
Routing on Sparse Graphs with Non-metric Costs for the
Prize-collecting Travelling Salesperson Problem
Patrick O’Hara1,*, M. S. Ramanujan1 and Theodoros Damoulas1,2,3

1Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
2Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK
3The Alan Turing Institute, British Library, 96 Euston Road, London, NW1 2DB, UK

Abstract
In many real-world routing problems, decision makers must optimise over sparse graphs such as transportation
networks with non-metric costs on the edges that do not obey the triangle inequality. Motivated by finding a
sufficiently long running route in a city that minimises the air pollution exposure of the runner, we study the
Prize-collecting Travelling Salesperson Problem (Pc-TSP) on sparse graphs with non-metric costs. Given an
undirected graph with a cost function on the edges and a prize function on the vertices, the goal of Pc-TSP is to
find a tour rooted at the origin that minimises the total cost such that the total prize is at least some quota. First,
we introduce heuristics designed for sparse graphs with non-metric cost functions where previous work dealt
with either a complete graph or a metric cost function. Next, we develop a branch & cut algorithm that employs a
new cut we call the disjoint-paths cost-cover (DPCC) cut. Empirical experiments on two datasets show that our
heuristics can produce a feasible solution with less cost than a state-of-the-art heuristic from the literature. On
datasets with non-metric cost functions, DPCC is found to solve more instances to optimality than the baseline
cutting algorithm we compare against.

Keywords
Heuristics, Branch & cut, Routing, Air pollution, Travelling Salesperson Problem

1. Introduction

Variants of the Travelling Salesperson Problem (TSP) and Vehicle Routing Problem frequently appear in
real-world applications [1, 2, 3, 4]. The Prize-collecting Travelling Salesperson Problem (Pc-TSP) is a
member of the family of TSPs with Profits [5]. Given a graph with a prize function on the vertices and a
cost function on the edges, the objective of Pc-TSP is to minimise the total cost of a tour that starts and
ends at a given root vertex such that the total prize is at least a given threshold called the quota. Unlike
the traditional TSP, the tour is not required to visit all of the vertices. Applications of Pc-TSP naturally
arise in a range of industrial and transportation settings. Balas [6] proposes Pc-TSP as a model for the
daily operations of a steel rolling mill. Fischetti and Toth [7] minimise the total distance travelled by a
vehicle collecting a quota of a product from suppliers such that the tour starts and finishes at a factory.
Awerbuch et al. [8] consider a salesperson visiting cities to sell a quota of brushes in order to win a
trip to Hawaii. The above applications and their respective algorithms assume either: (i) every pair
of vertices are connected by an edge such that the input graph is complete; (ii) the cost function is a
metric function that obeys the triangle inequality; (iii) both of the previous assumptions.

However, in many real-world applications, making assumptions that the graph is complete or the
cost function is metric is not desirable. Our motivating example is a runner planning a route through
the streets of a city (see Figure 1). The runner requests several attributes of the route. Firstly, the
runner is conscious about exposure to air pollution on the route: air pollution has an adverse effect
on the cardio-respiratory system, which can be exacerbated by increased inhalation during exercise
[9]. In urban environments, air pollution is highly localised because factors such as transportation,

ATT’24: Workshop Agents in Traffic and Transportation, October 19, 2024, Santiago de Compostela, Spain
*Corresponding author.
$ patrick.h.o-hara@warwick.ac.uk (P. O’Hara); r.maadapuzhi-sridharan@warwick.ac.uk (M. S. Ramanujan);
t.damoulas@warwick.ac.uk (T. Damoulas)
� 0000-0001-9600-7554 (P. O’Hara); 0000-0002-2116-6048 (M. S. Ramanujan); 0000-0002-7172-4829 (T. Damoulas)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:patrick.h.o-hara@warwick.ac.uk
mailto:r.maadapuzhi-sridharan@warwick.ac.uk
mailto:t.damoulas@warwick.ac.uk
https://orcid.org/0000-0001-9600-7554
https://orcid.org/0000-0002-2116-6048
https://orcid.org/0000-0002-7172-4829
https://creativecommons.org/licenses/by/4.0/deed.en

1 km

10

20

30

40

Ni
tro

ge
n

di
ox

id
e

(
gm

3)

Figure 1: Example of a 10km tour that minimises the air pollution exposure of a runner in London, UK. The route
starts and ends at the red vertex. Yellow cells indicate high air pollution. Blue cells indicates low air pollution.

industry and construction largely contribute to poor air quality [10]. Fortunately, recent advances in air
quality modelling [11] means live, localised air quality forecasts can be used to predict the air pollution
exposure on individual streets (see Section 5). Secondly, the runner requests the route starts and ends
at the same location and is sufficiently long. For example, the runner may ask for a route that starts
and ends at their home and is at least 5km. Finally, the runner asks that the route is not repetitive:
whilst running up and down a single street with good air quality many times is an effective way to
minimise air pollution exposure, it is also a very boring route for the runner. We add the constraint that
no section of the route is repeated, leaving other constraints on route repetition to future work.

Our motivating example can be formulated as an instance of Pc-TSP. The road network is represented
by an undirected graph 𝐺 where the edges are roads and vertices are intersections. The road network
is a sparse graph: the number of edges 𝑚 is at most 𝜅𝑛 where 𝜅 is a constant and 𝑛 is the number
of vertices. The start and end location of the route is represented by a root vertex. The air pollution
exposure on a road can be modelled by a non-metric cost function on the edges. The length of the
runner’s route is analogous to prize collected on vertices by the salesperson: the prize is generated by
splitting each edge (𝑖, 𝑗) in the graph into two edges (𝑖, 𝑘), (𝑘, 𝑗) and assigning the length of edge (𝑖, 𝑗)
to the prize of a newly created vertex 𝑘, whilst the prize of 𝑖 and 𝑗 is zero. To avoid route repetition, we
ask that the route is a simple cycle. The objective is to minimise the air pollution exposure of a simple
cycle starting and ending at the root vertex such that the length of the route is at least the given quota.

From the polyhedral results derived by Balas [6, 12, 13], three papers propose exact algorithms
for Pc-TSP [7, 14, 15]. Fischetti and Toth [7] derive lower bounds, however, experimental results on
randomly-generated, directed, complete graphs show instances with a symmetric cost function (which
is equivalent to a cost function over undirected edges) could not be solved on graphs with greater than
40 vertices due to excessive computing time. Both [14] and [15] use cutting planes to strengthen the
lower bound via valid inequalities (constraints that do not eliminate any feasible integer solutions) and
conditional inequalities [16] (constraints that are valid for every optimal solution but not for every
feasible solution). Given an upper bound on the optimal solution, cost-cover inequalities are a type of
conditional inequality for Pc-TSP that constrain vertex variables using the cost of connecting a set of
vertices. The cost-cover inequalities of [14] and [15] both assume the cost function is metric. Moreover,
the heuristics used in [14] and [15] to obtain the upper bound assumes the graph is complete.

There are some key differences when designing polynomial-time heuristics for Pc-TSP on complete

graphs with metric costs versus sparse graphs with non-metric costs. First, given an instance of Pc-TSP
on a complete graph, one can construct a feasible solution [14, 15, 17] in polynomial time; but when
the graph is incomplete, we prove in Proposition 2 that no polynomial-time algorithm is guaranteed
to recover a feasible solution to every instance of Pc-TSP, unless 𝒫 = 𝒩𝒫 . Second, given a tour 𝒯
whose prize is less than the quota, heuristics [18, 19] for complete graphs increase the prize by adding a
vertex 𝑗 between two adjacent vertices 𝑢ℎ, 𝑢ℎ+1 in 𝒯 until the tour has sufficient prize; however, on
sparse graphs, one cannot assume edges (𝑢ℎ, 𝑗) and (𝑗, 𝑢ℎ+1) always exist. Lastly, given tour 𝒯 whose
prize is at least the quota, heuristics from the literature decrease the cost whilst maintaining feasibility
by applying operations such as deleting a vertex [18], replacing a vertex [20, 17], or re-sequencing
the tour [19]; similarly to above, these operators assume the existence of edges that may not exist in
a sparse graph. Moreover, [19] explicitly assumes the cost function is metric in their re-sequencing
operator. We conclude our literature review by emphasising that constructing a complete graph 𝐺′

from our sparse input graph 𝐺 then naively running a heuristic from the literature on 𝐺′ does not
guarantee the solution returned by the heuristic will be feasible for 𝐺. Furthermore, such a construction
increases the number of edges to 𝒪(𝑛2), slowing down the running time. We give two constructions in
Appendix A of the supplementary material.

Contributions With the motivation of finding routes minimising air pollution exposure in mind,
the focus of this paper is to develop algorithms to solve Pc-TSP on sparse, undirected graphs with
non-metric cost functions. Our contributions are:

1. Proposing a three-stage heuristic called Suurballe’s path extension & collapse (SBL-PEC) which (i)
generates an initial low-cost tour; (ii) increases the prize of the tour by adding paths with the
smallest cost-to-prize ratio; and (iii) decreases the cost of the tour whilst maintaining feasibility
by swapping a sub-path of the tour for an alternative path with less cost. Stages (ii) and (iii)
contain [19] as a special case.

2. Deriving a new disjoint-paths cost-cover inequality and proving it is stronger than a shortest-path
cost-cover inequality (Proposition 4). Our disjoint-paths cost-cover inequality is integrated into
our branch & cut algorithm for solving instances to optimality.

3. Empirically evaluating our method on real-world instances from the London air quality dataset
[11] and on synthetic instances from TSPLIB [21]. We compare our heuristics against [19] and
compare our branch & cut algorithm against an adaptation of [14].

2. Problem definition

An instance of Pc-TSP is given by the tuple ℐ = (𝐺, 𝑐, 𝑝,𝑄, 𝑣1). The graph 𝐺 is undirected with vertices
𝑉 (𝐺) and edges 𝐸(𝐺). The graph is assumed to be connected and simple with no self-loops. The
number of vertices and the number of edges are denoted 𝑛 = |𝑉 (𝐺)| and 𝑚 = |𝐸(𝐺)| respectively.
The set of neighbours of vertex 𝑖 is denoted 𝑁(𝑖) = {𝑗 ∈ 𝑉 (𝐺) : (𝑖, 𝑗) ∈ 𝐸(𝐺)}. The cost function
𝑐 : 𝐸(𝐺) → N0 defined on the edges is non-negative where N0 = N ∪ {0}. The prize function
𝑝 : 𝑉 (𝐺)→ N0 defined on the vertices is also non-negative. For convenience, we denote the total prize
of a set of vertices 𝑆 ⊆ 𝑉 (𝐺) as 𝑝(𝑆) =

∑︀
𝑖∈𝑆 𝑝(𝑖). Similarly, the total cost of a set of edges 𝐹 ⊆ 𝐸(𝐺)

is 𝑐(𝐹) =
∑︀

(𝑖,𝑗)∈𝐹 𝑐(𝑖, 𝑗). We are given a non-negative quota 𝑄 ∈ N0. The root vertex is 𝑣1 ∈ 𝑉 (𝐺).

Definition 1. A tour 𝒯 = (𝑢1, . . . , 𝑢𝑘, 𝑢1) of an undirected graph 𝐺 is a sequence of adjacent vertices
such that each vertex in the tour is visited exactly once. A vertex 𝑢 is visited exactly once if the tour enters
𝑢 exactly once and leaves 𝑢 exactly once. The set of vertices in the tour is defined by 𝑉 (𝒯) = {𝑢1, . . . , 𝑢𝑘}
and the set of edges of the tour is defined by 𝐸(𝒯) = {(𝑢1, 𝑢2), . . . , (𝑢𝑘−1, 𝑢𝑘), (𝑢𝑘, 𝑢1)}. We say a tour
is prize-feasible if 𝑝(𝑉 (𝒯)) ≥ 𝑄.

A feasible solution to a given instance ℐ of Pc-TSP is a tour 𝒯 starting and ending at the given root
vertex 𝑣1 such that 𝒯 is prize-feasible. The objective of Pc-TSP is to minimise the total cost 𝑐(𝐸(𝒯)) of

the edges in a tour 𝒯 such that the tour is a feasible solution. A tour 𝒯 ⋆ is an optimal solution to ℐ if
for all feasible tours 𝒯 we have 𝑐(𝐸(𝒯 ⋆)) ≤ 𝑐(𝐸(𝒯)).

Definition 2. A graph is sparse if the number of edges 𝑚 is at most 𝜅𝑛, where 𝜅 is a positive constant.

Definition 3. Let 𝒫𝑢𝑣 be the least-cost path from vertex 𝑢 to vertex 𝑣 in 𝐺 and let 𝐸(𝒫𝑢𝑣) be the set of
path edges. An edge (𝑢, 𝑣) is metric if ∀𝑤 ∈ 𝑉 (𝐺): (i) 𝑐(𝑢, 𝑣) = 0⇔ 𝑢 = 𝑣, (ii) 𝑐(𝑢, 𝑣) = 𝑐(𝑣, 𝑢), (iii)
𝑐(𝑢, 𝑣) ≤ 𝑐(𝐸(𝒫𝑢𝑤)) + 𝑐(𝐸(𝒫𝑤𝑣)). A cost function is metric if edge (𝑢, 𝑣) is metric for ∀(𝑢, 𝑣) ∈ 𝐸(𝐺),
and the cost function is non-metric otherwise.

Lemma 1. Let 𝐺 be a connected, undirected graph and 𝑐 : 𝐸(𝐺)→ N0 be a cost function on the edges.
The number of metric edges in 𝐸(𝐺) is at least 𝑛− 1.

Definition 4. Given graph 𝐺 and cost function 𝑐 : 𝐸(𝐺)→ N0, the metric surplus 𝜁(𝐺, 𝑐) is:

𝜁(𝐺, 𝑐) =

(︁∑︀
(𝑢,𝑣)∈𝐸(𝐺) 𝑀(𝑢, 𝑣)

)︁
− (𝑛− 1)

𝑚− (𝑛− 1)

where 𝑀(𝑢, 𝑣) = 1 if edge (𝑢, 𝑣) is metric, or 0 otherwise.

In this paper, we assume the input graph is sparse and we do not assume the triangle inequality (iii) in
Definition 3 always holds for the cost function. The metric surplus from Definition 4 gives us a measure
of “how metric” a cost function is. Notice that if all edges in 𝐺 are metric, then 𝜁(𝐺, 𝑐) = 1. But if the
number of metric edges is equal to the lower bound 𝑛− 1 from Lemma 1, then 𝜁(𝐺, 𝑐) = 0. Finally,
given an instance ℐ , we apply pre-processing to reduce the size of a sparse input graph 𝐺 by removing
vertices that are not in the same biconnected component as the root vertex 𝑣1 (see Appendix B.2).

3. Heuristics

Heuristics for Pc-TSP provide an upper bound on the optimal solution. A heuristic that runs efficiently
in worst-case polynomial-time complexity is desirable. However, on a general graph which is not
guaranteed to be complete, the design of polynomial-time heuristics that always return a prize-feasible
tour (if one exists) is not possible:

Proposition 2. Assume 𝒫 ≠ 𝒩𝒫 . Let 𝐺 be any undirected graph. No polynomial-time algorithm 𝐴 is
guaranteed to find a feasible solution (if one exists) for every instance of Pc-TSP.

Proof. Reduction from Hamiltonian Cycle: see Appendix C.

Whilst the polynomial-time heuristics we design in this section are not guaranteed to always find a
feasible solution on all general input graphs due to Proposition 2, our aim is to design heuristics that
find a low-cost feasible solution on most sparse, non-metric instances in practice. This section presents a
combined heuristic (Section 3.4) comprising of three distinct components: generating a starting solution
(Section 3.1); increasing the prize of the tour (Section 3.2); and reducing the cost of the tour (Section 3.3).

3.1. Suurballe’s Heuristic

To find an initial low-cost tour, we propose Suurballe’s heuristic (SBL). The central idea is to find 𝑛− 1
tours 𝒯1, . . . , 𝒯𝑛−1 from the least-cost pair of vertex-disjoint paths from the root vertex 𝑣1 to every other
vertex 𝑡 ∈ 𝑉 (𝐺)∖{𝑣1}. Two simple paths 𝒟1 = (𝑢1, . . . , 𝑢𝑘), 𝒟2 = (𝑤1, . . . , 𝑤𝑙) from 𝑣1 = 𝑢1 = 𝑤1

to 𝑡 = 𝑢𝑘 = 𝑤𝑙 are vertex disjoint if 𝑉 (𝒟1) ∩ 𝑉 (𝒟2) = {𝑣1, 𝑡}. In an undirected graph, 𝒟1 and 𝒟2

form a tour 𝒯 = (𝑢1, . . . , 𝑢𝑘−1, 𝑢𝑘, 𝑤𝑙−1, . . . , 𝑤1) by removing 𝑤𝑙 from 𝒟2, reversing the order of 𝒟2,
then appending the modified 𝒟2 to the end of 𝒟1.

1

1

5

2

1

14

1

1

2

6

2

3
0

1

2

3

4

5

67

8

9
c(E(T)) = 16

p(V (T)) = 6

Suurballe’s heuristic

(a) Suurballe’s heuristic generates the initial tour
(0,1,5,9,7,2,0) from a pair of vertex-disjoint paths
(0,1,5,9) and (0,2,7,9). Vertices in green are in the
tour. The total cost of 𝒯 is 16 and the total prize
is 6. We set 𝒯 ⋆ ← 𝒯 .

1

1

5

2

1

14

1

1

2

6

2

3

0

1

2

3

4

5

67

8

9
c(E(T)) = 10

p(V (T)) = 8

L(X β
h) = -3

L̄ = -3

Path Extension (β=3, i=1)

tour

old path

extension

(b) Path extension of Fig. 2a with 𝛽 = 3 finds a tour
with cost 10 and prize 8. The only feasible exten-
sion on iteration 𝑖 = 1 is (2,6,4,3,8,5). For 𝑖 = 2,
path (2,7,9,5) is not considered because its prize is
not greater than the internal path (2,0,1,5).

Figure 2: Demonstration of the SBL and path extension stages of PEC-SBL heuristic (Algorithm 1). Vertex 0 is
the root. The prize of every vertex is 1. Edges are labelled with their cost. The quota is 𝑄 = 6.

SBL returns the least-cost prize-feasible tour from 𝒯1, . . . , 𝒯𝑛−1 if one exists; else if no tours are
prize-feasible, it returns the tour that maximises the prize. Suurballe’s algorithm1 [22] for finding the
least-cost pair of vertex-disjoint paths from 𝑣1 to every other vertex 𝑡 takes 𝒪(𝑚 log 𝑛). Checking
a single tour is prize-feasible takes 𝒪(𝑛) and the heuristic checks 𝑛 − 1 tours for prize-feasibility.
The overall running time of our algorithm is 𝒪(𝑚 log 𝑛+ 𝑛2). On a sparse graph, the worst-case is
dominated by 𝒪(𝑛2). On a dense graph, the worst-case is dominated by 𝒪(𝑚 log 𝑛). The weakness of
SBL is it fails to find a prize-feasible tour if there does not exist a least-cost pair of vertex-disjoint paths
𝒟1,𝒟2 from 𝑣1 to some 𝑡 ∈ 𝑉 (𝐺) such that 𝑝(𝑉 (𝒟1)) + 𝑝(𝑉 (𝒟2))− 𝑝(𝑡) ≥ 𝑄.

3.2. Path Extension

Given an initial tour 𝒯 = (𝑢1, . . . , 𝑢𝑘, 𝑢1) with 𝑢1 = 𝑣1, we propose a path extension algorithm to
increase the total prize of the tour. Increasing the prize has two goals: first, if 𝒯 is not prize-feasible,
then increase the prize to obtain feasibility; second, if 𝒯 is prize-feasible, then explore the solution space
in different areas of the graph by increasing the prize. Intuitively, in each iteration 𝑖, the algorithm
searches for possible extension paths between two vertices of the tour, then chooses the extension path
with the smallest cost-to-prize ratio. A new tour with larger prize is constructed from the extension
path and the existing tour. The algorithm repeatedly increases the prize of the tour with extension
paths until a termination criteria is met.

More specifically in each iteration 𝑖, for every ℎ ∈ {1, . . . , 𝑘 − 𝛽}, path extension searches for an
extension path𝒳 𝛽

ℎ from 𝑢ℎ to 𝑢ℎ+𝛽 where 𝛽 ∈ N is a step size parameter and 𝑘 = |𝑉 (𝒯)|. The extension
path 𝒳 𝛽

ℎ is not allowed to use vertices in 𝒯 except for 𝑢ℎ and 𝑢ℎ+𝛽 . To find 𝒳 𝛽
ℎ , we use a Breadth First

Search (BFS) from 𝑢ℎ such that |𝑉 (𝒳 𝛽
ℎ)| ≥ 3. Let us define the internal path𝒫𝛽

ℎ = (𝑢ℎ, 𝑢ℎ+1, . . . , 𝑢ℎ+𝛽)

to be the sub-path of 𝒯 that would be replaced by the extension path 𝒳 𝛽
ℎ . A new tour can be created by

replacing the internal path with the extension path. To compare extension paths, we propose a ratio of
the cost to prize called the unitary loss:

𝐿(𝒳 𝛽
ℎ) =

𝑐(𝐸(𝒳 𝛽
ℎ))− 𝑐(𝐸(𝒫𝛽

ℎ))

𝑝(𝑉 (𝒳 𝛽
ℎ))− 𝑝(𝑉 (𝒫𝛽

ℎ))
where 𝑝(𝑉 (𝒳 𝛽

ℎ)) > 𝑝(𝑉 (𝒫𝛽
ℎ)) (1)

1Suurballe’s algorithm uses directed, asymmetric graphs. Transforming undirected to directed, asymmetric takes 𝒪(𝑛+𝑚).

In each iteration 𝑖, we construct a set 𝑆𝛽
𝑖 = {𝒳 𝛽

ℎ |𝑝(𝑉 (𝒳 𝛽
ℎ)) > 𝑝(𝑉 (𝒫𝛽

ℎ)), ℎ ∈ {1, . . . , 𝑘 − 𝛽}}
of possible extension paths that have more prize than the internal path. Note we exclude from 𝑆𝛽

𝑖

extension paths 𝒳 𝛽
ℎ for which ℎ > 𝑘−𝛽 because removing the internal path 𝒫𝛽

ℎ would also remove the
root vertex from the tour. We choose the extension path 𝒳 𝛽

ℎ ∈ 𝑆𝛽
𝑖 that minimises 𝐿(𝒳 𝛽

ℎ) and construct
a new tour 𝒯 ′ = (𝑢1, . . . , 𝑢ℎ−1,𝒳 𝛽

ℎ , 𝑢ℎ+𝛽+1, . . . , 𝑢𝑘, 𝑢1). We repeat steps for at most 𝑛 iterations or
until termination criteria (a) or (b) is met:

(a) If the prize of the initial tour is less than 𝑄, path extension terminates when the tour becomes
prize-feasible, or terminates when 𝑆𝛽

𝑖 is empty (the heuristic failed to find a prize-feasible tour).

(b) If the prize of the initial tour is at least 𝑄, path extension terminates when there does not exist a
path 𝒳 𝛽

ℎ ∈ 𝑆𝛽
𝑖 such that 𝐿(𝒳 𝛽

ℎ) < 𝐿 where:

𝐿 =
1

|𝑆𝛽
𝑖=1|

∑︁
𝒳𝛽

ℎ ∈𝑆𝛽
𝑖=1

𝐿(𝒳 𝛽
ℎ) (2)

𝐿 is calculated on the first iteration 𝑖 = 1, but not re-calculated on subsequent iterations.

Each iteration 𝑖 takes 𝒪(𝑛(𝑛 + 𝑚)) time, and there are at most 𝑛 iterations, giving path extension
worst-case time complexity𝒪(𝑛2(𝑛+𝑚)). We found through experimentation that if 𝛽 > 10, the tour
is rarely extended, thus we limit 𝛽 to be at most 𝛽max = 10. We limit the maximum number of iterations
to be 𝑛 because the worst-case running time would otherwise be upper bounded by the number of
times one can increase the prize of the tour by replacing a sub-path with an extension path. Depending
on the prize function and topology of the graph, this upper bound could be much larger than 𝑛. Since
we seek a fast heuristic (and since path extension will be called 𝛽max times, see Section 3.4), we limit
the maximum number of iterations to be 𝑛.

The path extension algorithm addresses limitations of previous work in the following ways. First, on
sparse graphs, path extension can increase the prize of the tour by adding paths between non-adjacent
vertices in the tour: it is not limited by adding a single vertex between adjacent vertices of the tour. For
example, in Figure 2b, path extension recovers the optimal solution by finding an extension path with
five edges that replaces an internal path with three edges. Second, the unitary loss function (1) does not
assume the cost function is metric. Indeed if an edge (𝑢ℎ, 𝑢ℎ+1) ∈ 𝐸(𝒯) is non-metric such that the
cost of (𝑢ℎ, 𝑢ℎ+1) is greater than the cost of the extension path 𝒳 1

ℎ , then 𝐿(𝒳 1
ℎ) < 0 so path extension

is likely to choose 𝒳 1
ℎ as the extension path. In this case, extending the tour with 𝒳 1

ℎ decreases the cost
and increases the prize of the tour, which is a desirable greedy move for the algorithm to make.

3.3. Path Collapse

To reduce the cost of a given prize-feasible tour 𝒯 = (𝑢1, . . . , 𝑢𝑘, 𝑢1), we propose the path collapse
heuristic. The intuition is to swap a sub-path of the tour for an alternative path with less cost whilst
maintaining a prize-feasible tour containing the root vertex. We iterate over 𝑘 sub-paths of the tour
(where 𝑘 = |𝑉 (𝒯)|) and choose the alternative path that produces the least-cost prize-feasible tour.
More specifically, path collapse iterates over each 𝑖 ∈ {1, . . . , 𝑘}:

1. Start from vertex 𝑢𝑖, then take a sub-path 𝑃 = (𝑢𝑖, . . . , 𝑢𝑗) of 𝒯 where 𝑣1 ∈ 𝑉 (𝑃) such that
𝑝(𝑉 (𝑃)) < 𝑄 and 𝑝(𝑉 (𝑃)) + 𝑝(𝑢𝑗+1) ≥ 𝑄.

2. For all neighbours 𝑠𝑙 ∈ 𝑁(𝑢𝑖) of 𝑢𝑖, search for the least-cost path 𝒮𝑙 = (𝑠1, . . . , 𝑠𝑙) from 𝑠1 = 𝑢𝑗
to 𝑠𝑙 using vertices of 𝐺 that are not in 𝑃 .

3. From 𝑠𝑙 ∈ 𝑁(𝑢𝑖), choose the path 𝒮⋆𝑙 that minimises 𝑐(𝐸(𝒮𝑙)) + 𝑐(𝑠𝑙, 𝑢𝑗) such that 𝑝(𝑉 (𝑃)) +
𝑝(𝑉 (𝒮𝑙))−𝑝(𝑢𝑗) ≥ 𝑄. If 𝑐(𝐸(𝑃))+𝑐(𝐸(𝒮⋆𝑙))+𝑐(𝑠𝑙, 𝑢𝑗) < 𝑐(𝐸(𝒯)), then form a new collapsed
tour 𝒯 ′

𝑖 = (𝑢𝑖, . . . , 𝑢𝑗 , 𝑠2, . . . , 𝑠𝑙, 𝑢𝑖) by appending 𝒮⋆𝑙 and (𝑠𝑙, 𝑢𝑖) to 𝑃 .

From the 𝑘 collapsed tours 𝒯 ′
𝑖 returned by step 3 in each iteration 𝑖 ∈ {1, . . . , 𝑘}, path collapse returns

the least-cost tour. Using Dijkstra’s algorithm [23] for shortest paths, the running-time of path collapse
is𝒪(𝑘 ·𝑚 log 𝑛). Note that our path collapse algorithm contains [19] as a special case when the shortest
path from 𝑢𝑗 to 𝑢𝑖 has exactly two edges. path collapse is a generalization that allows shortest paths
with more than two edges. This generalization is critical in a sparse graph when a two-edge path from
𝑢𝑗 to 𝑢𝑖 may not exist. If edge (𝑢𝑗 , 𝑠𝑙) exists and is non-metric, then the generalization is important
because there likely exists a least-cost path 𝒮𝑙 from 𝑢𝑗 to 𝑠𝑙 ∈ 𝑁(𝑢𝑗) that does not visit edge (𝑢𝑗 , 𝑠𝑙)
such that the resulting tour 𝒯 ′

𝑖 has less cost and more prize (since 𝑝(𝑢𝑗) + 𝑝(𝑠𝑙) < 𝑝(𝒮𝑙)).

3.4. Suurballe’s Path Extension & Collapse (SBL-PEC)

Algorithm 1: Path extension & collapse initialised with Suurballe’s heuristic (SBL-PEC).
Input: Instance ℐ = (𝐺, 𝑐, 𝑝,𝑄, 𝑣1); parameter 𝛽max ∈ N. Output: Tour 𝒯 ⋆.

1 Find a tour 𝒯 using SBL ;
2 if 𝑝(𝑉 (𝒯)) < 𝑄 then foreach 𝛽 ∈ {1, . . . , 𝛽max} do path extension with termination (a);
3 𝒯 ⋆ ← path collapse 𝒯 ;
4 for 𝛽 ∈ {1, . . . , 𝛽max} do
5 𝒯 ← path extension on 𝒯 ⋆ with step size 𝛽 with termination criteria (b);
6 𝒯 ← path collapse 𝒯 ;
7 if 𝑐(𝐸(𝒯)) < 𝑐(𝐸(𝒯 ⋆)) then 𝒯 ⋆ ← 𝒯 ;

To summarise SBL-PEC (Algorithm 1), we generate an initial tour 𝒯 with SBL; if 𝒯 is not prize-
feasible, we repeat path extension for each 𝛽 until 𝑝(𝑉 (𝒯)) ≥ 𝑄; then for each 𝛽, we alternate path
extension with path collapse. SBL-PEC has a worst-case time complexity equal to the number of times
we call path extension, which is 𝒪(𝛽max𝑛

2(𝑛+𝑚)).

4. Branch & Cut Algorithm

In this section, we develop a branch & cut algorithm to find the optimal solution of sparse, non-metric
instances of Pc-TSP. Our primary contribution is a new conditional cost-cover inequality based on vertex-
disjoint paths (Section 4.2). For a computational study on the effectiveness of other valid inequalities
for Pc-TSP such as cover and comb inequalities, we refer the reader to [14]. Our branch & cut algorithm
is implemented using SCIP v8.0.3 [24, 25, 26] and linear programs are solved using CPLEX v22.1.1 [27].

4.1. Integer Programming Formulation

We formulate Pc-TSP as an integer linear program (ILP) as follows [14]. Let variable 𝑦𝑖 = 1 if vertex 𝑖
is included in the tour, or zero otherwise. Similarly, let 𝑥𝑖𝑗 = 1 if edge (𝑖, 𝑗) is included in the tour,
or zero otherwise. We can summarise the variables as binary vectors 𝑥 ∈ {0, 1}𝑚 and 𝑦 ∈ {0, 1}𝑛.
Similarly the cost and prize can be represented by vectors 𝑐 ∈ N𝑚

0 and 𝑝 ∈ N𝑛
0 respectively. Our ILP is

min 𝑐𝑇𝑥 (3)

s.t. 𝑝𝑇𝑦 ≥ 𝑄 (4)

𝑦1 = 1 (5)∑︁
𝑗∈𝑁(𝑖)

𝑥𝑖𝑗 = 2𝑦𝑖 ∀𝑖 ∈ 𝑉 (𝐺) (6)

∑︁
(𝑗,𝑘)∈𝐸(𝑆)

𝑥𝑗𝑘 ≤
∑︁
𝑗∈𝑆

𝑦𝑗 − 𝑦𝑖 ∀𝑆 ⊂ 𝑉 (𝐺), 𝑣1 ∈ 𝑉 (𝐺)∖𝑆, 𝑣𝑖 ∈ 𝑆 (7)

𝑥 ∈ {0, 1}𝑚, 𝑦 ∈ {0, 1}𝑛. (8)

Constraint (4) enforces the total prize of the tour to be at least the quota. Constraint (5) requires the
root vertex to be in every feasible solution. Constraint (6) ensures every vertex in the graph is visited
at most once by the tour. Constraints (7) are called the sub-tour elimination constraints (SECs) which
ensure the tour is connected. Constraints (8) requires the edge and vertex variables to be binary. The set
of feasible solutions is given by ℱ = {(𝑥,𝑦) ∈ {0, 1}𝑚 × {0, 1}𝑛|(4)− (8)}. A solution (𝑥⋆,𝑦⋆) ∈ ℱ
is optimal if for all (𝑥,𝑦) ∈ ℱ we have 𝑐𝑇𝑥⋆ ≤ 𝑐𝑇𝑥. A relaxation is obtained by removing some of
the constraints from the integer program and can be used to obtain a lower bound (LB) on the cost of
the optimal solution. Given an upper bound (UB) on the optimal solution, we define the gap between
the bounds as GAP = (UB - LB) / LB. A solution is optimal when the GAP is zero.

The linear program at the root node of the branch & bound tree is defined by the objective function
(3) with constraints (4)-(6). The integrality constraints on 𝑥 and 𝑦 are relaxed to ∀(𝑖, 𝑗) ∈ 𝐸(𝐺) : 0 ≤
𝑥𝑖𝑗 ≤ 1 and ∀𝑖 ∈ 𝑉 (𝐺) : 0 ≤ 𝑦𝑖 ≤ 1. Sub-tour elimination constraints are only added to a linear
program when a separation algorithm finds a violated inequality (Appendix E.1.1). The initial upper
bound 𝐶𝑈 is set by running the SBL-PEC heuristic from Section 3. If the value of the objective function
of a solved linear program is greater than the current upper bound, the node belonging to the linear
program is pruned from the branch & bound tree.

4.2. Cost-cover Inequalities

Given an upper bound 𝐶𝑈 on the optimal solution of an instance of Pc-TSP and a subset 𝑆 of vertices, a
cost-cover inequality constrains the number of vertices from 𝑆 that can be in the optimal solution. Let
𝑙 : 𝑆 → N0 be a function that returns a lower bound on the cost of connecting vertices in 𝑆 with any
edges from 𝐸(𝐺). Note that 𝐶𝑈 acts as the capacity in a knapsack constraint:

∑︀
(𝑖,𝑗)∈𝐸(𝐺) 𝑥𝑖𝑗𝑐(𝑖, 𝑗) ≤

𝐶𝑈 . Under the condition 𝑙(𝑆) > 𝐶𝑈 , 𝑆 is a cover of the knapsack constraint, and no optimal solution
contains every vertex from 𝑆. The following conditional inequality is then valid for the optimal solution
(but not for every feasible solution):∑︁

𝑖∈𝑆
𝑦𝑖 ≤ |𝑆| − 1 ∀𝑆 ⊂ 𝑉 (𝐺), 𝑙(𝑆) > 𝐶𝑈 (9)

Consider the case when 𝑆 contains two vertices 𝑖 and 𝑗. On a non-metric and sparse graph, if twice the
cost of the shortest path 𝒫𝑖𝑗 between 𝑖 and 𝑗 is greater than 𝐶𝑈 , then at most one of the endpoints 𝑖, 𝑗
can be included in the optimal solution. Formally, the shortest-path cost-cover (SPCC) inequality is

𝑦𝑖 + 𝑦𝑗 ≤ 1 ∀𝑖, 𝑗 ∈ 𝑉 (𝐺), 2𝑐(𝐸(𝒫𝑖𝑗)) > 𝐶𝑈 . (10)

We propose using the least-cost pair of vertex-disjoint paths between two vertices 𝑖, 𝑗 instead of two
times the cost of the shortest path. We first prove the cost of the disjoint paths are a lower bound on
the shortest tour containing 𝑖 and 𝑗:

Lemma 3. In an undirected graph, the minimum cost of a tour 𝒯 containing 𝑖 and 𝑗 is equal to the
least-cost pair of vertex-disjoint paths 𝒟1,𝒟2 between 𝑖 and 𝑗.

Proof. See Appendix D of the supplementary material.

By Lemma 3, 𝑙({𝑖, 𝑗}) = 𝑐(𝐸(𝒟1)) + 𝑐(𝐸(𝒟2)) defines a lower bound on a tour containing 𝑖 and 𝑗.
We define the disjoint-paths cost-cover (DPCC) inequality as:

𝑦𝑖 + 𝑦𝑗 ≤ 1 ∀𝑖, 𝑗 ∈ 𝑉 (𝐺), 𝑐(𝐸(𝒟1)) + 𝑐(𝐸(𝒟2)) > 𝐶𝑈 . (11)

Proposition 4. Let 𝐶𝑢 be an upper bound on the optimal solution to an instance ℐ . Let ℱ (10) and ℱ (11)

be the set of feasible solutions given the SPCC (10) and DPCC (11) inequalities respectively, that is,

ℱ (10) := {(𝑥,𝑦) ∈ ℱ | (10)}, ℱ (11) := {(𝑥,𝑦) ∈ ℱ | (11)}.

Then we have ℱ (11) ⊆ ℱ (10).

Proof. To show ℱ (11) ⊆ ℱ (10), we prove that if (𝑥,𝑦) ∈ ℱ (11) then (𝑥,𝑦) ∈ ℱ (10). Suppose otherwise.
Then ∃(𝑥,𝑦) ∈ ℱ (11) such that (𝑥,𝑦) /∈ ℱ (10). This only happens if ∃𝑖, 𝑗 ∈ 𝑉 (𝐺) such that 𝑦𝑖+𝑦𝑗 ≤ 1
is a constraint in ℱ (10) but is not a constraint in ℱ (11). This means 2𝑐(𝐸(𝒫𝑖𝑗)) > 𝐶𝑈 and 𝑐(𝐸(𝒟1)) +
𝑐(𝐸(𝒟2)) ≤ 𝐶𝑢. Without loss of generality, let 𝑐(𝐸(𝒟1)) ≤ 𝑐(𝐸(𝒟2)). Then 𝑐(𝐸(𝒟1)) ≤ 1

2𝐶𝑢 which
implies𝒟1 is a shorter path from 𝑖 to 𝑗 than 𝒫𝑖𝑗 , a contradiction to (10) that 𝒫𝑖𝑗 is the shortest path.

Our branch & cut algorithm checks for violated cost-cover inequalities between the root vertex 𝑣1
to every other 𝑣𝑖 ∈ 𝑉 (𝐺). Before running the branch & cut algorithm, we find the least-cost pair of
vertex-disjoint paths from 𝑣1 to every 𝑣𝑖 ∈ 𝑉 (𝐺) and store the costs in an array 𝐴 with 𝑛 elements. This
pre-processing step takes 𝒪(𝑚 log 𝑛) for disjoint paths [22]. Note that we decided against finding the
least-cost pair of vertex-disjoint paths between every pair of vertices because it would take𝒪(𝑛𝑚 log 𝑛)
time complexity and 𝒪(𝑛2) space complexity. During the branch & cut algorithm, whenever a new
upper bound 𝐶𝑈 is discovered, if 𝐴[𝑖] > 𝐶𝑈 then we set 𝑦𝑖 = 0 due to (11). The time complexity of
the separation algorithm (discarding the time for pre-processing) is 𝒪(𝑛) since we must check every
element of the array 𝐴. The cost-cover separation algorithms for shortest-path cost-cover inequalities
(10) and disjoint-paths cost-cover inequalities (11) are the same, except we store the shortest path from
𝑣1 to 𝑣𝑖 ∈ 𝑉 (𝐺) in array 𝐴 using Dijkstra’s algorithm [23].

5. Computational experiments

We evaluate our heuristics and cost-cover inequalities across multiple real-world and synthetic instances.
For each instance and each algorithm, we measure the computational time in seconds (TIME) and the
GAP between the upper and lower bounds. TIME is limited to four hours for each instance. For a
given algorithm evaluated on a group of instances, we denote the mean GAP as GAP, the mean TIME
as TIME, the number of feasible solutions as FEAS, and the number of optimal solutions as OPT. Our
algorithms are implemented in C++ and Python2. The machine we use for experiments is a 2× 10-core
Xeon E5-2660 v3 at 2.6 GHz with 64GB RAM running Linux. Each run of an algorithm is allocated one
core and 12GB of RAM using the slurm scheduler [28].

London Air Quality (LAQ) We generate instances of the LAQ dataset by mapping air pollution
forecasts from a machine learning model onto the London road network. The air quality model of
London [11] is a non-stationary mixture of Gaussian Processes that predicts air pollution (nitrogen
dioxide) from data such as sensors, road traffic and weather. The model output consists of forecasts for
each cell of a hexagonal grid which overlays the road network (see Figure 1). Every road has a length
(in meters). The cost of running along a road is the mean pollution of the grid cells intersecting the
road multiplied by the length of the road. The goal is to minimise air pollution exposure of a tour such
that the total length of the tour is at least the quota and the tour starts and ends at the root vertex.

The LAQ dataset consists of four graphs3 named laqbb, laqid, laqkx and laqws which are each created
by only keeping vertices within 3000m of the root vertex. The root vertex of each graph is given
respectively by the following four locations in London: Big Ben (bb), Isle of Dogs (id), King’s Cross
(kx), and Wembley Stadium (ws). The prize function of vertices is generated by splitting each edge
(𝑖, 𝑗) in the graph into two edges (𝑖, 𝑘), (𝑘, 𝑗) and assigning the length of edge (𝑖, 𝑗) to the prize of a
newly created vertex 𝑘. The prize of 𝑖 and 𝑗 is zero. The cost of (𝑖, 𝑘) is the same as (𝑖, 𝑗) but the cost
of (𝑘, 𝑗) is set to zero. The metric surplus 𝜁(𝐺, 𝑐) (see Definition 4) of instances in the LAQ dataset is
approximately 0.9. For each of the four graphs, we run our algorithms on five different quotas (1000m,
2000m, 3000m, 4000m, or 5000m), giving us 20 different instances for the London air quality dataset.

2Code available at https://github.com/PatrickOHara/pctsp. Datasets available upon request.
3We constructed smaller graphs because running our algorithms on the entire London road network (which has hundreds of
thousands of vertices and edges) was too computationally expensive.

TSPLIB A well-known benchmark dataset used in multiple papers [29, 14, 16], TSPLIB [21] is a
collection of complete graphs. We chose nine graphs with a range of sizes from the original TSPLIB
dataset: eil514, st70, rat195, tsp225, a280, pr439, rat575, gr666, pr1002. We construct sparse graphs with
a metric surplus of zero (meaning every edge is non-metric). Each vertex is labelled from 1, . . . , 𝑛 and is
assigned an x and y co-ordinate. The root vertex is labelled 𝑣1 = 1. Let the Euclidean distance between
the co-ordinates of vertices 𝑖 and 𝑗 be ||𝑖− 𝑗||2. The prize 𝑝(𝑖) of vertex 𝑖 is defined by three different
generations [14, 16]: (i) 𝑝(𝑖) = 1; (ii) 𝑝(𝑖) = 1+(7141𝑖+73) mod 100; and (iii) 𝑝(𝑖) = 1+⌊99𝜃 ||𝑣1−𝑖||2⌋
where 𝜃 = max𝑗∈𝑉 (𝐺) ||𝑣1 − 𝑗||2. We set 𝑄 = 𝛼 · 𝑝(𝑉 (𝐺)) where 𝛼 ∈ {0.05, 0.10, 0.25, 0.50, 0.75}.
To make the graphs sparse, we remove edges from TSPLIB instances with independent and uniform
probability until the number of edges is equal to 𝜅𝑛 where 𝜅 ∈ {5, 10, 15, 20, 25}.

The cost function is called MST with 𝜁(𝐺, 𝑐) = 0 and is defined as follows. First, assign all edges cost
||𝑖− 𝑗||2. Next, find the minimum spanning tree 𝑇 of the sparse graph 𝐺. Now, find the shortest path
𝒫𝑇
𝑖𝑗 from vertex 𝑖 to 𝑗 using only edges in 𝐸(𝑇). Finally, assign costs such that edges in 𝑇 are metric

and edges not in 𝑇 are non-metric:

𝑐(𝑖, 𝑗) =

{︃
⌈||𝑖− 𝑗||2⌉ ∀(𝑖, 𝑗) ∈ 𝐸(𝑇)

⌈||𝑖− 𝑗||2⌉+ 𝑐(𝐸(𝒫𝑇
𝑖𝑗)) ∀(𝑖, 𝑗) ∈ 𝐸(𝐺)∖𝐸(𝑇)

In summary, there are 675 instances in the modified TSPLIB dataset: five levels of sparsity, three prize
generating functions, nine distinct graphs, and five values of 𝛼.

5.1. Empirical Heuristic Results

In this section, we compare SBL-PEC against a baseline (BFS-EC) from the literature. The BFS-EC
baseline initialises the Extension & Collapse (EC) [19] with the first cycle detected by a Breadth First
Search (BFS). We also run Suurballe’s heuristic (SBL) as a stand alone heuristic. When calculating the
GAP, the upper bound (UB) is the total cost of the heuristic solution. The lower bound (LB) is the cost of
the largest lower bound found by running our branch & cut algorithm in Section 4 with disjoint-paths
cost-cover (DPCC) cuts for a maximum of four hours. On instances where the optimal solution is found
within four hours, LB will be the cost of the optimal solution (denoted with a ⋆ in Table 1 and Table 2).
For a given instance, each heuristic is compared against the same LB when calculating the GAP. From
Table 1 and Table 2, we conclude the following:

• SBL finds low-cost initial tours. On the LAQ dataset, the GAP is equal for SBL and SBL-PEC on
every instance, implying PEC does not improve the SBL tour because SBL finds a solution that is
optimal or close-to-optimal, so little improvement is possible. On TSPLIB, PEC is needed to make
the SBL tour prize-feasible.

• BFS-EC [19] cannot sufficiently increase the prize. On both LAQ and TSPLIB datasets, BFS-EC
finds less feasible tours than SBL-PEC. On TSPLIB when 𝐺 is sparse (𝜅 = 5), BFS-EC finds 8/135
feasible tours compared to 123/135 for SBL-PEC.

• SBL-PEC is the best heuristic on TSPLIB. In addition to finding the most feasible tours, when 𝜅 ≥ 10,
the GAP of BFS-EC is consistently four times more than the GAP of SBL-PEC.

To conclude our heuristic analysis, SBL is effective as a standalone heuristic on the LAQ dataset, whilst
SBL-PEC outperforms all other algorithms on the TSPLIB dataset across varying levels of sparsity.

4Code “eil51” means there are 51 vertices in the original TSPLIB instance.

Table 1
Heuristic comparison on all 4 LAQ instances. “nan” means “not a number” where we could not calculate the
GAP due to the heuristic finding zero feasible solutions to the four instances. GAP is marked by ⋆ if LB is the
optimal solution to all four instances found by branch & cut; else GAP is unmarked such that LB is the largest
lower bound and the GAP is an overestimate.

BFS-EC SBL SBL-PEC

Quota GAP FEAS GAP FEAS GAP FEAS

1000 0.066⋆ 3 0.000⋆ 4 0.000⋆ 4
2000 0.000⋆ 1 0.040⋆ 4 0.040⋆ 4
3000 nan 0 0.027⋆ 4 0.027⋆ 4
4000 nan 0 0.049⋆ 4 0.049⋆ 4
5000 nan 0 0.117 4 0.117 4

Table 2
Heuristic comparison for different sparsity levels 𝜅 in the TSPLIB dataset with the MST cost function. Each
row corresponds to 135 instances. GAP is calculated using the largest lower bound (LB), and so the GAP is an
overestimate for each entry.

BFS-EC SBL SBL-PEC

𝜅 GAP FEAS GAP FEAS GAP FEAS

5 2.555 8 0.097 46 1.075 123
10 5.430 71 0.124 48 1.333 135
15 8.217 122 0.153 51 1.421 135
20 6.619 120 0.183 51 1.469 135
25 8.125 126 0.239 54 1.466 135

5.2. Cost-cover Inequalities

To evaluate our disjoint-paths cost-cover (DPCC) cuts, we run our branch & cut algorithm from Section 4
with DPCC against shortest-path cost-cover (SPCC) cuts. To find an upper bound 𝐶𝑈 , we run SBL-PEC.
In addition to TIME and GAP, we record PRE-CUTS: the number of cost-cover cuts added to the first
linear program of the root node of the branch & cut tree before the solver is started due to the initial
upper bound 𝐶𝑈 . We found PRE-CUTS to be a more informative metric than total number of cost-cover
cuts because the latter can be affected by factors such as the number of times an upper bound is found
during the solving process. From Table 3 and Table 4, we conclude:

• DPCC adds more PRE-CUTS than SPCC. Across all quotas on LAQ dataset, DPCC adds at least 300
more PRE-CUTS than SPCC. On TSPLIB for 𝛼 = 0.05 and 𝛼 = 0.10 respectively, DPCC adds
61 and 23 more PRE-CUTS than SPCC, resulting in DPCC finding 5 more and 3 more optimal
solutions than SPCC respectively. This is empirical evidence of Proposition 4.

• On LAQ, DPCC finds the optimal solution three times faster than SPCC when𝑄 ≤ 4000. Furthermore,
the GAP of DPCC is three times less than SPCC when 𝑄 = 5000. Both DPCC and SPCC find 17
out of 20 optimal solutions.

• Few PRE-CUTS are added when 𝛼 = 0.25, 0.50, 0.75. The result is less than 90 second TIME
difference between DPCC and SPCC for 𝛼 = 0.25, 0.50, 0.75. Few PRE-CUTS are added because
larger 𝛼 means collecting more prize, which will generally incur a greater cost, thus increasing
the initial upper bound 𝐶⋆

𝑈 at the root of the branch & bound tree. For all least-cost vertex-disjoint
paths 𝒟1,𝒟2 from 𝑣1 to 𝑡 ∈ 𝑉 (𝐺), if 𝑐(𝐸(𝒟1)) + 𝑐(𝐸(𝒟2)) < 𝐶⋆

𝑈 , then zero DPCC cuts will be
added because the condition in (11) is never satisfied. A similar argument can be made for SPCC.

Table 3
Evaluation of our branch & cut algorithm using disjoint-paths vs shortest-path cost-cover inequalities on the
London air quality dataset for five different quotas. There are four instances for each quota.

Disjoint-paths cost-cover cuts Shortest-path cost-cover cuts

Quota PRE-CUTS TIME (s) GAP OPT PRE-CUTS TIME (s) GAP OPT

1000 8260 26.8 0.000 4 7952 70.9 0.000 4
2000 8207 28.6 0.000 4 7840 104.3 0.000 4
3000 7968 95.9 0.000 4 7401 3157.8 0.000 4
4000 7406 1413.0 0.000 4 6788 3976.2 0.000 4
5000 6654 10 870.6 0.042 1 5967 10 981.1 0.151 1

Table 4
Evaluation of our branch & cut algorithm using disjoint-paths vs shortest-path cost-cover inequalities on the
TSPLIB dataset for five different values of 𝛼. Each row corresponds to 135 instances.

Disjoint-paths cost-cover cuts Shortest-path cost-cover cuts

𝛼 PRE-CUTS TIME (s) GAP OPT PRE-CUTS TIME (s) GAP OPT

0.05 192 1922.4 0.046 120 131 2513.6 0.062 115
0.10 59 4993.9 0.349 92 37 5216.5 0.359 89
0.25 2 9031.0 0.769 54 1 8990.1 0.738 56
0.50 0 9272.2 0.827 51 0 9363.8 0.862 50
0.75 0 8531.1 0.669 61 0 8457.2 0.652 61

6. Conclusion

To summarise, we have designed algorithms for the Prize-collecting Travelling Salesperson Problem on
sparse graphs with non-metric cost functions. Suurballe’s heuristic found optimal or close-to-optimal
solutions on the London Air Quality dataset and proved to be a good starting solution for PEC on the
TSPLIB dataset. Our combined SBL-PEC heuristic found a solution with less cost than Extension &
Collapse [19] on every instance across both datasets. We derived a disjoint-paths cost-cover (DPCC)
cut that tightens the lower bound, then proved the size of the set of solutions defined by the DPCC
inequality is at most the size of the set of solutions defined by the SPCC inequality. On the London
Air Quality dataset, our DPCC branch & cut algorithm finds optimal solutions three times faster than
SPCC for quotas 1km to 4km, whilst the GAP is three times less when the quota is 5km. On the TSPLIB
dataset with non-metric costs, DPCC solves more instances to optimality than SPCC.

Our methods can be applied to other family members of TSPs with Profits [5, 16] and other related
routing problems [30, 31]. One example is the Orienteering Problem (OP): maximise the total prize of a
tour starting and ending at the root vertex such that the total cost is at most an upper bound 𝑍 ∈ N. If
the least cost of two vertex-disjoint paths between vertices 𝑖, 𝑗 is greater than 𝑍 , then 𝑖 and 𝑗 cannot
both be in a feasible solution to OP. Therefore, the DPCC inequality for Pc-TSP can be re-written as a
valid inequality for OP which is stronger than the SPCC inequality (by Proposition 4).

Future work on the sparse, non-metric Prize-collecting Travelling Salesperson Problem could exploit
the rich problem structure offered by our motivating example of running routes that minimise air
pollution: dynamic algorithms that optimise a route as air pollution changes over time; multi-objective
algorithms that optimise over multiple pollutants; and stochastic optimisation algorithms that consider
the uncertainty in predictions from the air quality model.

Acknowledgments

PO and TD acknowledge support from a UKRI Turing AI Acceleration Fellowship [EP/V02678X/1]
and a Turing Impact Award from the Alan Turing Institute. PO also acknowledges support from the

Department of Computer Science Studentship of the University of Warwick. MSR acknowledges support
from UKRI EPSRC Research Grant [EP/V044621/1]. Batch Computing facilities were provided by the
Department of Computer Science of the University of Warwick. The authors would like to thank
Oliver Hamelijnck for providing air quality forecasts of London for the experiments. For the purpose of
open access, the authors have applied a Creative Commons Attribution (CC-BY) license to any Author
Accepted Manuscript version arising from this submission

References

[1] A. Hottung, K. Tierney, Neural large neighborhood search for the capacitated vehicle routing
problem, in: ECAI 2020, IOS Press, 2020, pp. 443–450.

[2] B. Nebel, J. Renz, A fixed-parameter tractable algorithm for spatio-temporal calendar management,
in: Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI’09,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2009, p. 879–884.

[3] X. Pan, Y. Jin, Y. Ding, M. Feng, L. Zhao, L. Song, J. Bian, H-tsp: Hierarchically solving the
large-scale traveling salesman problem, in: Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, 2023, pp. 9345–9353.

[4] Z. Zhang, H. He, Z. Luo, H. Qin, S. Guo, An efficient forest-based tabu search algorithm for the
split-delivery vehicle routing problem, in: Proceedings of the AAAI Conference on Artificial
Intelligence, volume 29, 2015.

[5] D. Feillet, P. Dejax, M. Gendreau, Traveling salesman problems with profits, Transportation
Science 39 (2005) 188–205.

[6] E. Balas, The prize collecting traveling salesman problem, Networks 19 (1989) 621–636.
[7] M. Fischetti, P. Toth, An additive approach for the optimal solution of the prize collecting traveling

salesman problem, Vehicle routing: Methods and studies 231 (1988) 319–343.
[8] B. Awerbuch, Y. Azar, A. Blum, S. Vempala, Improved approximation guarantees for minimum-

weight k-trees and prize-collecting salesmen, in: Proceedings of the Twenty-seventh Annual ACM
Symposium on Theory of Computing, STOC ’95, ACM, New York, NY, USA, 1995, pp. 277–283.

[9] L. V. Giles, M. S. Koehle, The health effects of exercising in air pollution, Sports Medicine 44 (2014)
223–249.

[10] S. Vardoulakis, P. Kassomenos, Sources and factors affecting pm10 levels in two european cities:
Implications for local air quality management, Atmospheric Environment 42 (2008) 3949 – 3963.
Fifth International Conference on Urban Air Quality.

[11] O. Hamelijnck, T. Damoulas, K. Wang, M. Girolami, Multi-resolution multi-task gaussian processes,
in: H. Wallach, H. Larochelle, A. Beygelzimer, F. dÁlché-Buc, E. Fox, R. Garnett (Eds.), Advances
in Neural Information Processing Systems, volume 32, 2019, pp. 14025–14035.

[12] E. Balas, The prize collecting traveling salesman problem: II. Polyhedral results, Networks 25
(1995) 199–216.

[13] E. Balas, The traveling salesman problem and its variations, volume 1, Springer US, Boston, MA,
2007, pp. 663–695.

[14] J.-F. Bérubé, M. Gendreau, J.-Y. Potvin, A branch-and-cut algorithm for the undirected prize
collecting traveling salesman problem, Networks 54 (2009) 56–67.

[15] G. Pantuza, M. C. de Souza, Formulations and a lagrangian relaxation approach for the prize
collecting traveling salesman problem, International Transactions in Operational Research 29
(2022) 729–759.

[16] M. Fischetti, J. J. S. González, P. Toth, Solving the orienteering problem through branch-and-cut,
INFORMS Journal on Computing 10 (1998) 133–148.

[17] O. Pedro, R. Saldanha, R. Camargo, A tabu search approach for the prize collecting traveling
salesman problem, Electronic Notes in Discrete Mathematics 41 (2013) 261–268.

[18] A. A. Chaves, L. A. N. Lorena, Hybrid metaheuristic for the prize collecting travelling salesman

problem, in: European Conference on Evolutionary Computation in Combinatorial Optimization,
Springer, 2008, pp. 123–134.

[19] M. Dell’Amico, F. Maffioli, A. Sciomachen, A lagrangian heuristic for the prize collectingtravelling
salesman problem, Annals of Operations Research 81 (1998) 289–306.

[20] M. Gendreau, A. Hertz, G. Laporte, New insertion and postoptimization procedures for the
traveling salesman problem, Operations Research 40 (1992) 1086–1094.

[21] G. Reinelt, TSPLIB—A Traveling Salesman Problem Library, INFORMS Journal on Computing 3
(1991) 376–384.

[22] J. W. Suurballe, R. Tarjan, A quick method for finding shortest pairs of disjoint paths, Networks
14 (1984) 325–336.

[23] E. W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959) 269–271.
[24] T. Achterberg, T. Berthold, T. Koch, K. Wolter, Constraint integer programming: A new approach

to integrate cp and mip, in: L. Perron, M. A. Trick (Eds.), Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008, pp. 6–20.

[25] T. Achterberg, Scip: solving constraint integer programs, Mathematical Programming Computation
1 (2009) 1–41.

[26] K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van Doornmalen, L. Eifler,
O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald, C. Graczyk, K. Halbig, A. Hoen, C. Hojny, R. van der
Hulst, T. Koch, M. Lübbecke, S. J. Maher, F. Matter, E. Mühmer, B. Müller, M. E. Pfetsch, D. Rehfeldt,
S. Schlein, F. Schlösser, F. Serrano, Y. Shinano, B. Sofranac, M. Turner, S. Vigerske, F. Wegscheider,
P. Wellner, D. Weninger, J. Witzig, The SCIP Optimization Suite 8.0, ZIB-Report 21-41, Zuse
Institute Berlin, 2021.

[27] CPLEX, IBM ILOG, V12. 1: User’s manual for CPLEX, International Business Machines Corporation
46 (2009) 157.

[28] A. B. Yoo, M. A. Jette, M. Grondona, Slurm: Simple linux utility for resource management, in:
D. Feitelson, L. Rudolph, U. Schwiegelshohn (Eds.), Job Scheduling Strategies for Parallel Processing,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 44–60.

[29] D. Applegate, R. Bixby, V. Chvátal, W. Cook, Finding cuts in the TSP (A preliminary report),
Technical Report 95-05, DIMACS, 1995.

[30] D. Sinha Roy, A. Masone, B. Golden, E. Wasil, Modeling and solving the intersection inspection
rural postman problem, INFORMS Journal on Computing 33 (2021) 1245–1257.

[31] D. Sinha Roy, C. Defryn, B. Golden, E. Wasil, Data-driven optimization and statistical modeling
to improve meter reading for utility companies, Computers & Operations Research 145 (2022)
105844.

[32] M. Dell’Amico, F. Maffioli, P. Värbrand, On prize-collecting tours and the asymmetric travelling
salesman problem, International Transactions in Operational Research 2 (1995) 297–308.

[33] J. Hopcroft, R. Tarjan, Algorithm 447: efficient algorithms for graph manipulation, Communications
of the ACM 16 (1973) 372–378.

[34] A. V. Goldberg, R. E. Tarjan, A new approach to the maximum-flow problem, Journal of the ACM
(JACM) 35 (1988) 921–940.

[35] T. Achterberg, T. Koch, A. Martin, Branching rules revisited, Operations Research Letters 33 (2005)
42–54.

Table 5
Summary of the assumptions made by the literature on Pc-TSP. Assumptions include is the cost function
metric? Is the graph complete? Is the returned solution a simple cycle? Is the graph directed?

Authors Method Metric? Complete? Simple cycle? Directed?

Our work Heuristics + branch & cut no no yes no
Awerbuch et al. [8] Approximation algorithm yes no no no
Balas [6, 12, 13] Polyhedral results no yes yes yes
Bérubé et al. [14] Branch & cut yes yes yes no
Chaves and Lorena [18] Clustering meta-heuristic no yes yes no
Dell’Amico et al. [19, 32] Extension & Collapse yes yes yes no
Fischetti and Toth [16] Lower bounds no yes yes yes
Pantuza and de Souza [15] Lagrangian relaxation yes yes yes yes
Pedro et al. [17] Meta-heuristic no yes yes yes

Appendix A Complete graph constructions

As is shown in Table 5, the literature on Pc-TSP assumes the input graph is complete and/or the cost
function is metric. Given a sparse graph 𝐺 with a non-metric cost function, one may ask why we cannot
simply construct a complete graph 𝐺′ with metric costs, then run an algorithm from the literature on
𝐺′? We give two such graph constructions in this section and explain why they do not work.

Least-cost path construction The first construction is as follows: for every pair of vertices 𝑢, 𝑣 in 𝐺,
find the least-cost path 𝑃 from 𝑢 to 𝑣 in 𝐺, then set the cost of a new edge from 𝑢 to 𝑣 in 𝐺′ equal to the
cost of 𝑃 . The problem with such a construction is that a feasible solution to the constructed instance
on 𝐺′ is not guaranteed to be a simple cycle in the original input graph 𝐺. Moreover, this construction
may not be desirable when 𝐺 is sparse because the number of edges in 𝐺′ will be far greater than 𝐺,
resulting in more variables to optimise when calling algorithms such as linear programs.

Dummy edge construction The second construction takes as input a sparse graph 𝐺 and constructs
a complete graph 𝐺′ as follows. Add a vertices in 𝐺 to 𝐺′ and add all edges in 𝐺 to 𝐺′ with the
same cost. Now, for all pairs of vertices 𝑢, 𝑣 in 𝐺 such that (𝑢, 𝑣) is not an edge in 𝐺, we add a
dummy edge (𝑢, 𝑣) to 𝐺′ and set the cost of (𝑢, 𝑣) to be some very large constant 𝐶 (e.g. we could take
𝐶 =

∑︀
(𝑖,𝑗)∈𝐸(𝐺) 𝑐(𝑖, 𝑗). The constructed graph 𝐺′ is clearly a complete graph and the optimal solution

to any instance does not contain dummy edges. However, the major problem with this construction is
that naively running a heuristic from the literature on 𝐺′ may return a solution that contains a dummy
edge, that is, the returned solution is not guaranteed to be feasible for the original instance. Moreover,
the cost function is still non-metric, which naturally rules out any algorithm from the literature which
requires a metric cost function. Finally, the dummy edge construction also increases the computational
complexity of algorithms from the literature because the number of edges has been increased from
𝒪(𝑛) to 𝒪(𝑛2).

Appendix B Proofs of Section 2

For completeness, we give proofs of Lemma 1 and a proof of correctness for the preprocessing algorithm.

B.1 Number of metric edges

Lemma 1. Let 𝐺 be a connected, undirected graph and 𝑐 : 𝐸(𝐺)→ N0 be a cost function on the edges.
The number of metric edges in 𝐸(𝐺) is at least 𝑛− 1.

Proof. Let 𝐹 ⊆ 𝐸(𝐺) be the set of metric edges in 𝐺. Let the sub-graph 𝐺𝐹 be defined by vertices
𝑉 (𝐺𝐹) = 𝑉 (𝐺) and edges 𝐸(𝐺𝐹) = 𝐹 . To show |𝐹 | ≥ 𝑛 − 1, it is sufficient to show that 𝐺𝐹

is connected. By contradiction, suppose 𝐺𝐹 is not connected and let 𝐺1, . . . , 𝐺𝑘 be the connected
components of 𝐺𝐹 . Since 𝐺 is connected, there exists a least-cost path 𝒫𝑢𝑣 = (𝑢, . . . , 𝑥, 𝑦, . . . , 𝑣) in
𝐺 from 𝑢 ∈ 𝑉 (𝐺𝑖) to 𝑣 ∈ 𝑉 (𝐺𝑗) such that 𝑖 ̸= 𝑗 visits an edge (𝑥, 𝑦) where 𝑥 ∈ 𝑉 (𝐺𝑎), 𝑦 ∈ 𝑉 (𝐺𝑏)
and 𝑎 ̸= 𝑏. Note that every sub-path of 𝒫𝑢𝑣 is itself a least-cost path. Then edge (𝑥, 𝑦) defines a
least-cost path from 𝑥 to 𝑦, so (𝑥, 𝑦) is a metric edge and should have been in 𝐹 . This implies every
two adjacent edges in 𝒫𝑢𝑣 are in the same connected component of 𝐺𝐹 , so all 𝑢, 𝑣 ∈ 𝑉 (𝐺𝐹) are in the
same connected component and 𝐺𝐹 is connected.

B.2 Biconnected component pre-processing algorithm

A biconnected component of 𝐺 is a maximal sub-graph such that the removal of a single vertex (and all
edges incident on that vertex) does not disconnect the sub-graph. The biconnected components of an
undirected graph can be found in time𝒪(𝑛+𝑚) [33]. Let 𝐵 = {𝐶1, . . . , 𝐶𝑏} be the set of biconnected
components of 𝐺. Our pre-processing algorithm removes a vertex 𝑟 from the input graph if there does
not exist a 𝑗 ∈ {1, . . . , 𝑏} such that 𝑟 and 𝑣1 are both in 𝐶𝑗 . To see why our pre-processing algorithm is
correct, note that every vertex 𝑢𝑖 in a feasible tour 𝒯 must be biconnected to 𝑣1 (otherwise there would
exist some vertex in the tour which must be visited more than once). A trivial example of a vertex not
in the same biconnected component as 𝑣1 is a leaf vertex with degree one.

We give a complete proof of correctness for our pre-processing algorithm. Given a subset of vertices
𝑆 ⊆ 𝑉 (𝐺), the induced sub-graph 𝐺[𝑆] contains all vertices in 𝑆 and contains all edges in 𝐸(𝐺) that
have both endpoints in 𝑆. Formally, a biconnected component of 𝐺 is a maximal sub-graph such that
the removal of a single vertex (and all edges incident on that vertex) does not disconnect the sub-
graph. We define 𝐶1, . . . , 𝐶𝑏 ⊆ 𝑉 (𝐺) to be vertex sets such that 𝐺[𝐶1], . . . , 𝐺[𝐶𝑏] are the biconnected
components of 𝐺.

Lemma 5. Let 𝐺[𝐶1], 𝐺[𝐶2] be any two maximal biconnected components of 𝐺. Then |𝐶1 ∩ 𝐶2| ≤ 1.

Proof. Suppose that |𝐶1 ∩ 𝐶2| > 1 and let 𝐶 ′ = 𝐶1 ∪ 𝐶2. Our claim is that 𝐺[𝐶 ′] is a biconnected
component. To prove this claim, take two vertices 𝑖, 𝑗 ∈ 𝐶 ′. If 𝑖, 𝑗 ∈ 𝐶1 (or if 𝑖, 𝑗 ∈ 𝐶2), then 𝑖 and
𝑗 are already in the same biconnected component. If 𝑖 ∈ 𝐶1∖(𝐶1 ∩ 𝐶2) and 𝑗 ∈ 𝐶2∖(𝐶1 ∩ 𝐶2), then
remove a vertex 𝑘1 ∈ 𝐶1 ∩ 𝐶2. This removal does not disconnect the sub-graph 𝐺[𝐶 ′] because there
exists a path from 𝑖 to 𝑗 via some distinct 𝑘2 ∈ 𝐶1 ∩ 𝐶2 where 𝑘2 ̸= 𝑘1 (since |𝐶1 ∩ 𝐶2| > 1). 𝐺[𝐶 ′] is
therefore a larger biconnected than 𝐺[𝐶1] and 𝐺[𝐶2], so 𝐺[𝐶1], 𝐺[𝐶2] are not maximal biconnected
component components.

Lemma 6. Assume 𝐺 is connected. Let 𝐺[𝐶1], 𝐺[𝐶2] be any two maximal biconnected components of 𝐺
such that 𝐶1 ̸= 𝐶2. Let tour 𝒯 be a feasible solution to an instance of Pc-TSP. If 𝒯 visits at least two vertices
excluding 𝑣1 in 𝐶1, i.e. |(𝑉 (𝒯) ∩ 𝐶1)∖{𝑣1}| ≥ 2, then 𝒯 does not visit any vertices in 𝐶2∖(𝐶1 ∩ 𝐶2).

Proof. From Lemma 5, we have two cases: (i) 𝐶1 ∩𝐶2 contains exactly one vertex 𝑟; or (ii) 𝐶1 ∩𝐶2 = ∅.
For case (i), if 𝒯 visits a vertex 𝑗 ∈ 𝐶2∖(𝐶1 ∩𝐶2), then 𝒯 must visit vertex 𝑟 twice (once on the way to
𝑗, and once on the way back) which is contradiction to the definition of a tour. For case (ii), there exists
exactly one biconnected component5 𝐺[𝐶3] such that 𝐶3 ̸= 𝐶1 ̸= 𝐶2 and 𝐶1 ∩ 𝐶3 ̸= ∅. Any tour that
visits a vertex in 𝐶2 must also visit a vertex in 𝑗 ∈ 𝐶3∖(𝐶1 ∩ 𝐶3). By the same logic as case (i), no tour
can visit 𝑗, therefore no tour can visit 𝐶2.

Applying Lemma 6 to every biconnected component that does not contain the root leads to our main
pre-processing result:

Corollary 7. Let 𝑅 =
⋃︀{𝐶𝑘|𝑣1 ∈ 𝐶𝑘, 𝑘 ∈ {1, . . . , 𝑏}} be the set of vertices in the same biconnected

component as the root vertex. There does not exist a feasible solution 𝒯 that visits a vertex in 𝑉 (𝐺)∖𝑅.
Vertices in 𝑉 (𝐺)∖𝑅 (and their adjacent edges) can safely be removed from the input graph 𝐺 without
removing any feasible solutions.
5We can construct an undirected graph 𝐻 by representing each biconnected components as a vertex in 𝐻 . Note 𝐻 will be
acyclic. If 𝐺 is connected, then 𝐻 is a connected tree.

Appendix C Proofs of Section 3

Proposition 2. Assume 𝒫 ≠ 𝒩𝒫 . Let 𝐺 be any undirected graph. No polynomial-time algorithm 𝐴 is
guaranteed to find a feasible solution (if one exists) for every instance of Pc-TSP.

Proof. By contradiction, assume 𝐴 is guaranteed to find a feasible solution for every instance of Pc-TSP
in polynomial-time. Let ℐ = (𝐺, 𝑐, 𝑝,𝑄, 𝑣1) be an instance such that 𝑄 = 𝑝(𝑉 (𝐺)). The only feasible
solutions to ℐ are Hamiltonian cycles of 𝐺. Then 𝐴 is guaranteed to find a Hamiltonian cycle in
polynomial-time for any simple, undirected graph 𝐺. Since finding a Hamiltonian cycle 𝒩𝒫-hard, this
implies 𝒫 = 𝒩𝒫 , a contradiction to our assumption.

Appendix D Proofs of Section 4.2

Lemma 3. In an undirected graph, the minimum cost of a tour 𝒯 containing 𝑖 and 𝑗 is equal to the
least-cost pair of vertex-disjoint paths 𝒟1,𝒟2 between 𝑖 and 𝑗.

Proof. Split 𝒯 into two vertex-disjoint paths 𝒟′
1,𝒟′

2 starting at 𝑖 and ending at 𝑗. If 𝑐(𝐸(𝒟′
1)) +

𝑐(𝐸(𝒟′
2)) < 𝑐(𝐸(𝒟1)) + 𝑐(𝐸(𝒟2)), then 𝒟1,𝒟2 are not the least-cost vertex-disjoint paths between 𝑖

and 𝑗. If 𝑐(𝐸(𝒟′
1)) + 𝑐(𝐸(𝒟′

2)) > 𝑐(𝐸(𝒟1)) + 𝑐(𝐸(𝒟2)), then there exists a tour 𝒯 ′ containing 𝑖 and
𝑗 with less cost than 𝒯 , because we can construct 𝒯 ′ by reversing the order of 𝒟2 and appending it
to 𝒟1. So 𝒟′

1,𝒟′
2 are least-cost vertex-disjoint paths and the minimum cost of the tour is 𝑐(𝐸(𝒯)) =

𝑐(𝐸(𝒟′
1)) + 𝑐(𝐸(𝒟′

2)) = 𝑐(𝐸(𝒟1)) + 𝑐(𝐸(𝒟2)).

Appendix E Details of branch & cut algorithm

E.1 Separation Algorithms

In a branch & cut algorithm, a separation algorithm identifies violated inequalities. We give polynomial-
time separation algorithms for the sub-tour elimination constraints (SECs).

E.1.1 Sub-tour Elimination Constraints

Definition 5. The support graph 𝐺⋆ of the solution (𝑥⋆, 𝑦⋆) to linear program 𝐿𝑃 is defined by the
vertex set 𝑉 (𝐺⋆) = {𝑖 ∈ 𝑉 (𝐺) : 𝑦⋆𝑖 > 0} and edge set 𝐸(𝐺⋆) = {(𝑖, 𝑗) ∈ 𝐸(𝐺) : 𝑥⋆𝑖𝑗 > 0}.

Constraints (7) are the SECs. Since there are an exponential number of SECs, we add violated SECs as
a cutting plane. Given the support graph 𝐺⋆ of a linear program 𝐿𝑃 , we run the separation algorithm
on 𝐺⋆ to check if a set 𝑆 ⊆ 𝑉 (𝐺⋆) violates (7). First, suppose the support graph is not connected.
Let 𝐺⋆

1, . . . , 𝐺
⋆
𝑘 be the 𝑘 connected sub-graphs of 𝐺⋆. For every sub-graph 𝐺⋆

𝑙 where 𝑣1 /∈ 𝑉 (𝐺⋆
𝑙)

and 𝑙 ∈ {1, . . . , 𝑘}, apply (7) to each vertex 𝑖 ∈ 𝑉 (𝐺⋆
𝑙) by setting 𝑆 = 𝑉 (𝐺⋆

𝑙). Now suppose the
support graph is connected. Treat the value of the edge variables 𝑥 as the capacity of an edge. For
each 𝑖 ∈ 𝑉 (𝐺⋆), find a minimum capacity (𝑣1, 𝑖)-cut in 𝐺⋆ with a min-cut max-flow algorithm in
𝒪(|𝑉 (𝐺⋆)|3) [34]. Let (𝑆𝑖, 𝑉 (𝐺⋆)∖𝑆𝑖) be the minimum capacity cut, where 𝑣1 ∈ 𝑉 (𝐺⋆)∖𝑆𝑖. If Eq. (7)
is violated for 𝑆𝑖, add it to the set of constraints in the linear program.

E.2 Variable Branching

When a linear program 𝐿𝑃 at node 𝑁 in the branch & bound tree is solved, we may choose to branch
on a variable 𝑥𝑖𝑗 that is fractional in 𝐿𝑃 . Branching on a variable means creating two new child nodes
𝑁+, 𝑁− of 𝑁 with linear programs 𝐿𝑃+ and 𝐿𝑃− respectively. 𝐿𝑃+ is defined by inheriting all
variables and constraints in 𝐿𝑃 and then rounding variable 𝑥𝑖𝑗 up to the nearest integer (𝑥𝑖𝑗 = 1).
𝐿𝑃− is defined similarly by rounding 𝑥𝑖𝑗 down (𝑥𝑖𝑗 = 0). Choosing which fractional variable to branch
on has been the subject of extensive research [35]. In their branch & cut algorithm for Pc-TSP, Bérubé
et al. [14] branch on the most fractional variable. However, more advanced branching strategies can

Run SBL-PEC
heuristic

NoYes

No

YesTailing off?

Add SEC cuts

Branch

Create LP at root
node

Add cost-cover cuts
w.r.t SBL-PEC tour

Node selection

Solve LP

Is solution the
smallest upper

bound?

Add cost-cover cuts

Yes

No

Is solution
integer and
feasible?

Figure 3: A flow diagram of our branch & cut algorithm. The dashed square box denotes operations that are
repeated within a single node of the branch & bound tree.

Table 6
Statistics for the LAQ dataset. The original input graph is 𝐺 and the pre-processed graph is 𝐻 . The
column 𝑝(𝑉 (𝐻))

𝑝(𝑉 (𝐺)) denotes the total prize of 𝐻 as a ratio of 𝐺. Column 𝐷(𝐺) is defined by (12).

Graph name |𝑉 (𝐺)| |𝐸(𝐺)| 𝑝(𝑉 (𝐺)) |𝑉 (𝐻)| |𝐸(𝐻)| 𝑝(𝑉 (𝐻)) 𝑝(𝑉 (𝐻))
𝑝(𝑉 (𝐺)) 𝜁(𝐺, 𝑐) 𝐷(𝐺)

laqbb 14,530 16,791 595,242 11,575 13,786 501,059 0.842 0.911 0.021
laqid 11,373 12,541 481,922 6,939 8,046 342,243 0.710 0.857 0.041
laqkx 13,431 15,427 579,233 10,396 12,328 474,423 0.819 0.909 0.022
laqws 6,770 7,519 365,947 4,223 4,912 256,929 0.702 0.899 0.036

yield smaller branch & bound trees, reducing the total computational time for solving a problem to
optimality. Our branch & cut algorithm uses strong branching [29] at the top node of the branch &
bound tree, then uses reliability branching [35] on all subsequent nodes in the tree.

We make one final addition to our branch & cut algorithm to prevent the phenomena of tailing
off. This is where adding cuts to consecutive relaxed linear programs from the same node does little
to improve the lower bound. To test if a node in the branch & bound tree is tailing off, we check
if GAP𝑡 − GAP𝑡−𝜏 ≤ 𝛾 where GAP𝑡 is the GAP between the lower bound and upper bound after 𝑡
iterations of adding cuts, 𝜏 ∈ N is a parameter controlling the maximum number of iterations cuts can
be added to a linear program without showing improvement, and 𝛾 ∈ R is the LP gap improvement
threshold. If we find a node is tailing off, we branch on a variable, instead of waiting for more cuts to be
added. After some experimentation (see Section J), we set 𝜏 = 5 and 𝛾 = 0.001. To summarise, if after

Table 7
Statistics for the TSPLIB dataset aggregated by the sparsity level 𝜅 and the cost function (EUC or MST).

The original input graph is 𝐺 and the pre-processed graph is 𝐻 . The column AVG
(︁

𝑝(𝑉 (𝐻))
𝑝(𝑉 (𝐺))

)︁
denotes

the average total prize of 𝐻 as a ratio of 𝐺. The column AVG(𝐷(𝐺)) is an average of 𝐷(𝐺) as defined
by (12).

EUC MST

𝜅 AVG(𝐷(𝐺)) AVG
(︁

𝑝(𝑉 (𝐻))
𝑝(𝑉 (𝐺))

)︁
AVG(𝐷(𝐺)) AVG

(︁
𝑝(𝑉 (𝐻))
𝑝(𝑉 (𝐺))

)︁
5 0.062 0.912 0.138 0.912
10 0.050 0.993 0.140 0.993
15 0.044 0.999 0.164 0.999
20 0.041 1.000 0.189 1.000
25 0.037 1.000 0.184 1.000

five iterations of adding cuts to a linear program the GAP has improved by at most 0.001, we branch on
a variable instead of adding more cuts. Figure 3 shows a visualisation of our branch & cut algorithm.

Appendix F Datasets and preprocessing

Before outlining the complementary experiments, we give more details about the LAQ and TSPLIB
datasets. Moreover, for the TSPLIB dataset, we introduce a metric cost function called EUC. It is defined
simply as the Euclidean distance between the coordinates of two vertices 𝑖, 𝑗 ∈ 𝑉 (𝐺) in the TSPLIB
dataset: 𝑐(𝑖, 𝑗) = ||𝑖− 𝑗||2.

Table 6 shows a summary of instances in the LAQ dataset and Table 7 shows a summary of instances
in the TSPLIB dataset. The table includes a graph property 𝐷 : 𝐺→ [0, 1] which is defined to be the
largest prize of a pair of least-cost vertex-disjoint paths 𝒟1,𝒟2 from 𝑣1 to 𝑡 ∈ 𝑉 (𝐺) as a ratio of the
total prize of the graph:

𝐷(𝐺) =
1

𝑝(𝑉 (𝐺))
max

𝑡∈𝑉 (𝐺)
{𝑝(𝑉 (𝒟1)) + 𝑝(𝑉 (𝒟2))− 𝑝(𝑡)} (12)

F.1 Pre-processing

The biconnected component pre-processing algorithm described in Section B.2 removes more vertices
(and more prize) from the LAQ input graph than on the TSPLIB input graph because the LAQ graphs
are more sparse than TSPLIB. From Table 7, we see that on TSPLIB the average prize removed from the
graph during pre-processing increases as the graph becomes more sparse (𝜅 decreases). Even when
𝜅 = 5 on TSPLIB, less than 10% of the prize is removed from the input graph during pre-processing.
In contrast on the LAQ dataset in Table 6, our pre-processing algorithm removes more than 25% of
the prize on laqid and laqws, and removes 15.8% and 18.1% on laqbb and laqkx. To summarise, our
pre-processing algorithm is effective at reducing the input size when the graph is sparse.

Appendix G Additional heuristic results

Section G shows heuristics results in the same manor as the TSPLIB results of Table 2 but with the extra
cost function EUC and with two addtional heuristics called BFS-PEC and SBL-EC. After generating an
initial tour with BFS, the BFS-PEC heuristic increases the prize with the path extension heuristic, then
decreases the cost with the path collapse heuristic. After generating an initial tour with SBL, SBL-EC
increases the prize with Extension, then decreasing the cost with Collapse [19].

Both BFS-PEC and SBL-PEC find feasible solutions to every instance of TSPLIB when 𝜅 ≥ 10 and
𝛼 ≤ 0.50. BFS-PEC and SBL-PEC do not find feasible solutions to every instance when the graph is

Table 8
The GAP and FEAS for five heuristics on the TSPLIB dataset across both the EUC and MST cost functions
and across different sparsity levels 𝜅. Each row corresponds to 135 instances. GAP is calculated using
the largest lower bound (LB) and so the GAP is an overestimate for each entry.

BFS-EC BFS-PEC SBL-EC SBL SBL-PEC

Cost 𝜅 GAP FEAS GAP FEAS GAP FEAS GAP FEAS GAP FEAS

EUC 5 0.506 11 1.399 42 0.675 124 0.041 18 0.580 125
10 2.465 79 2.536 93 0.750 135 0.162 15 0.735 135
15 3.358 117 3.372 121 0.803 135 0.193 12 0.797 135
20 3.036 106 3.594 120 0.906 135 0.242 11 0.799 135
25 3.170 107 2.919 121 0.816 135 0.460 8 0.776 135

MST 5 2.555 8 3.325 62 1.642 122 0.097 46 1.075 123
10 5.430 71 6.109 97 1.790 135 0.124 48 1.333 135
15 8.217 122 6.617 125 1.863 135 0.153 51 1.421 135
20 6.619 120 6.141 133 1.800 135 0.183 51 1.469 135
25 8.125 126 5.623 133 1.825 135 0.239 54 1.466 135

Table 9
For a given 𝛼, each row reports the number of feasible solutions (FEAS) found by a heuristic on the TSPLIB
dataset across both the EUC and MST cost functions. The largest possible value of FEAS is 270.

𝛼 BFS-EC BFS-PEC SBL SBL-PEC

0.05 204 270 181 270
0.10 194 270 107 270
0.25 187 270 26 270
0.50 160 270 0 270
0.75 122 246 0 248

sparse (𝜅 = 5) and the quota is large (𝛼 = 0.75): BFS-PEC finds 246 out of 270 feasible solutions and
SBL-PEC finds 248 out of 270 across both cost functions. The GAP of SBL-PEC is smaller than BFS-PEC
across every 𝜅 for both cost functions, but the difference in the GAP between the two algorithms is
more noticeable on the MST cost function. When the cost function is non-metric (MST), the difference
in the GAP between BFS-PEC and SBL-PEC is greater than 0.33 for all 𝜅; and when the cost function is
metric (EUC), the difference in the GAP between BFS-PEC and SBL-PEC is less than 0.11 for all 𝜅. This
suggests initialising PEC with SBL is particularly effective on non-metric cost functions.

The GAP of SBL-EC is greater than BFS-PEC and SBL-PEC across both cost functions and all values
of 𝜅. Moreover, SBL-EC finds less feasible solutions than BFS-PEC and SBL-PEC. Compared to BFS-EC,
SBL-EC finds more feasible solutions, suggesting it is better to initialise EC with SBL than BFS: this
is the same conclusion we came to for initialising PEC. The GAP of SBL-EC is generally greater than
BFS-EC on the EUC cost function, but less than BFS-EC on MST cost function (however these figures
are not directly comparable because SBL-EC finds more feasible solutions).

Whilst SBL is highly effective on the LAQ dataset, Table 9 shows SBL is less likely to find a feasible
solution as 𝛼 increases on the TSBLIB dataset. This is unsurprising because a pair of least-cost vertex-
disjoint paths between 𝑣1 and 𝑡 ∈ 𝑉 (𝐺) is unlikely to collect a lot of prize, thus if 𝛼 is large then SBL
will not collect enough prize to meet the quota. More specifically, if 𝐷(𝐺) > 𝛼 then SBL will not find a
feasible solution. For example, Table 7 shows that AVG(𝐷(𝐺)) = 0.062 on the EUC cost function when
𝜅 = 5, so if 𝛼 = 0.75 then SBL will not find a feasible solution. One reason SBL is highly effective on
the LAQ dataset is that 𝛼 is small: for example, a quota of 5000 on the laqbb graph gives 𝛼 ≈ 0.01 which
is less than 𝐷(𝐺) = 0.021. To conclude our analysis of heuristics, SBL is effective as a standalone
heuristic on the LAQ dataset, whilst SBL-PEC outperforms all other algorithms on the TSPLIB dataset
across two cost functions and varying levels of sparsity.

Table 10
Evaluation of our branch & cut algorithm using no cost-cover (NoCC) inequalities on the London air quality
dataset for five different quotas. There are four instances for each quota.

No cost-cover cuts

Quota PRE-CUTS TIME (s) GAP OPT

1000 0 3782.8 0.544 3
2000 0 6594.3 0.348 3
3000 0 12 576.0 0.336 1
4000 0 14 432.3 0.269 0
5000 0 14 434.4 0.325 0

Table 11
Evaluation of our branch & cut algorithm using no cost-cover (NoCC) inequalities on the TSPLIB dataset for five
different values of 𝛼 and two different cost functions. Each row corresponds to 135 instances.

No cost-cover cuts

Cost 𝛼 PRE-CUTS TIME (s) GAP OPT

EUC 0.05 0 2566.8 0.071 118
0.10 0 3883.4 0.133 104
0.25 0 4606.2 0.149 101
0.50 0 5393.6 0.123 95
0.75 0 5032.7 0.088 94

MST 0.05 0 3449.7 0.080 111
0.10 0 5604.6 0.373 87
0.25 0 9048.4 0.742 54
0.50 0 9285.3 0.859 51
0.75 0 8507.0 0.649 60

Table 12
Evaluation of our branch & cut algorithm using disjoint-paths vs shortest-path cost-cover inequalities
on the TSPLIB dataset with EUC cost function for five different values of 𝛼. Each row corresponds to
135 instances.

Disjoint-paths cost-cover cuts Shortest-path cost-cover cuts

𝛼 PRE-CUTS TIME (s) GAP OPT PRE-CUTS TIME (s) GAP OPT

0.05 57 2239.8 0.075 120 50 2238.9 0.084 120
0.10 9 3846.8 0.139 103 8 3782.4 0.141 104
0.25 0 4630.1 0.130 101 0 4715.3 0.137 101
0.50 0 5464.1 0.125 93 0 5265.7 0.113 96
0.75 0 5167.2 0.056 96 0 4940.3 0.091 96

Appendix H Additional cost-cover results

In this section, we conduct two additional experiments. Firstly, we ask: does running a branch & cut
algorithm with cost-cover inequalities actually make a different? We find an affirmative answer by
running our branch & cut algorithm with no cost-cover (NoCC) inequalities and compare it against
DPCC and SCPCC. Second, we analyse DPCC and SPCC on a metric cost function (EUC).

H.1 No cost cover inequalities

Table 10 shows that, on the LAQ dataset, adding no cost cover inequalities (NoCC) vastly underperforms
DPCC and SPCC from Table 3. NoCC finds just 7 out of 20 optimal solutions, whereas DPCC and SPCC
both find 17 out of 20. We conclude that adding cost cover inequalities is highly advantageous on the

LAQ dataset.
On TSPLIB with MST costs when 𝛼 = 0.05 and 𝛼 = 0.10, NoCC adds zero cost-cover cuts, so DPCC

finds 9 more and 5 more optimal solutions than NoCC for 𝛼 = 0.05 and 𝛼 = 0.10 respectively. The
TIME of DPCC is less than NoCC when 𝛼 = 0.05 and 𝛼 = 0.10: DPCC terminates 1,530 and 610
seconds faster respectively than NoCC.

However, when 𝛼 ∈ {0.25, 0.50, 0.75} for MST costs, the number of PRE-CUTS is small or zero for
both DPCC and SPCC. Indeed when DPCC and SPCC add zero cost-cover cuts in total, then DPCC,
SPCC, and NoCC are nearly equivalent branch & cut algorithms (minus the added computational time
needed to run the cost-cover separation algorithm). This results in less than 90 second TIME difference
between DPCC, SPCC, and NoCC for all 𝛼 ∈ {0.25, 0.50, 0.75}. Small variations in the GAP and OPT
further support that there is little difference on MST costs between DPCC, SPCC, and NoCC when
𝛼 ∈ {0.25, 0.50, 0.75}: SPCC has the smallest GAP by 0.004 when 𝛼 = 0.25; DPCC has the smallest
GAP by 0.032 when 𝛼 = 0.50; and NoCC has the smallest GAP by 0.003 when 𝛼 = 0.75.

H.2 Metric costs

The EUC cost function on the TSPLIB dataset, as defined in Section F, is a metric cost function (see
Definition 3). The cost-cover results for EUC on TSPLIB are shown in Table 12. For each 𝛼, less
PRE-CUTS are added by DPCC on EUC compared to when the cost function is MST. For example, when
𝛼 = 0.05, the number of PRE-CUTS added by DPCC is 56.7 on EUC compared to 192 on MST. Moreover,
for all values of 𝛼, the difference in the number of PRE-CUTS between DPCC and SPCC on the EUC
cost function is smaller than on the difference MST cost function. As a result, conclude that for the
EUC cost function, small variations across in the TIME, GAP and OPT show there is little difference
between DPCC, SPCC, and NoCC.

Appendix I Varying 𝛼 on LAQ dataset

Our results show a discrepancy between the LAQ and TSPLIB datasets. For completeness, we run the
same experiments as Section 5 on the LAQ dataset for both our heuristics and our branch & cut algorithm,
but instead of setting the quota to be 𝑄 ∈ {1000, 2000, 3000, 4000, 5000}, we set the quota 𝑄 =
𝛼 · 𝑝(𝑉 (𝐺)) in the same manor as our experiments on TSPLIB with 𝛼 ∈ {0.05, 0.10, 0.25, 0.50, 0.75}.
The experimental results for heuristics are summarised in Table 13 and for different cost-cover cuts in
Table 14.

First, as we noted in Section F.1, our biconnected component pre-processing algorithm described in
Section 2 removes more vertices (and more prize) from the LAQ input graph than on the TSPLIB input
graph because the LAQ graphs are more sparse. From Table 7, we see that on TSPLIB the average prize
removed from the graph during pre-processing is less than 10% across all sparsity levels 𝜅. Contrast
this to the LAQ dataset in Table 6, where on two LAQ instances (laqid and laqws), our pre-processing
algorithm removes more than 25% of the prize in the original input graph. This means when 𝛼 = 0.75
for laqid and laqws, the total prize of the pre-processed graph is not greater than the quota, which
trivially shows the original instance does not have a feasible solution. On laqbb and laqkx, the pre-
processing algorithm removes 15.8% and 18.1% of the total prize of the original graph. Whilst in theory
the two graphs contains sufficient prize for a quota set with 𝛼 = 0.75, the bottom row of Table 14 shows
our branch & cut algorithm quickly determines there are no feasible solutions to the two instances.
Moreover, when 𝛼 = 0.50, neither our heuristics nor our branch & cut algorithm found a feasible
solution to any of the four instances. The branch & cut algorithm was able to obtain a lower bound, but
not able to prove infeasibility within the four hour time limit, and it remains open whether there exists
a feasible solution to these four instances when 𝛼 = 0.50.

Focusing on 𝛼 ∈ {0.05, 0.10, 0.25}, Table 13 shows that both BFS-EC and SBL heuristics find no
feasible solutions to these LAQ instances. Contrast this to TSPLIB (Table 9) where BFS-EC finds 204,
194, 187 feasible solutions for 𝛼 = 0.05, 0.10, 0.25 respectively. Similarly SBL finds 181, 107, 26 feasible
solutions on TSPLIB for 𝛼 = 0.05, 0.10, 0.25 respectively. As noted in Section 5.1, EC on LAQ cannot

Table 13
A comparison of heuristic performance on the LAQ dataset for each 𝛼 ∈ {0.05, 0.10, 0.25, 0.50, 0.75}.
We measure the GAP and FEAS across all four instances (laqbb, laqid, laqkx, laqws). “nan” means “not a
number” where we could not calculate a GAP due to the heuristic finding zero feasible solutions to the
four instances.

BFS-EC BFS-PEC SBL SBL-PEC

𝛼 GAP FEAS GAP FEAS GAP FEAS GAP FEAS

0.05 nan 0 2.286 4 nan 0 5.697 4
0.10 nan 0 1.601 4 nan 0 2.141 4
0.25 nan 0 0.609 3 nan 0 0.392 4
0.50 nan 0 nan 0 nan 0 nan 0
0.75 nan 0 nan 0 nan 0 nan 0

Table 14
Evaluation of our branch & cut algorithm with DPCC and SPCC on the London air quality dataset for
𝛼 ∈ {0.05, 0.10, 0.25, 0.50, 0.75}. There are four instances for each quota. “nan” means “not a number”
and represents an upper bound (UB) that could not be calculated for all four instances for a given 𝛼 (the
corresponding GAP also cannot be calculated). “inf” means “infeasible” and represents instances for
which no feasible solution exists for all four instances.

Disjoint-paths cost-cover cuts Shortest-path cost-cover cuts

𝛼 GAP LB UB FEAS GAP LB UB FEAS

0.05 0.292 4.30×105 5.54×105 4 0.287 4.32×105 5.54×105 4
0.10 0.222 9.18×105 1.12×106 4 0.221 9.18×105 1.12×106 4
0.25 0.159 2.47×106 2.88×106 4 0.159 2.47×106 2.88×106 4
0.50 nan 5.51×106 nan 0 nan 5.54×106 nan 0
0.75 inf inf inf 0 inf inf inf 0

increase the prize of the initial tour generated by BFS due to the sparsity of the graph, resulting in
zero feasible solutions to 𝛼 ∈ {0.05, 0.10, 0.25}. To explain why SBL does not find feasible solutions
for 𝛼 ∈ {0.05, 0.10, 0.25}, notice that for all instances in the LAQ experiment where 𝛼 ≥ 0.05, the
function 𝐷(𝐺) (see (12) for definition) is less than 𝛼: this implies there does not exist a pair of least-cost
vertex-disjoint paths𝒟1,𝒟2 from 𝑣1 to any vertex 𝑡 ∈ 𝑉 (𝐺) such that 𝑝(𝑉 (𝒟1))+𝑝(𝑉 (𝒟2))−𝑝(𝑡) ≥ 𝑄.
Consequently in Table 13, SBL reports finding zero feasible solutions. Similarly in Table 14 the branch
& cut algorithm adds zero DPCC cuts and zero SPCC cuts for all values of 𝛼.

Appendix J Branching strategy & tailing off

In this section, we justify our Strong at Tree Top (STT) branching strategy from Section E.2 against
Relative Pseudo Cost (RPC) branching with empirical experiments across both datasets. We also include
an analysis of how the parameters for preventing tailing off were chosen. To isolate the effects of the
branching strategy, we do not add any cost-cover cuts and SCIP features are turned off. Our brief
experiments with most fractional branching for Pc-TSP as proposed by [14] yielded very large branch &
bound trees at great computational cost and are excluded from this analysis. For the STT strategy, we set
a depth limit of Δ ∈ {1, 5, 10}. RPC has no depth limit (marked as N.A.). For both branching strategies,
we set the tailing off threshold to be 𝛾 ∈ {0.001, 0.01} and the maximum number of iterations to be
𝜏 ∈ {5, 10,∞}. This corresponds to 24 different parameter configurations. We run each parameter
configuration on a subset of both datasets. On LAQ, we test each graph (laqbb, laqid, laqkx, laqws) for
quotas 𝑄 ∈ {1000, 2000, 3000}. For the TSPLIB dataset, we restrict the instances to four graphs (att48,
st70, eil76, rat195) with 𝜅 ∈ {10, 20} and 𝛼 ∈ {0.25, 0.75}.

Table 15 and Table 16 summarise the results for each parameter configuration for the LAQ and

Table 15
Branching strategy and tailing off results on the LAQ dataset. The bold row in both tables highlights
the parameter configuration for STT as chosen for our branch & cut algorithm in Section E.2.

Δ Strategy 𝛾 𝜏 TIME GAP OPT FEAS NODES SEC

N.A. RPC 0.001 ∞ 6976.32 0.34 8 15 225.60 664.60
5 7864.46 0.37 7 15 224.20 673.39
10 6969.96 0.35 8 15 206.53 1035.79

0.010 ∞ 7148.73 0.35 9 15 180.07 4157.94
5 7866.65 0.36 7 15 234.33 352.34
10 7325.07 0.35 9 15 228.87 1331.51

1 STT 0.001 ∞ 6537.38 0.30 10 15 2288.00 3951.24
5 5837.82 0.30 10 15 1756.67 777.40
10 5968.30 0.31 10 15 2002.53 1690.16

0.010 ∞ 7044.70 0.31 9 15 1756.13 1272.70
5 6447.92 0.30 10 15 1469.93 1053.50
10 7346.26 0.29 10 15 2278.87 3187.37

5 STT 0.001 ∞ 6505.01 0.30 9 15 2285.27 1065.81
5 6879.43 0.30 10 15 2209.20 4084.65
10 6682.06 0.30 10 15 2514.60 6930.11

0.010 ∞ 5929.53 0.31 10 15 1916.07 1713.18
5 5996.21 0.30 10 15 2096.87 869.78
10 6220.06 0.30 10 15 1682.47 882.89

10 STT 0.001 ∞ 6161.93 0.33 10 15 1543.93 673.33
5 6825.21 0.34 9 15 1252.47 583.90
10 6552.19 0.35 9 15 1295.20 743.81

0.010 ∞ 5835.25 0.34 10 15 1398.40 622.91
5 6302.87 0.32 10 15 1198.33 587.86
10 6094.66 0.34 10 15 2583.47 451.92

TSPLIB datasets respectively. The bold row in both tables highlights the parameter configuration for
STT where Δ = 1, 𝛾 = 0.001 and 𝜏 = 5 as chosen for our branch & cut algorithm in Section E.2.
Across both datasets, the tables show the GAP of STT is less than RPC. On TSPLIB, STT is strongest
when Δ ∈ {1, 5}. On LAQ, the smallest GAP is 0.04 when STT uses Δ = 1, 𝛾 = 0.001 and 𝜏 = 5. Since
STT with Δ = 1, 𝛾 = 0.001 and 𝜏 = 5 also performs well on TSPLIB, we chose this as our branching
and tailing off parameter configuration. STT with Δ = 5, 𝛾 = 0.001 and 𝜏 = 10 also has a small GAP
of 0.05 on LAQ, but the NODES, SEC and TIME on TSPLIB were larger.

Table 16
Branching strategy and tailing off results on the TSPLIB dataset. The bold row in both tables highlights
the parameter configuration for STT as chosen for our branch & cut algorithm in Section E.2.

Δ Strategy 𝛾 𝜏 TIME GAP OPT FEAS NODES SEC

N.A. RPC 0.001 ∞ 2678.02 0.13 41 48 605.81 109.29
5 2740.72 0.11 41 48 780.85 79.16
10 2691.51 0.11 41 48 562.29 85.60

0.010 ∞ 2824.69 0.10 40 48 716.02 107.75
5 2631.68 0.11 41 48 607.96 72.49
10 2675.12 0.12 41 48 601.38 86.88

1 STT 0.001 ∞ 2036.82 0.08 42 47 3370.28 53.36
5 1967.12 0.04 43 48 4173.98 53.19
10 1935.05 0.08 43 48 3520.27 56.41

0.010 ∞ 1839.44 0.10 42 47 2773.40 53.18
5 2312.07 0.09 42 48 3996.08 49.19
10 2165.22 0.09 43 48 3617.98 60.11

5 STT 0.001 ∞ 2043.23 0.08 43 48 4211.52 47.72
5 1923.07 0.07 43 48 3594.90 46.65
10 2104.86 0.05 43 48 4278.96 47.23

0.010 ∞ 2171.19 0.10 43 48 3844.83 48.92
5 2278.60 0.09 42 48 3671.90 42.75
10 2171.48 0.08 43 48 3867.56 47.05

10 STT 0.001 ∞ 2342.35 0.08 42 48 2798.96 58.84
5 2429.36 0.09 42 48 2993.62 42.78
10 2511.78 0.08 42 48 3373.04 58.43

0.010 ∞ 2474.73 0.08 42 48 2372.92 60.15
5 2345.09 0.08 42 48 2752.56 47.58
10 2266.14 0.07 43 48 2716.92 56.13

	1 Introduction
	2 Problem definition
	3 Heuristics
	3.1 Suurballe's Heuristic
	3.2 Path Extension
	3.3 Path Collapse
	3.4 Suurballe's Path Extension & Collapse (SBL-PEC)

	4 Branch & Cut Algorithm
	4.1 Integer Programming Formulation
	4.2 Cost-cover Inequalities

	5 Computational experiments
	5.1 Empirical Heuristic Results
	5.2 Cost-cover Inequalities

	6 Conclusion
	A Complete graph constructions
	B Proofs of sec:problem-definition
	B.1 Number of metric edges
	B.2 Biconnected component pre-processing algorithm

	C Proofs of sec:heuristics
	D Proofs of sec:cost-cover
	E Details of branch & cut algorithm
	E.1 Separation Algorithms
	E.1.1 Sub-tour Elimination Constraints

	E.2 Variable Branching

	F Datasets and preprocessing
	F.1 Pre-processing

	G Additional heuristic results
	H Additional cost-cover results
	H.1 No cost cover inequalities
	H.2 Metric costs

	I Varying α on LAQ dataset
	J Branching strategy & tailing off

