned in the proximity of the intersection, in order to simultaneously
control all the vehicles. Moreover, the vehicles should continuously send their local information
to this centralised controller, which will then gather and elaborate the data coming from all the
road users, before sending back to each vehicle a velocity or acceleration command. Given the
complexity and high demands of this technological framework, the integration of AIM devices
into existing transportation infrastructures still requires many years of extensive research and
testing. In this direction, we devise an alternative distributed approach based on the 3D surround
view technology for advanced assistance systems [20]. As shown in the sequel, such a method
allows the reconstruction of a 360∘ scene centered around each CAV, which is useful to recover
the information required for each agent involved in the proposed MARL-based technique. This,
in turn, grants to effectively carry out AIM in a decentralised fashion, exploiting sensors that are
currently available on the market, without the need for the centralised infrastructure described
in the previous lines. More precisely, the contributions of this paper are multiple.

• As mentioned above, we offer a new distributed strategy that represents a competitive
and realistic alternative to the classical centralised AIM techniques.

• Relying on self-play [21] and drawing inspiration from prioritised experience replay [22]
to improve training efficacy, we develop a MARL-based algorithm capable of tackling and
solving a 4-way intersection by means of the SMARTS platform [23].

• Our strategy outperforms a number of well-established benchmarks, which typically
leverage traffic light regulation in function of travel time, waiting time and average speed.

• Last but not least, we guarantee full reproducibility1 of the code that is used for the
generation of the virtual experiments shown in this manuscript.

1The Python code of our work can be found at https://github.com/mcederle99/MAD4QN-PS. The authors want
to stress the fact that reproducibility represents a crucial issue within this field of research.

https://github.com/mcederle99/MAD4QN-PS


The remainder of this paper unfolds as follows. The preliminaries for this study are yielded
in Section 2; whereas, Section 3 provides the core of our contribution, namely the multi-agent
decentralised dueling double deep q-networks algorithm with prioritised scenario replay (MAD4QN-
PS). This innovative method is then tested and validated through several virtual experiments, as
illustrated in Section 4. Finally, Section 5 draws the conclusions for the present investigation,
proposing future developments.

Notation: The sets of natural and positive (zero included) real numbers are denoted byℕ and
ℝ+0 , respectively. Given a random variable (r.v.) 𝑌, its probability mass function is denoted by
𝑃[𝑌 = 𝑦], whereas 𝑃[𝑌 = 𝑦 | 𝑍 = 𝑧] indicates the probability mass function of 𝑌 conditioned to
the observation of a r.v. 𝑍. Moreover, the expected value of a r.v. 𝑌 is denoted by 𝔼[𝑌 ].

2. Theoretical background

2.1. Basic notions of reinforcement learning

RL is a machine learning paradigm in which an agent learns to solve a task by iteratively interact-
ing with its environment. Solving the task means maximising the cumulative rewards obtained
over time. A generic RL problem is formalised by the concept of Markov decision process (MDP)
[24], which is a tuple composed by five elements: ⟨𝒮 ,𝒜 , 𝒫 ,ℛ, 𝛾⟩. 𝒮 and𝒜 are two generic sets,
representing the state and action space respectively. 𝒫 (𝑠, 𝑎, 𝑠′) = 𝑃 [𝑆𝑡+1 = 𝑠′ ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] is
the state transition probability function, in charge of updating the environment to a new state
𝑠′ ∈ 𝒮 at each step, based on the previous state 𝑠 ∈ 𝒮 and the action 𝑎 ∈ 𝒜 performed by the
agent. Moreover, the reward functionℛ(𝑠, 𝑎, 𝑠′) ∶ 𝒮 ×𝒜 ×𝒮 → ℝ is used to measure the quality
of each transition, while 𝛾 ∈ [0, 1) denotes a discount factor, used to compute the cumulative
reward at time 𝑡, i.e. the return 𝐺𝑡 = ∑∞

𝑘=0 𝛾 𝑘𝑟𝑡+𝑘+1. The agent decides which action to take at
each iteration exploiting its policy, a function that maps any state to the probability of selecting
each possible action:

𝜋(𝑎|𝑠) = 𝑃[𝐴𝑡 = 𝑎 ∣ 𝑆𝑡 = 𝑠], ∀𝑎 ∈ 𝒜 . (1)

Solving a RL problem means finding an optimal policy 𝜋∗. One criterion that is usually adopted
to find 𝜋∗ consists in the maximization of the state-action value function 𝑄𝜋(𝑠, 𝑎), i.e. the expected
return starting from state 𝑠 ∈ 𝒮, taking action 𝑎 ∈ 𝒜, and thereafter following policy 𝜋:

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋 [𝐺𝑡 ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] . (2)

Consequently, given the state-action value function, the optimal policy is defined as 𝜋∗ =
argmax𝜋 𝑄𝜋(𝑠, 𝑎). There is therefore an inherent relation between 𝜋∗ and the optimal state-
action value function.
Finally, two other important quantities which will be used in the proceeding of this article

are the state value function and the advantage function. The former is defined as the expected
return starting from state 𝑠 ∈ 𝒮 and then following policy 𝜋:

𝑉𝜋(𝑠) = 𝔼𝜋 [𝐺𝑡 ∣ 𝑆𝑡 = 𝑠] . (3)

The latter instead is used to give a relative measure of importance to each action for a particular
state, and it is defined starting from 𝑄𝜋(𝑠, 𝑎) and 𝑉𝜋(𝑠):

𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠). (4)



2.2. Q-Learning and Deep Q-Networks

To compute the optimal state-action value function we could theoretically exploit the recursive
Bellman Optimality Equation [25]:

𝑄∗(𝑠, 𝑎) = 𝔼 [𝑟𝑡+1 + 𝛾max
𝑎′

𝑄∗(𝑆𝑡+1, 𝑎′) ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] , (5)

however due to the curse of dimensionality and the need for perfect statistical information to
compute the closed-form solution, it is necessary to resort to iterative learning strategies even
to solve simple RL problems. The most common algorithm used in literature is Q-Learning [26],
where the state-action value function is represented by a table, which is iteratively updated at
each step through an approximation of (5):

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) ← 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼(𝑟𝑡+1 + 𝛾max
𝑎′

𝑄𝑡(𝑠𝑡+1, 𝑎′) − 𝑄𝑡(𝑠𝑡, 𝑎𝑡)), (6)

where 𝛼 > 0 is called the step-size parameter. The policy derived from the state-action value
function is usually the 𝜀-greedy policy, suitable to balance the trade-off between exploration and
exploitation [24]:

𝜋(𝑎|𝑠) = {
argmax𝑎 𝑄(𝑠, 𝑎) with probability 1 − 𝜀
random action 𝑎 ∈ 𝒜 with probability 𝜀

(7)

Tabular Q-Learning works well for simple tasks, but the problem rapidly becomes intractable
when the state space becomes very large or even continuous. For this reason state-of-the-art RL
algorithms employ function approximators, such as neural networks (NNs), to solve realistic and
complex problems. One of the first yet more used deep RL algorithms is Deep Q-Networks [27],
which approximates the state-action value function through a NN, 𝑄(𝑠, 𝑎; 𝜃). A replay memory
is used to store the transition tuples (𝑠, 𝑎, 𝑟 , 𝑠′). Finally, the parameters 𝜃 of the Q-Network are
optimised by sampling batches ℬ of transitions from the replay memory and minimizing a
mean squared error loss derived from (6):

ℒ(𝜃) =
1
|ℬ|

∑
𝑖∈ℬ

[(𝑟𝑖 + 𝛾max
𝑎′

𝑄(𝑠′𝑖 , 𝑎′; ̄𝜃) − 𝑄(𝑠𝑖, 𝑎𝑖; 𝜃))2], (8)

where ̄𝜃 represent the parameters of a target network, which are periodically duplicated from 𝜃
and maintained unchanged for a predefined number of iterations.

2.3. Multi-agent reinforcement learning

MARL expands upon traditional RL by incorporating multiple agents, each making decisions in
an environment where their actions influence both the immediate rewards and the observations
of other agents. In its most general definition, a MARL problem is formalised as a partially
observable stochastic game (POSG), in which each agent has its own action space and reward
function. Moreover, the partial observability derives from the fact that the agents do not perceive
the global state, but just local observations, which carry incomplete information about the
environment [28].



MARL algorithms can be categorised depending on the type of information available to the
agents during training and execution: in centralised training and execution (CTCE), the learning
of the policies as well as the policies themselves use some type of structure that is centrally
shared between the agents. On the other hand, in decentralised training and execution (DTDE),
the agents are fully independent and do not rely on centrally shared mechanisms. Finally,
the centralised training and decentralised execution paradigm (CTDE) is in between the first
two, exploiting centralised training to learn the policies, while the execution of the policies
themselves is designed to be decentralised [29].

3. Multi-Agent Decentralised Dueling Double Deep Q-Networks
with Prioritized Scenario replay

In this section we present our novel method based on MARL, called Multi-Agent Decentralised
Dueling Double Deep Q-Networks with Prioritized Scenario replay (MAD4QN-PS). We begin
by detailing how the system is modelled, and then we describe the original learning procedure
that we implement in order to train agents through self-play [21]. Finally, we shall introduce
the prioritised scenario replay pipeline that is implemented to speed up training.

3.1. System modelling and design

The environment in which the agents live consists of a 4-way 1-lane intersection, with three
different turning intentions available to each vehicle.

Recalling Section 2.3, we formalize the problem as a POSG, which can be seen as a multi-agent
extension to MDPs. For this reason, we shall define for each agent the observation space, the
action space and the reward function.

The information retrieved by each vehicle at every time step consists of a local RGB bird-eye
view image with the vehicle at the center. As already discussed in Section 1, this type of data is
already recoverable from sensors with modern technology, thus making such a configuration
extremely interesting from an application point of view. Moreover, the final observation passed
to the agent is represented by a stack of 𝑛 ∈ ℕ consecutive frames, thus allowing the algorithm
to capture temporal dependencies and understand how the environment is changing over time.

The action space of each agent instead is discrete and it contains 𝑚 ∈ ℕ velocity commands.
This choice has been made because the purpose of our algorithm is not to learn the basic
skills required for driving, such as keeping the lane and following a trajectory, but it is instead
choosing how to behave in traffic conditions and when to interact with other vehicles present
in the environment. Moreover, a similar high-level perspective has also been implemented in
other works, related to the centralised AIM paradigm [15, 16, 19].
Finally, for what concerns the reward function, we need to take into consideration the fact

that each agent is trying to solve a multi-objective problem. Indeed the main goal of each
vehicle is crossing the intersection and reaching the end of the scenario. In the meantime, a
vehicle is also required not to collide with the others, by travelling as smoothly as possible. In



order to fulfill all these objectives we design a reward signal composed by different terms:

𝑟 =

⎧
⎪

⎨
⎪
⎩

+𝑥 if 𝑥 > 0,
−𝑘 if vehicle not moving,

−10 ⋅ 𝑘 if a collision occurs,

+10 ⋅ 𝑘 if scenario completed,

(9)

where 𝑥 ∈ ℝ+0 is the distance travelled in meters from the previous time step and 𝑘 ∈ ℕ is a
hyperparameter used to weight the importance of the last three components of the reward
function with respect to the first one.

3.2. Learning Strategy

The starting point for our learning strategy is the algorithmDeep Q-Networks, already presented
in Section 2.2. This algorithm is then slightly modified by considering the Double DQN scheme
and also the Dueling architecture, which will be briefly introduced in the sequel.
The idea of Double DQN [30] is originated by the fact that Q-Learning, and consequently

also DQN, are known to overestimate state-action values under certain conditions. This is due
to the max operation (see in (6) and (8)) performed to compute the temporal difference target.
To mitigate this effect, the idea is to decouple the action selection and evaluation steps by using
two different networks. We thus exploit the online network in the action selection step, while
we keep using the target network for evaluation. This leads to the following modification of
the loss function:

ℒ(𝜃) =
1
|ℬ|

∑
𝑖∈ℬ

[(𝑟𝑖 + 𝛾𝑄(𝑠′𝑖 , argmax
𝑎′

𝑄(𝑠′𝑖 , 𝑎′; 𝜃); ̄𝜃) − 𝑄(𝑠𝑖, 𝑎𝑖; 𝜃))2]. (10)

Dueling DQN [31] instead introduces a modification in the NN architecture. Instead of having
a unique final layer that outputs the Q-value for each possible action, we split it in two, with
the first layer in charge of estimating the state value function (3) and the second layer used for
evaluating the advantage function (4). These two quantities are then combined in the following
way to produce an estimate of the state-action value function:

𝑄(𝑠, 𝑎; 𝜃, 𝛼, 𝛽) = 𝑉 (𝑠; 𝜃, 𝛼) + (𝐴(𝑠, 𝑎; 𝜃, 𝛽) −
1
|𝒜 |

∑
𝑎′

𝐴(𝑠, 𝑎′; 𝜃 , 𝛽)), (11)

where 𝛼 and 𝛽 are the network parameters of the final layer, specific for the state-value function
and advantage function respectively. Whereas, subtracting the term 1

|𝒜 | ∑𝑎′ 𝐴(𝑠, 𝑎′; 𝜃 , 𝛽) is
needed for stability reasons.
The final algorithm used for training is therefore a Multi-Agent version of Dueling Double

DQN known as D3QN, with linearly-annealed 𝜀-greedy policy for all the agents. In order to
allow for decentralised execution while developing at the same time a smart training strategy, we
consider an intermediate approach between the DTDE and the CTDE paradigms. In particular,
we initialize and train three different D3QN agents, one for each turning intention, i.e. left,



straight and right. In this way each vehicle can select which model to use at the beginning of
its path, according just to its own turning intention.
This approach is extremely sample-efficient, because we keep the number of network para-

meters constant, regardless of the number of vehicles considered. Moreover, these shared
parameters are optimised through the experiences generated by all the vehicles, leading to a
more diverse set of trajectories for training. Indeed, each of the three models has its own replay
buffer, which contains transitions shared from all the vehicles with the corresponding turning
intention. The crucial insight that makes our strategy effective is the fact that the observations
gathered from each vehicle are invariant with respect to the road in which the vehicle itself is
positioned. This parameter and experience sharing approach renders the training procedure
of the algorithm somehow centralised because trajectories coming from different vehicles are
used to train the three D3QN agents. However, we remark that, once the models have been
trained, the execution phase is completely decentralised, since each vehicle locally stores the
three different models. Then, at the beginning of the scenario, each CAV selects the model to
use based only on its own turning intention.

3.3. The prioritised scenario replay strategy

The agents are trained for a fixed number of iterations 𝑁 ∈ ℕ, keeping the intersection busy in
order to obtain meaningful transitions to learn from. In particular, at each episode we consider
the most complicated situation in which there are four vehicles simultaneously crossing the
intersection, one for each road and with random turning intention.
Every 𝐸 ∈ ℕ time steps we pause training and run an evaluation phase. During this period,

the agents use a greedy policy to face all the possible scenarios described above. When the
evaluation is completed, we use the inverse of the returns from all the scenarios to build a
probability distribution, and in the following training window we sample the different scenarios
according to such a distribution. In this way we allow the agents to learn more from the
most complicated situations. We name this original training strategy prioritised scenario replay
because of its conceptual similarity with the prioritised experience replay scheme [22], common
in many RL algorithms. Algorithm 1 illustrates the proposed learning strategy in detail.

4. Experiments on virtual environments

In order to train and evaluate our algorithm we need a suitable simulation environment. For this
project we have chosen the platform SMARTS [23], explicitly designed for MARL experiments
for autonomous driving. SMARTS relies on the external provider SUMO (Simulation of Urban
MObility) [32], which is a widely used microscopic traffic simulator, available under an open
source license. For our setup, we have used SMARTS as a bridge between SUMO and the
MARL framework, since it follows the standard Gymnasium APIs [33], widely used in the RL
community.

To develop our code Python 3.8 was employed along with the version 1.4 of the Deep Learning
library PyTorch [34]. Moreover, a NVIDIA TITAN Xp GPU was used to run our experiments.
As already mentioned in Section 3.1, we have built a 4-way 1-lane intersection scenario, with
three different turning intentions available to the vehicles coming from each of the four ways.



Algorithm 1MAD4QN-PS

1: Initialize three state-action value networks 𝑄𝑖 with random parameters 𝜃𝑖, 𝑖 = 1, 2, 3
2: Initialize three target state-action value networks ̄𝑄𝑖 with parameters ̄𝜃𝑖 = 𝜃𝑖, 𝑖 = 1, 2, 3
3: Initialize three replay buffers 𝒟𝑖, 𝑖 = 1, 2, 3
4: Setup initial 𝜀, decay factor 𝜀𝑑, evaluation period 𝐸, target update period 𝛿, discount factor 𝛾
5: Uniformly initialize the scenarios probability distribution
6: max_episode_steps← 𝑀
7: 𝑛 ← 0
8: while 𝑛 < 𝑁 do
9: episode_terminated← False
10: Randomly reset the environment
11: episode_steps← 0
12: while not episode_terminated do
13: 𝑉 ← number of vehicles currently present in the simulation
14: Assign each vehicle to one of the three agents, based on its turning intention
15: Collect observations for each vehicle 𝑜𝑛1 , ..., 𝑜𝑛𝑉
16: for all vehicles 𝑣 in 1, ..., 𝑉 do
17: With probability 𝜀 select a random action 𝑎𝑛𝑣
18: Otherwise 𝑎𝑛𝑣 ← argmax𝑎 𝑄𝑖(𝑜𝑛𝑣 , 𝑎; 𝜃𝑖), where 𝑖 depends on the turning intention of 𝑣
19: end for
20: Apply actions 𝑎𝑛𝑣 and collect observations 𝑜𝑛+1𝑣 and rewards 𝑟𝑛𝑣 for 𝑣 in 1, ..., 𝑉
21: Store each transition in the corresponding replay buffer 𝒟𝑖, 𝑖 = 1, 2, 3
22: for all agents 𝑖 = 1, 2, 3 do
23: Sample random batch of transitions ℬ𝑖 from replay buffer 𝒟𝑖
24: Update parameters 𝜃𝑖 by minimising the loss function:

ℒ(𝜃𝑖) =
1

|ℬ𝑖|
∑
𝑏∈ℬ𝑖

[(𝑟𝑏 + 𝛾 ̄𝑄𝑖(𝑜′𝑏 , argmax
𝑎′

𝑄𝑖(𝑜′𝑏 , 𝑎
′; 𝜃𝑖); ̄𝜃𝑖) − 𝑄𝑖(𝑜𝑏, 𝑎𝑏; 𝜃𝑖))2]

25: end for
26: 𝜀 ← 𝜀 − 𝜀𝑑
27: episode_steps ← episode_steps + 1
28: 𝑛 ← 𝑛 + 1
29: if 𝑛 % 𝛿 == 0 then
30: Update target network parameters ̄𝜃𝑖 = 𝜃𝑖 for each agent 𝑖 = 1, 2, 3
31: end if
32: if 𝑛 % 𝐸 == 0 then
33: Run evaluation phase and update the scenarios probability distribution as described

in Section 3.3
34: end if
35: if a collision occurred or 𝑉 == 0 or episode_steps == max_episode_steps then
36: episode_terminated ← True
37: end if
38: end while
39: end while



The simulation step has been fixed to 100𝑚𝑠. Regarding the observation of each vehicle, we
have stacked 𝑛 = 3 consecutive frames, each consisting of a RGB image of dimensions 48 × 48
pixels. Whereas, the action space contains 𝑚 = 2 possible velocity commands2, namely 0 and
15𝑚/𝑠. The chosen velocity references are then fed at each iteration to a speed controller, in
charge of driving the vehicle until the subsequent time step. For what concerns the reward
function (9), we have fixed its hyperparameter to 𝑘 = 1. Regarding the architecture of the
NN used to approximate the state-action value function, we have considered a convolutional
neural network (CNN), whose structural details are summarised in Table 1. Finally, the training
hyperparameters of Algorithm 1 are reported in Table 2.

Table 1
CNN architecture

Layer N. of Filters Kernel Size Stride Activation Function N. of Neurons

Convolutional 32 8 × 8 4 ReLU /
Convolutional 64 4 × 4 2 ReLU /
Convolutional 64 3 × 3 1 ReLU /
Fully connected / / / ReLU 512
Fully connected (V) / / / Linear 1
Fully connected (A) / / / Linear 2

Table 2
Training hyperparameters

Hyperparameter Symbol Value Hyperparameter Symbol Value

Training steps 𝑁 106 Initial exploration rate 𝜀 1
Max episode steps 𝑀 103 Exploration rate decay 𝜀𝑑 10−6
Evaluation period 𝐸 5 ⋅ 103 Buffer size |𝒟 | 1.5 ⋅ 105
Optimizer / RMSprop [35] Discount factor 𝛾 0.99
Learning rate 𝑙𝑟 10−4 Batch size |ℬ| 256
Target update period 𝛿 103

4.1. Baselines

In order to assess the quality of our algorithm, we benchmark it versus the following baselines 3:

• Random policy (RP) for all the vehicles, which helps confirm whether our algorithm is
effectively learning meaningful patterns, as it demonstrates its ability to outperform
random actions, which lack any deliberate learning process.

• Three symmetric (N/S & W/E) fixed-time traffic lights (FTTL), considering two cycle
lengths already analyzed in [16, 19], and also the optimal cycle length in function of the
traffic flow, computed according to Webster’s formula [37]. The final flow rate of vehicles
for evaluation has been set to 600 veh/hour, as will be discussed in Section 4.2.

2Such a choice for the action space has beenmade because we observed that consideringmore velocity commands
only introduced more complexity in the system, without increasing the performance of the algorithm.

3The baselines simulations with traffic lights have been performed exploiting Flow [36], another platform used
to interface with SUMO, which easily allows for the definition and control of traffic lights.



• Two symmetric (N/S & W/E) actuated traffic lights (ATL) [32], with different cycle lengths,
which operate by transitioning to the next phase once they identify a pre-specified time
gap between consecutive vehicles. In this way the allocation of green time across phases is
optimised and the cycle duration is adjusted in accordance with changing traffic dynamics.

The parameters of the five traffic lights configurations are reported in Table 3.

Table 3
Traffic lights parameters

Traffic light Red & Green Yellow Min. Duration Max. Duration

FTTL1 25𝑠 5𝑠 / /
FTTL2 32𝑠 8𝑠 / /
FTTLOPT 15𝑠 2𝑠 / /
ATL1 25𝑠 5𝑠 10𝑠 40𝑠
ATL2 32𝑠 8𝑠 15𝑠 50𝑠

As a final note, we emphasize that we do not have considered any RL-based centralised AIM
approach as baseline because the purpose of our method is to propose a more realistic and
feasible alternative to them, which is however able to outperform classical intersection control
methods, such as traffic lights.

4.2. Results

To assess the quality of MAD4QN-PS we consider four metrics, namely the travel time, the
waiting time, the average speed and the collision rate. We remark that we have accounted for
vehicle-centered metrics because of the decentralised nature of our algorithm. However, it is
evident that by optimizing the performance of each single road user we also implicitly improve
the quality of the whole intersection. The robustness of our method is ensured by performing
training ten times across different seeds, and then considering all the different trained models
while evaluating our strategy. In particular, each model has been tested by running a cycle of
the evaluation phase presented in Section 3.3, considering 600 veh/hour as flow rate of vehicles
coming through the intersection. Then, the obtained results from the different models have
been averaged out. Moreover, to ensure a fair comparison and analysis of the results, the same
evaluation setup has been adopted for all the baselines introduced above. Finally, it is worth
noticing that the inference time of the networks at evaluation phase is at most 1𝑚𝑠, thus allowing
for real-time control, given that the simulation step has been fixed to 100𝑚𝑠, as discussed at the
beginning of this section.

Starting from Figure 1a, we can observe the average travel time and waiting time of a generic
vehicle for all the methods. The former is defined as the overall time that the vehicle spends
inside the environment, while the latter is defined as the fraction of the travel time in which the
vehicle is moving with velocity less or equal to 0.1𝑚/𝑠, i.e. when it is stopped or almost stopped.
We clearly see that our method strongly outperforms all the traffic lights configurations. This is
mainly due to the fact that, when using traffic lights, a fraction of the vehicles is forced to stop
as soon as the corresponding light becomes red. Conversely, the trained MAD4QN-PS agents



are able to smoothly handle the interaction among multiple vehicles, allowing them to avoid
stopping unless it is strictly necessary. Figure 1b instead displays the average speed of each
vehicle. The results shown in this histogram are clearly related to those in Figure 1a; indeed,
also in this case we can see that our method outperforms traffic lights control schemes. This
occurs since the vehicles almost never stop, thus keeping a smoother velocity profile throughout
all the duration of the simulation.
Lastly, we are left with the analysis of the random policy baseline, as we need to look at all

the three plots to fully understand its behaviour. If we just look at Figures 1a and 1b we could
argue that the random policy performance is similar to that of MAD4QN-PS. This hypothesis is
however disproved by Figure 1c, where the average collision rate for each vehicle is illustrated.
The extremely high collision percentage obtained by the random policy explains why each
vehicle on average spends a small amount of time with high velocity into the environment.
Indeed, the simulation is terminated as soon as a vehicle crashes. MAD4QN-PS, instead, achieves
an extremely low collision rate. In addition, the fact that such a collision rate is non-zero is
expected and also observed in other works exploiting RL-based techniques [15, 16], given that
our algorithm has to implicitly learn collision avoidance through the reward signal. In practice,
the remaining failures are not problematic, because we can integrate rule-based sanity checks
in the pipeline in order to be 100% collision-free. Additionally, we note that two out of the ten
trained models with different seeds achieve exactly 0% collision rate, meaning that if we select
one of those models for deployment we are able to attain collision-free performances. This is
interesting since from an applicability perspective only the best trained model would be used in
practice. As a final note, we have not plotted the collision rate of the traffic lights methods for
better visualization, since the latter quantity is trivially zero for all the configurations.
A short video showing the performances of MAD4QN-PS can be found at this link.

5. Conclusions and future directions

In this study, we consider a distributed approach to face the AIM paradigm. In particular, we
propose a novel algorithm which exploits MARL through self-play and an original learning
strategy, named prioritised scenario replay, to train three different intersection crossing agents.
The derivedmodels are stored inside CAVs, that are then able to complete their paths by choosing
the model corresponding to their own turning intention while relying just on local observations.
Our algorithm represents a feasible and realistic alternative to the centralised AIM concept, that
is still expected to require years of technological advancement to be implementable in a real-
world scenario. In addition, simulation experiments demonstrates the superior performances of
our method w.r.t. classic intersection control schemes, such as static and actuated traffic lights,
in terms of travel time, waiting time and average speed for each vehicle.
In future works, we aim to explore different directions for advancements. In particular, one

of the main objectives is to also consider human driven vehicles inside the environment and
extend our approach to this field of research (see, e.g. the initial effort made in [38]). In this
case, the most challenging issue is indeed represented by the synchronization of traffic lights
accounting for the presence of human driven vehicles. Moreover, given the decentralised nature
of the proposed method, we expect to render our algorithm more robust without dramatically

https://youtu.be/nDhdnyNLlbM
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Figure 1: Comparison between the performance metrics of our method (MAD4QN-PS) and the baselines
introduced in Section 4.1.

change it. Conversely, significant redesign would be necessary for a centralised AIM approach.
Furthermore, we envisage to test more complicated scenarios, both in terms of dimension and
layout, again to improve the robustness of our algorithm. Finally, we intend to implement our
algorithm in a scaled real-world scenario with miniature vehicles [39], to practically demonstrate
the applicability of our method.
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