
Integrating the Mechanisms of Critiquing-based
Recommendation into Constraint Solving
Pavle Knežević1, Alexander Felfernig1 and Sebastian Lubos1

1Institute of Software Technology, Graz University of Technology, Inffeldgasse 16b, 8010 Graz, Austria

Abstract
Critiquing-based recommender systems enhance decision-making by guiding users through a product space to
find items that meet their preferences. By incorporating feedback in the form of critiques that constrain feature
value spaces, these systems refine user profiles to provide more accurate and tailored recommendations. This
paper presents a novel approach that integrates critiquing into constraint solving, offering particular benefits
for configurable products where finding optimal configurations is complex. We conducted a preliminary offline
evaluation of unit-critiquing in the prototype system to gain initial insights into the approach’s efficiency and
flexibility. The results suggest that this method has the potential to efficiently generate relevant recommendations,
highlighting its promise for addressing challenges in configurable product recommendations.

Keywords
Critiquing-based recommender system, Constraint solving, Decision-making

1. Introduction

In recent decades, critiquing has gained broad recognition as an effective approach in preference-
based search and recommender systems. This method allows users to express preferences and provide
feedback on various product aspects without specifying exact values [1, 2]. A notable advantage is its
capacity to address the cold-start problem prevalent in methods such as collaborative filtering, which
depend on detailed user data and past interactions [3]. By using a navigation-based approach, these
systems help users explore the item space by presenting a reference product for acceptance or feedback
via critiques [3, 4]. Based on this feedback, the system refines its recommendations in subsequent
cycles, aiding users in making better decisions. Primarily, critiquing was developed for Case-Based
Reasoning (CBR) recommendation approaches, which rely on a database (or case-base) where items are
modeled as cases, and recommendations are produced by retrieving cases most similar to a user’s query
or profile [5, 6]. Although, this approach has proven useful to generate relevant recommendations, the
need for improvements remains, particularly in the system’s ability to dynamically adapt the critiquing
process in response to the user’s evolving preferences [3].

Constraint solving approaches enable the compact representation of complex problems [7]. These
methods are widely employed in constraint-based recommender systems, which suggest products and
services based on a given set of constraints [8]. Such systems include a recommender knowledge base,
defined by various sets of variables and constraints, which are the core components of a constraint
satisfaction problem (CSP) [5, 9]. Solving a CSP involves finding specific assignments for the variables
that satisfy all given constraints. Those approaches have been successfully applied in complex domains
such as automotive and financial services [8].

In this paper, we present a recommendation approach that applies critiquing while interacting with a
constraint solver from the Choco [10] library. The core idea is that user-specified critiques can be directly
translated into constraints, which are then processed by the solver. This approach leverages constraint
solving technology to identify valid configurations meeting user requirements [11]. Additionally, our
approach incorporates a search heuristic that considers user preferences which can positively impact

IntRS’24: Joint Workshop on Interfaces and Human Decision Making for Recommender Systems, October 18, 2024, Bari (Italy)
$ pavle.knezevic@student.tugraz.at (P. Knežević); alexander.felfernig@ist.tugraz.at (A. Felfernig); slubos@ist.tugraz.at
(S. Lubos)
� 0000-0003-0108-3146 (A. Felfernig); 0000-0002-5024-3786 (S. Lubos)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:pavle.knezevic@student.tugraz.at
mailto:alexander.felfernig@ist.tugraz.at
mailto:slubos@ist.tugraz.at
https://orcid.org/0000-0003-0108-3146
https://orcid.org/0000-0002-5024-3786
https://creativecommons.org/licenses/by/4.0/deed.en

Table 1
Variables of the set 𝑉PROD describing the properties of a tennis racket.

Variable Domain

name𝑝 text
brand𝑝 {Tecnifibre, ProKennex, Volkl, Dunlop, Babolat, Head, Prince, Wilson, Yonex}
weight𝑝 {247, . . . , 354}
balance𝑝 {312, . . . , 381}
headSize𝑝 {85, . . . , 120}

price𝑝 {60, . . . , 504}
beamWidth𝑝 {17, . . . , 29}

stiffness𝑝 {55, . . . , 75}
gripSize𝑝 {0, . . . , 5}

flexibility and efficiency. To validate this concept, we conducted a preliminary offline assessment of
unit-critiquing within a prototype system.

The remainder of this paper is organized as follows. In Section 2, we define the recommendation
task using an example from the domain of tennis rackets. Section 3 describes the components involved
in generating recommendations, along with their underlying principles. In Section 4, we present the
prototype system and its interaction model. Section 5 showcases the evaluation of our approach and its
results. In Section 6, we discuss the advantages of our approach. Finally, Section 7 concludes the paper
with a discussion of open research issues.

2. Working Example

For demonstration purposes, we present a critiquing-based recommendation scenario within the domain
of tennis rackets. Our approach, similar to constraint-based recommender systems, frames the task of
selecting products that meet user preferences and needs (referred to as the recommendation task) as a
CSP [5]. We define the recommendation task as a tuple (𝑉PROD, 𝑉C, 𝐶KB, 𝐶F, 𝐶PROD, 𝐶C), where each
component is defined as follows:

• 𝑉PROD: a set of variables describing the properties of a tennis racket (see Table 1).
• 𝑉C: a set of variables describing the user profile (see Table 2).
• 𝐶KB: a set of restricting constraints that systematically limit the possible instantiations of variables.

For example, extremely narrow rackets require higher stiffness (see Table 3).
• 𝐶F: a set of filter constraints based on the user profile. For example, a user with a history of arm

injuries requires a racket with lower stiffness to help prevent discomfort or injury (see Table 4).
• 𝐶PROD: a single constraint in disjunctive normal form (DNF) that defines the product catalog by

specifying elementary restrictions on the possible values of variables in 𝑉PROD (see Formula 1).
Here, 𝑃 is the set of all products, and 𝑣𝑖 represents the value of product 𝑖 with respect to the
variable 𝑣.

𝐶PROD =
⋁︁
𝑖∈𝑃

(︁ ⋀︁
𝑣∈𝑉𝑃𝑅𝑂𝐷

𝑣𝑖

)︁
(1)

• 𝐶C: a set of constraints specified by the user during interaction with the system to reflect the
user’s critiques. For example, this set might include a constraint like brand𝑝 ̸= Dunlop, excluding
Dunlop from the variable brand𝑝. Initially empty, this set is updated as critiques are applied (see
Section 3.2).

Given this definition, a solution to a recommendation task is an assignment of the variables in 𝑉PROD
and 𝑉C, such that none of the constraints in 𝐶KB, 𝐶F, 𝐶PROD, and 𝐶C are violated [5].

Table 2
Variables of the set 𝑉C describing the the user profile.

Variable Domain

gender𝑐 {male, female}
experience𝑐 {beginner, experienced}
knowledge𝑐 {basic, advanced}

playingProfile𝑐 {baseline, serve-volley, all-court, counterpuncher, defensive}
armInjury𝑐 {yes, no}

Table 3
Restricting constraints of the set 𝐶KB.

Constraint

weight𝑝 ≤ 290 ∨ headSize𝑝 ≥ 104 =⇒ beamWidth𝑝 ≥ 22

weight𝑝 ≥ 321 =⇒ beamWidth𝑝 ≤ 25

beamWidth𝑝 ≤ 19 =⇒ stiffness𝑝 ≥ 65

Table 4
Filter constraints of the set 𝐶F based on the user profile.

Constraint

experience𝑐 = beginner =⇒ weight𝑝 ≤ 300 ∧ headSize𝑝 ≥ 100

gender𝑐 = female =⇒ weight𝑝 ≤ 305

armInjury𝑐 = yes =⇒ stiffness𝑝 ≤ 63

3. Generating Recommendations

In this section, we present the key components involved in generating recommendations and describe
their core principles.

3.1. Modelling Preferences

Acquiring and modeling user preferences is essential in critiquing-based recommender systems. One
common approach is to translate preferences directly into constraints to guide the search process [3].
However, this method restricts the search space, potentially excluding products that might better suit
user needs. An alternative, outlined in [1, 3], uses Multi-Attribute Utility Theory (MAUT) to model
preferences, accounting for conflicting values and scoring items based on their overall alignment with
user preferences. Another method, mentioned in [3], employs a probabilistic model, which captures
uncertainty and variability in user desires.

In our approach, we employ MAUT to model user preferences. Specifically, each tennis racket
variable is assigned an importance and preference value, as well as a preference metric (see Section 3.4),
initially set to nearer-is-better. These preferences are dynamically updated through user interactions
(i.e., critiquing, see Section 3.2), and play a key role in adjusting the search heuristic (see Section 3.3)
and determining the best recommendation when multiple or no solutions meet the user criteria (see
Sections 3.4 and 3.5). Additionally, the selection and presentation of attribute-oriented system-suggested
critiques are influenced by current user preferences (see Section 3.2). These concepts address the
adaptive needs of the critiquing process, making the system more flexible and responsive to changes in
user preferences.

3.2. Supporting Critiquing

To support critiquing, a hybrid system incorporating both user-initiated and system-suggested critiquing
is proposed in [3]. User-initiated critiquing allows users to generate their own self-motivated critiques,
while system-suggested critiquing involves presenting users with proposals to refine the current recom-
mendation. As argued in [3, 12], suggested compound critiques can enhance system performance and
should align with users’ interests. Generally, critiques can be categorized as either unit or compound
forms [4]. Unit critiques enable users to comment on individual item attributes (e.g., heavier), whereas
compound critiques combine multiple unit critiques to address several features simultaneously.

In our working example, user-initiated critiquing is facilitated by the navigation panel described
in [3], which allows users to choose whether to keep or improve a specific variable. As a result, within
a single cycle, the user can submit either a unit or compound critique, with the system deciding on any
variables not mentioned in the critique. In contrast, system-suggested critiques are generated based on
the user’s playing profile and racket attributes. These critiques are suggested as follows:

• Profile-based Critiques (PBC): these critiques address various performance preferences and are
suggested based on the user’s playing profile. Each profile, as defined by the knowledge base (KB),
is associated with several PBCs, each linked to specific constraints. For instance, the serve-volley
profile is paired with an "Increased Serve Power" PBC, which, when selected, applies increased
weight𝑝 and stiffness𝑝 constraints. A PBC is recommended if the constraint solver identifies a
solution that satisfies its constraints. The process begins with the user’s playing profile and
follows a similarity-based order, evaluating each profile and its PBCs in sequence until either
three PBCs are identified or all profiles have been examined. Additionally, similarity is measured
using the Euclidean distance between default profile attributes and their respective importance.

• Attribute-oriented Critiques (AOC): these critiques are suggested using the approach described
in [1]. Rackets are ranked by utility (see Section 3.4), and up to four distinct compound critiques
(AOCs) are selected from this ranking, each highlighting the differences from the current rec-
ommendation. The order of attributes in each AOC is determined by the current importance of
the variables (see Section 3.1), with more important variables and their differences listed before
those of lower importance. This approach helps users efficiently understand and evaluate the key
factors and differences while still providing an overview of other relevant attributes.

After the user selects or specifies critiques, these are translated into corresponding constraints. The
system then performs the following steps on all variables in the set 𝑉PROD (see Section 2):

1. Update Importance: the system updates the importance of variables depending on whether they
are constrained in the current cycle or not (modified from [1]). The update is performed as follows:

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑣) = 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑣) *

{︃
𝜆, if 𝑣 is critiqued
1
𝜆 , otherwise

, (2)

where v is a variable and 𝜆 represents an importance factor, set to 1.5 in our working example.
2. Store Preference Metrics: the system stores the preference metrics (see Section 3.4) for variables

based on critiques’ impact on their domains. For example, if the user specifies a critique such as
"Heavier", the metric more-is-better is assigned to the variable representing the racket’s weight.
For each variable not constrained in the current cycle, the default metric nearer-is-better is applied.

Furthermore, as demonstrated in [13], monitoring successive critiques can significantly enhance recom-
mendation efficiency. Consequently, we maintain a model that includes critiques selected by the user in
previous cycles. Before adding a new critique (constraint) to the 𝐶𝐶 set (see Section 2), we first remove
any existing critiques from the model that are inconsistent with the new one.

3.3. Finding Valid Configurations

To find valid configurations, we deploy a custom search heuristic over the search space. As noted in [8],
identifying valuable products and services within a set of constraints is often necessary in systems
operating within domains where millions of potential recommendations are available. Consequently,
we limit the number of solutions provided by the constraint solver to 15. The following describes the
custom variable and value-order selectors used by the system:

• Variable-order Selector: this selector prioritizes variables that are deemed more important at
a given moment. For instance, if 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(weight𝑝) > 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(stiffness𝑝), then the
variable weight𝑝 will be selected before stiffness𝑝. This approach ensures that the instantiation of
less important variables does not affect those with higher importance. Additionally, if constraints
are relaxed (see Section 3.5), the affected variables will be given priority for selection.

• Value-order Selector : this selector considers the current preference metric of the corresponding
variable (see Section 3.1). It assigns either the IntDomainClosest or IntDomainMedian value-order
heuristic from the Choco [10] constraint solver to each variable. These selectors choose the
value from the variable domain that is closest to the specified target value or the median value,
respectively. If the preference metric is nearer-is-better or equal-is-better, the IntDomainClosest
heuristic is used, with the target value set to the current recommendation’s variable value or the
new critique, respectively. Conversely, if the metric is more-is-better, less-is-better, or in-range-is-
better, the IntDomainMedian heuristic is employed.

3.4. Calculating Utility of a Recommendation

When multiple solutions are possible, ranking the items becomes necessary. The method presented
in [8] determines the degree of similarity between user requirements and recommendations. We adapt
these metrics to meet our needs (see Formulae 4–8). The utility of a recommendation 𝑟 is calculated
as a weighted sum over the variables describing racket properties 𝑉 , based on user preferences (see
Formula 3). Specifically, 𝑢(𝑖, 𝑟𝑖) denotes the utility of recommendation 𝑟 with respect to variable 𝑖,
𝑝𝑟𝑒𝑓𝑣𝑎𝑙(𝑖) is the preferred value for 𝑖 stored in the user’s preference model, and 𝑟𝑎𝑛𝑔𝑒(𝑖) corresponds
to the constrained range of variable 𝑖. For example, if a critique indicates that the optimal racket’s
stiffness is mid-stiff, then the constrained range for stiffness𝑝 is from 64 to 67. The terms 𝑚𝑖𝑛𝑣𝑎𝑙 and
𝑚𝑎𝑥𝑣𝑎𝑙 represent the minimum and maximum values for variable 𝑖 according to the KB definitions.
Additionally, the metrics are categorized as follows: more-is-better (MIB; e.g., a heavier racket is better),
less-is-better (LIB; e.g., lower stiffness is better), nearer-is-better (NIB; e.g., stiffness closer to 65 is better),
equal-is-better (EIB; e.g., a grip size of 2 is optimal), and in-range-is-better (IRIB; e.g., medium stiffness is
preferable). The choice of metric for each variable depends on its assigned metric (see Section 3.1).

In our working example, calculating utility is crucial for ranking attribute-oriented critiques (see
Section 3.2) and valid configurations. In the latter case, the item with the highest utility is recommended,
and the preferred values of variables in the user’s preference model are updated to match this item.

𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝑟) =
∑︁
𝑖∈𝑉

𝑢(𝑖, 𝑟𝑖) * 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑖) (3)

𝑀𝐼𝐵 : 𝑢(𝑖, 𝑟𝑖) =
𝑟𝑖 −𝑚𝑖𝑛𝑣𝑎𝑙(𝑖)

𝑚𝑎𝑥𝑣𝑎𝑙(𝑖)−𝑚𝑖𝑛𝑣𝑎𝑙(𝑖)
(4)

𝐿𝐼𝐵 : 𝑢(𝑖, 𝑟𝑖) =
𝑚𝑎𝑥𝑣𝑎𝑙(𝑖)− 𝑟𝑖

𝑚𝑎𝑥𝑣𝑎𝑙(𝑖)−𝑚𝑖𝑛𝑣𝑎𝑙(𝑖)
(5)

𝑁𝐼𝐵 : 𝑢(𝑖, 𝑟𝑖) = 1− |𝑝𝑟𝑒𝑓𝑣𝑎𝑙(𝑖)− 𝑟𝑖|
𝑚𝑎𝑥𝑣𝑎𝑙(𝑖)−𝑚𝑖𝑛𝑣𝑎𝑙(𝑖)

(6)

𝐸𝐼𝐵 : 𝑢(𝑖, 𝑟𝑖) =

{︃
1, 𝑖𝑓 𝑟𝑖 = 𝑝𝑟𝑒𝑓𝑣𝑎𝑙(𝑖)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7)

𝐼𝑅𝐼𝐵 : 𝑢(𝑖, 𝑟𝑖) =

{︃
1, 𝑖𝑓 𝑟𝑖 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑖)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(8)

3.5. Dealing with Unsatisfiable Critiques

In scenarios where no item satisfies the critiques (constraints), displaying a message such as “no product
found” is highly undesirable [5]. Additionally, research indicates that users cannot always be relied
upon to provide consistent feedback throughout a recommendation session [13].

To address this issue, we employ a linear-time constraint relaxation technique based on the data
structure described in [5]. The core idea is to associate each constraint with a list of items that satisfy it.
This approach makes it straightforward to identify which constraints need to be relaxed to include a
specific product in the result set. We define the Optimal Relaxation Set (ORS) as follows:

• The ORS is a set of relaxations, where each relaxation is a set of constraints that includes the
smallest number of new constraints (introduced in the current cycle) and is minimal in size.

For example, if product 𝑖 requires the relaxation of two new constraints and one prior constraint
(specified in previous cycles), while product 𝑘 requires the relaxation of one new constraint and two
prior constraints, then product 𝑘 will be included in the ORS. After generating the ORS, we rank its
repair alternatives using the relaxation utility formula (see Formula 9) presented in [14]. Here, S denotes
the set of constraints to be relaxed, and 𝑖𝑚𝑝(𝑐) represents the importance of a constraint c from the
user’s perspective, corresponding to the importance of the constrained variable.

𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛_𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝑆) =
1∑︀

𝑐∈𝑆 𝑖𝑚𝑝(𝑐)
(9)

If the top-ranked relaxation includes only prior constraints, it is automatically applied by removing the
diagnosed user critiques (constraints). This method is known as hard relaxation (see [8]). Conversely, if
the top-ranked relaxation includes at least one new constraint, the user is presented with a relaxation
proposal that includes only the new constraints and omits prior ones. This approach helps prevent
the user from being overwhelmed by potentially irrelevant information due to changes in preferences.
Additionally, relaxation proposals are suggested based on the ranking. If the user does not accept any
proposal, no constraints will be removed from the model. Conversely, accepting a proposal implies the
application of hard relaxation to the constraints within the corresponding constraint set.

After performing the relaxation, the preference metric for variables affected by the relaxation (i.e.,
those involved in relaxing constraints) is set to nearer-is-better. These variables are then prioritized by
the Variable-order Selector when identifying the next solution (see Section 3.3). Once this process is
complete, the prioritization of these variables is removed.

4. Prototype System

The prototype follows the typical interaction model between users and a critiquing-based recommender
system, as described in [3]. Initially, users are asked to provide their profile information, including
gender, knowledge of tennis rackets, experience, playing profile, and any history of arm injuries. For
users with basic knowledge of tennis rackets, the system requests additional details on the racket
features they are familiar with.

After specifying their profile information, users can enter preferred values for known racket features
(or all features, in the case of advanced knowledge), along with their importance on a scale from 0 to 5,
where 0 indicates the lowest importance and 5 the highest. The system stores these preferences and
calculates the importance as follows: 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) = 1

𝑛 + 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 * 𝜇, where
𝑛 represents the number of racket variables, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 is the chosen importance value, and
𝜇 is a constant factor, set to 0.2. If users do not specify a preference for a particular variable, its default
value and importance are assigned based on their profile.

Figure 1: Critiquing interface of the tennis racket recommender. Profile-based and attribute-oriented critiques
are displayed to the right of the user’s profile information and the recommended racket. User-initiated critiquing
support and the rationale behind the selected recommendation are provided below these elements.

The system then identifies and presents the best-fitting recommendation to the user (see Figure 1). The
user can either accept this recommendation or provide critiques. Each profile-based and attribute-oriented
critique can be selected to apply the corresponding critique. For users with advanced knowledge of tennis
rackets, the suggestion of profile-based critiques is omitted. Additionally, attribute-oriented critiques
follow a simple presentation pattern [15] and include an "Explain" option for a detailed explanation of
the critique’s impact on the search space. Conversely, the navigation panel for user-initiated critiquing
allows users to manually specify critiques using the options from "Keep" and "Improve" components.
The "Improve" component for a specific racket attribute includes possible critiques to modify the
recommended product, such as "decrease", "increase", "Flexible", "Medium", and "Stiff" for racket stiffness.
For example, the user can choose to retain the current recommendation’s brand by selecting the "Keep"
option for the brand, while simultaneously constraining the stiffness by selecting the "Medium" option
(see Figure 1). For users with advanced knowledge, this panel includes all racket features, while for basic
users, it displays only features they identified as familiar, which can be modified using the "Change
shown features" option. By clicking on the "Find" option, the system applies the selected critiques from
the navigation panel. If no solutions meeting the new user criteria exist, the system presents relaxation
proposals (see Figure 2). The "Previous Proposal" and "Next Proposal" options allow the user to navigate
through a maximum of three proposals. The user can then either accept the proposal via the "Apply
Relaxation" option, or select "Continue Without Relaxation".

Additionally, users can access explanations of their profile through the "Explain My Profile" option
and receive details about racket features via the "Explain Features" option. These explanations facilitate
a deeper exploration of the item space. Furthermore, the system incorporates explanations for the
rationale behind the given recommendation or relaxation (see Figures 1 and 2), adhering to the criterion
of satisfaction described in [16]. Finally, the "History of Shown Rackets" option displays the last three
recommendations, their specifications, and an option to set them as the current recommendation again.

Figure 2: Relaxation proposal in the tennis racket recommender. The figure illustrates how constraints to be
relaxed are presented to the user, along with their corresponding explanations.

5. Evaluation and Results

In this evaluation, we compared our approach with the conventional CBR approach by examining the
performance of unit critiquing. For the evaluation, we used a custom dataset of 523 real-world rackets
obtained from online selling platforms. Each racket is described by 9 variables (see Section 2), and
all of these variables, except for the racket’s name, were subject to critique. We conducted an offline
experiment employing the leave-one-out approach described in [2]. At the start of each evaluation
session, a random racket is temporarily removed from the dataset and used as the target for critiquing.
Each session simulated a male, experienced user with a random playing profile, advanced knowledge of
tennis rackets, and no arm injuries, ensuring unrestricted target selection. Additionally, two random
variables are assigned preferred values matching those of the target, with importance randomly selected
on a scale from 0 to 5. Once these steps are completed and the initial recommendation is generated,
the target racket is reintroduced into the dataset. To simulate user critiques, a variable differing from
the target is randomly selected for critique, aiming to align the recommended racket with the target.
This critique is specified using one of the corresponding "Improve" options (see Section 4). For example,
if the selected variable is stiffness, and the recommended racket has a stiffness of 64 while the target
racket has 67, an "increase" option for stiffness is applied as a critique. This process continues until the
target racket is recommended, marking the end of a single evaluation session. Finally, we measured
performance based on the number of cycles required, conducting a total of 1000 sessions.

For generating recommendations, our approach follows the principles mentioned in previous sections.
Conversely, in the conventional CBR approach, all items in the product catalog CB are modeled as
product cases [6], which capture product details through predefined variables. When a user applies
a critique c𝑖 to a recommended item r, the goal is to find an item that satisfies c𝑖 and is maximally
similar to r [2, 6]. Specifically, items in CB that do not meet criteria of c𝑖 are filtered out, and the
next recommendation is selected from the remaining items based on their similarity with r. Similarity
is measured using the utility described in Section 3.4, where each variable is assigned a nearer-is-

better metric, except for the variable mentioned in c𝑖, which is excluded from the utility calculation.
Additionally, user preferences are modeled in the same way as in our approach, and the same user
interface of the prototype system is utilized.

The evaluation results show that the conventional approach needed an average of 8.04 critiquing
cycles to recommend the target item, whereas our approach required 5.18 cycles. These results highlight
the potential efficiency and flexibility of our approach.

6. Discussion

In summary, conceptualizing the recommendation task within a critiquing-based recommender system
as a CSP enables the effective utilization of constraint solving technology. Unlike conventional methods
that typically require exhaustive scanning of the entire case-base to identify optimal products, a CSP-
based approach narrows the solution space and employs a targeted search heuristic. This not only
mitigates issues related to poor runtime performance but also has the potential to enhance the system’s
ability to identify highly preferred configurations, as indicated by the preliminary evaluation conducted
in Section 5. This aligns well with the objective of aiding users in effective product configuration [5].
Additional key advantages include the flexibility provided by relaxation options and the diagnosis
inherent in constraint technology. These features facilitate the efficient handling of scenarios where
user requirements conflict with underlying constraints, as detailed in [5, 8].

7. Conclusions, Limitations and Future Work

This paper introduced a new approach to designing critiquing-based recommender systems by combining
the strengths of critiquing with constraint solving technologies, particularly relevant for assisting
users in configuring products. We demonstrated this approach within the context of a tennis racket
recommender system by representing the recommendation task as a constraint satisfaction problem
and detailing its key components for user support and recommendation generation. Additionally,
we conducted a preliminary offline experiment to evaluate the performance of unit-critiquing within
the prototype system. The results indicate that this approach is promising in terms of efficiency and
flexibility. However, a limitation of our evaluation strategy is the reliance on simulated users, which may
not fully reflect real-world scenarios. To address this, we plan to validate the approach in a real-world
study to obtain practical insights. Future work will also focus on integrating additional concepts, such
as optimizing performance. Finally, we plan to extend our approach by incorporating information from
successfully completed critiquing sessions to enhance the efficiency of the critiquing process [2].

References

[1] J. Zhang, P. Pu, A Comparative Study of Compound Critique Generation in Conversational
Recommender systems, in: V. P. Wade, H. Ashman, B. Smyth (Eds.), Adaptive Hypermedia and
Adaptive Web-Based Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 234–243.

[2] M. Mandl, A. Felfernig, Improving the Performance of Unit Critiquing, in: J. Masthoff, B. Mobasher,
M. C. Desmarais, R. Nkambou (Eds.), User Modeling, Adaptation, and Personalization, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 176–187.

[3] L. Chen, P. Pu, Critiquing-based recommenders: survey and emerging trends, User Modeling and
User-Adapted Interaction 22 (2012) 837–852. doi:10.1007/s11257-011-9108-6.

[4] M. Uta, A. Felfernig, V.-M. Le, T. N. T. Tran, D. Garber, S. Lubos, T. Burgstaller, Knowledge-
based recommender systems: overview and research directions, Frontiers in Big Data 7 (2024).
doi:10.3389/fdata.2024.1304439.

[5] A. Felfernig, G. Friedrich, D. Jannach, M. Zanker, Constraint-Based Recommender Systems,
Springer US, Boston, MA, 2015, pp. 161–190. doi:10.1007/978-1-4899-7637-6_5.

http://dx.doi.org/10.1007/s11257-011-9108-6
http://dx.doi.org/10.3389/fdata.2024.1304439
http://dx.doi.org/10.1007/978-1-4899-7637-6_5

[6] B. Smyth, Case-Based Recommendation, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp.
342–376. doi:10.1007/978-3-540-72079-9_11.

[7] M. Torrens, B. Faltings, P. Pu, Smartclients: Constraint Satisfaction as a Paradigm for Scaleable
Intelligent Information Systems, Constraints 7 (2002) 49–69. doi:10.1023/A:1017940426216.

[8] M. Atas, T. N. T. Tran, A. Felfernig, S. P. Erdeniz, R. Samer, M. Stettinger, Towards Similarity-
Aware Constraint-Based Recommendation, in: F. Wotawa, G. Friedrich, I. Pill, R. Koitz-Hristov,
M. Ali (Eds.), Advances and Trends in Artificial Intelligence. From Theory to Practice, Springer
International Publishing, Cham, 2019, pp. 287–299.

[9] E. C. Freuder, A. K. Mackworth, Chapter 2 - Constraint Satisfaction: An Emerging Paradigm,
in: F. Rossi, P. van Beek, T. Walsh (Eds.), Handbook of Constraint Programming, volume 2 of
Foundations of Artificial Intelligence, Elsevier, 2006, pp. 13–27. doi:10.1016/S1574-6526(06)
80006-4.

[10] C. Prud’homme, J.-G. Fages, X. Lorca, Choco documentation, TASC, INRIA Rennes, LINA CNRS
UMR 6241 (2014) 64–70.

[11] A. Felfernig, A. Falkner, D. Benavides, Interacting with feature model configurators, in: Feature
Models: AI-Driven Design, Analysis and Applications, Springer International Publishing, Cham,
2024, pp. 73–93. doi:10.1007/978-3-031-61874-1_4.

[12] J. Reilly, K. McCarthy, L. McGinty, B. Smyth, Dynamic Critiquing, in: P. Funk, P. A. González Calero
(Eds.), Advances in Case-Based Reasoning, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004,
pp. 763–777.

[13] J. Reilly, K. McCarthy, L. McGinty, B. Smyth, Incremental Critiquing, in: M. Bramer, F. Coenen,
T. Allen (Eds.), Research and Development in Intelligent Systems XXI, Springer London, London,
2005, pp. 101–114.

[14] A. Felfernig, R. Burke, Constraint-based recommender systems: technologies and research issues,
in: Proceedings of the 10th International Conference on Electronic Commerce, ICEC ’08, Associa-
tion for Computing Machinery, New York, NY, USA, 2008. doi:10.1145/1409540.1409544.

[15] K. McCarthy, J. Reilly, L. McGinty, B. Smyth, On the Dynamic Generation of Compound Critiques in
Conversational Recommender Systems, in: P. M. E. De Bra, W. Nejdl (Eds.), Adaptive Hypermedia
and Adaptive Web-Based Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 176–
184.

[16] N. Tintarev, J. Masthoff, Designing and Evaluating Explanations for Recommender Systems,
Springer US, Boston, MA, 2011, pp. 479–510. doi:10.1007/978-0-387-85820-3_15.

http://dx.doi.org/10.1007/978-3-540-72079-9_11
http://dx.doi.org/10.1023/A:1017940426216
http://dx.doi.org/10.1016/S1574-6526(06)80006-4
http://dx.doi.org/10.1016/S1574-6526(06)80006-4
http://dx.doi.org/10.1007/978-3-031-61874-1_4
http://dx.doi.org/10.1145/1409540.1409544
http://dx.doi.org/10.1007/978-0-387-85820-3_15

	1 Introduction
	2 Working Example
	3 Generating Recommendations
	3.1 Modelling Preferences
	3.2 Supporting Critiquing
	3.3 Finding Valid Configurations
	3.4 Calculating Utility of a Recommendation
	3.5 Dealing with Unsatisfiable Critiques

	4 Prototype System
	5 Evaluation and Results
	6 Discussion
	7 Conclusions, Limitations and Future Work

