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Abstract
Automated Theorem Provers (ATPs) are generally complex and optimized systems with thousands or millions of
code lines, making it difficult for beginners and researchers to understand and reuse ATPs for their own purposes.
This paper presents PolyCoP, an ATP designed to implement a polymorphic version of the connection method
that abstracts the need to code proof-related algorithms. PolyCoP allows the user to focus only on the (rather
small) differences in literal representation, unification, and blocking strategies from each logic and to help logic
beginners learn the connection method straightforwardly. Furthermore, the PolyCoP generates a proof tree as its
proving algorithm that can be useful for understanding how the proof happened and representing it visually
using a LaTeX system.
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1. Introduction

Coding automated theorem provers (ATPs) can be arduous, depending on the logical language intended
to be implemented. The main inferencing methods, such as resolution and tableaux, require complex
implementations, typically involving thousands or millions of code lines.

Furthermore, they rely on specific optimization techniques that may work for a few logics or scenarios.
Those implementations require people to have a strong background knowledge of logic, data structures,
and algorithms. It can be a major handicap for beginners who want to learn about logic and ATP and
researchers who want to explore ATP capabilities in their own work.

On the other hand, the Connection method (CM) [1] is a viable alternative as an ATP method. The
CM is a goal-oriented proof search technique that checks whether a formula is valid, looking for the
so-called connections, which are complementary pairs of literals.

Many connection calculi have been proposed for various logical languages, such as FOL [2, 3], modal
[4, 5], intuitionistic [6, 7], paraconsistent [8] and description logics [9, 10, 11].

Besides, CM-proof systems are uniform, i.e., they cover different logical languages without significant
change in their core implementation [12]. The calculi of those systems rely on the same structures
and concepts, such as connection, copy, and blocking. However, the Connection Provers (CoP, the
calculi implementation) do not take advantage of uniformity because they are implemented in different
programming languages and are rooted in different algorithms — such as Otten’s Prolog systems and
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Dimas et al. ’s C++ implementation. If they share one core implementation, one high-level optimization
implementation can benefit all provers simultaneously.

Thus, the objectives of this work are:

1. to develop a polymorphic connection method prover capable of proving numerous logics by
reusing its core implementation; and

2. to implement a simple prover/framework allowing beginners to understand and use a connection
method prover.

On the other hand, this work does not aim to provide an optimized and highly competitive ATP, as our
goal is to show a simpler and general version of a CoP.

This paper presents PolyCoP, a Java connection method framework built using Java interfacing that
isolates the code related to the proof search from the code related to the logical language such as:

• where two literals are complementary;
• how two complementary literals connect;
• how a clause is copied; and
• when the proof must be blocked.

The logical-related specifications are represented as strategies. Figure 1 gives a glimpse of the
capability of PolyCoP. The connection method proof search has already been implemented. However, it
requires code related to the target logical language to check whether a given formula is valid.

Thus, the user (someone who wants to develop an ATP for some logic or a beginner who wants
to learn about provers) focuses only on a fragment of code related to the given logical language (for
propositional logic or any other logic).

The input of the prover is a formula that needs to be mapped to a matrix by some user-specific code -
a mapper. The matrix is the input of the prover, which must be linked to strategies to connect, copy or
block the literals of the matrix according to the user specification. Those strategies establish how the
prover uses the literals in the matrix.

UniqueProver

+ prove(...)

«interface»
MatrixMapper

«interface»
Strategies

PropositionalMatrixMapper FOLMatrixMapper

OtherLogicMatrixMapper

PropositionalStrategies FOLStrategies

OtherLogicStrategies

Figure 1: UML diagram of PolyCoP.

The following sections of the paper present a short background about CM (Section 2), our contribution:
PolyCoP (Section 3), and concluding remarks (Section 4).

2. Background: the connection method

We start by presenting the connection method for propositional logic. The connection method is a
direct proof method, i.e., it checks whether 𝛼 |= 𝛽 by checking whether ¬𝛼 ∨ 𝛽 is a tautology. The
method requires propositions in Disjunctive Normal Form (DNF) as input; therefore, propositions



are disjunctions of conjunctions of literals, which are atomic propositions or their negation. The
conjunctions of literals are called clauses, and the disjunction of clauses compounds the matrix.

Assume we want to check whether𝐴∧(¬𝐴∨(¬𝐷∧(𝐵∨𝐸)∧¬𝐸)∧(¬𝐵∨¬𝐶) |= ¬𝐶 . Its correspond-
ing (positive1) DNF formula is¬𝐴∨(𝐴∧𝐷)∨(𝐴∧¬𝐵∧¬𝐸)∨(𝐴∧𝐸)(𝐵∧𝐶)∨¬𝐶 . 𝐴, ¬𝐴, and so on are
the literals, {𝐴,¬𝐵} is a clause, and, finally, {{¬𝐴}, {𝐴,𝐷}, {𝐴,¬𝐵,¬𝐸}, {𝐴,𝐸}, {𝐵,𝐶}, {¬𝐶}}
is the matrix. Figure 2 illustrates the matrix in the graphical notation.
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Figure 2: Matrix representation of 𝐴 ∧ (¬𝐴 ∨ (¬𝐷 ∧ (𝐵 ∨ 𝐸) ∧ ¬𝐸) ∧ (¬𝐵 ∨ ¬𝐶) |= ¬𝐶 .

If we change our perspective and look at the matrix vertically, we see the paths, sets of literals
containing only a literal of each clause. Figure 3 shows two of the 24 paths of the matrix. The left one is
the path {¬𝐴,𝐴,¬𝐵,𝐴,𝐵,¬𝐶} and the right one is the path {¬𝐴,𝐷,¬𝐵,𝐴,𝐶,¬𝐶}.
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Figure 3: Graphical representation of two paths of the matrix. The left one is the path {¬𝐴,𝐴,¬𝐵,𝐴,𝐵,¬𝐶}
and the right one is {¬𝐴,𝐷,¬𝐵,𝐴,𝐶,¬𝐶}

The set of all paths of a matrix represents the same matrix formula in Conjunctive Normal Form
(CNF). In other words, the two paths shown in Figure 3 are disjunctions that compound the formula in
CNF.

So, the goal of the connection method is to check the paths, looking for complementary literals on
them. A path containing a complementary set {𝐿,¬𝐿} is a disjunction containing 𝐿 ∨ ¬𝐿, which is a
tautology. If every matrix path contains a complementary set, the matrix is called complementary or
spanning.

Our proof starts with the first clause, {¬𝐴}. We select its only literal and connect it with its
complement in the second clause. After making this connection, we must check the remaining literals
in both clauses. Since the first clause has only one literal, we have already checked it. Figure 4 shows
the connection.
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Figure 4: Proof started connecting ¬𝐴 with the literal 𝐴 in the second clause. However, backtracking is necessary
once there is no complementary literal of 𝐷.

If we cannot find a complement for the literal we chose from the second clause (in this case, 𝐷), we
backtrack our proof and undo the connection between the first and second clauses. Backtracking is
necessary when the proof search gets stuck and cannot find a literal to connect.

We restart the proof by connecting the chosen literal from the first clause with its complement in the
third clause (Figure 5a). The literals ¬𝐵 and ¬𝐸 still need to be checked. We then connect ¬𝐵 with 𝐵

1The negation of the premise and preserving the consequence is called a positive representation of a formula.
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Figure 5: Connection method proof search. The remaining literals at each step are highlighted.

from the fifth clause (Figure 5b). Now, ¬𝐸 and 𝐶 remain to be checked.
After that, we connect 𝐶 with ¬𝐶 in the last clause (Figure 5c). Finally, we connect the last literal to

be checked, ¬𝐸, with 𝐸 in the fourth clause (Figure 5d). At this point, the only remaining literal to
be checked is 𝐴 in the fourth clause. We can check it without connecting to a new clause because a
complementary literal, ¬𝐴, exists in the path (Figure 5e). We call this a "reduction".

Therefore, as all the paths have been verified to contain a connection, we conclude that 𝐴 ∧ (¬𝐴 ∨
(¬𝐷 ∧ (𝐵 ∨ 𝐸) ∧ ¬𝐸) ∧ (¬𝐵 ∨ ¬𝐶) |= ¬𝐶 is a tautology.

3. PolyCoP

PolyCoP, the general and polymorphic connection method written in Java, is available at GitHub2.
The architecture relies on Java features, such as interfaces and generics, and the design patterns[13]
strategy and state. The CoP implementation calls the strategies methods to prove the formula using their
interfaces. So, the PolyCoP can run its proof search using different logic and algorithms by changing
the interface implementations.

3.1. Strategies

There are four different strategy interfaces: LiteralHelperStrategy, Con nectionStrategy,
CopyStrategy, and Blocking Strategy.

The strategy called LiteralHelperStrategy allows developers to define complementary literals
and implement the logic behind them. This is essential for the prover to find complementary literals of
a given one. The implementation takes a given literal 𝐿 and the matrix 𝑀 as input. The developer’s
code must return a submatrix of clauses 𝑀 ′ where each clause has a complementary literal of 𝐿. The
meaning of complementary can change based on the logic being implemented.

The ConnectionStrategy plays a crucial role in maintaining the correct behaviour of the code. It
returns a Boolean value indicating whether the connection is valid. The inputs are the literals to be
connected, the active path, and the current state of the strategy. The developer must check the current
state and the path and update the strategy’s current state to ensure the correct behaviour of the code.
The state update must create another object representation of it instead of changing the properties of
the current state. This allows for fast restoration of previous states when backtracking occurs.

As the name suggests, the CopyStrategy deals with copying clauses in the matrix. Some logic may
require copying clauses to be reused in another subproof later. The input to this strategy is the clause

2https://github.com/renanlf/polycop

https://github.com/renanlf/polycop


to be copied and the current state of the strategies. These inputs help the developer check whether a
copy occurs.

Finally, the BlockingStrategy helps the developer determine when the proof needs to stop the
search. It returns true when the proof needs to stop the search after a connection and false otherwise.
The input to this strategy is the current state of the other strategies. The developer can use this strategy
to check the soundness of the proof after a connection instead of checking it before the connection
happens.

In Figure 6, we show the detailed UML class diagram of PolyCoP.

<<interface>> 
LiteralHelperStrategy

+ complementaryOf(...)

<<interface>> 
CopyStrategy

+ copy(...)

+ clear()

+ getState()

+ setState(...)

<<interface>> 
ConnectionStrategy

+ connect(...)

+ clear()

+ getState()

+ setState(....)

SimpleProver

+ prove(...)

- proveClause(...)

<<interface>> 
BlockingStrategy

+ isBlocked(...) PropositionalConnectionStrategy

PropositionalCopyStrategyPropositionalLiteralHelperStrategy

PropositionalBlockingStrategy

Figure 6: Detailed UML class diagram of PolyCoP strategies and the prover

3.2. Implementation for propositional logic

To illustrate the PolyCoP polymorphism, we show the implementation of the well-known propositional
logic in this paper. The main reason for using it as PolyCoP’s starter logic is to focus the reader on the
system features without requiring a background in other logic.

Nevertheless, this decision does not restrict PolyCoP to simple logic. The code repository also
contains other implementations for first-order and defeasible Description Logic.

Our implementation’s input is files in the well-known CNF format. It represents the literals as
integers, where a negative number −𝑁 denotes the negation of the literal 𝑁 . Because it is already a
clausal representation, we straightforwardly translate the values to the matrix, multiplying them by
−1, to obtain the DNF version. The intuition is that once we negate the formula in CNF (because CM is
a direct method), it is the same as changing the polarity of its literals.

Delving deeper into the data structures of PolyCoP, we use linked nodes to store the states through
the search proof. The main reason to do so is that this approach optimizes memory usage when the
proof tree becomes deeper.



To illustrate the memory benefits, assume the code stores a new object every time a proof rule is
applied. So, proving some literal in a 10-depth proof tree in an immutable stateful scenario must contain
states with 0 to 9 objects each. The code must store 37 references to represent those ten states.

However, the number of references needed decreases if the code uses linked nodes to store the states.
The 10th state only needs to store one object’s reference and the previous linked node’s reference. The
previous linked node also requires two references, and so on. The proof must store 18 references to
represent the same ten states.

Furthermore, the connection proof result is a tree where each node represents a different tuple of the
connection proof search. The root is the Start Rule, and each rule’s application appends new children to
the nodes. Such an approach is helpful for human-readable search proofs.

Implementing strategies for a logic turns PolyCoP into a prover of that logic. Thus, implementing
strategies for first-order logic (fol), for example, makes PolyCoP a first-order logic prover. Such an
implementation must have a connection strategy that checks the substitution states in the path to
validate a unification. It also must ensure the blocking strategy copies terms properly.

The blocking strategy, however, can be ignored due to the nature of the undecidable first-order logic
formulae. One can also implement a blocking strategy that stops when it reaches some condition to
prune the proof search. Those different strategies are possible in PolyCoP, and users can try whatever
approach they want.

Thus, for PolyCoP to be a 𝒜ℒ𝒞[14] prover, for example, the blocking strategy must map to true at
some point once 𝒜ℒ𝒞 is a decidable fragment of description logics. Looking to the 𝒜ℒ𝒞𝜃 - CM [9], it
must happen when the blocking condition [9] holds it.

3.3. LaTeX outputs

Lastly, besides the core implementation of PolyCoP, a helpful feature is that it outputs the proof as
LaTeX code. Our code provides an implementation that translates the connection proof tree as a LaTeX
string, allowing the user to represent the connection proof visually in a sequential style.

Following the example of Section 2, Figure 7 shows the connection proof interpreted by LaTeX
systems.

Ax{},M, [1, 2,−3]
Ax{},M, [1, 2]
Ext

[−3],M, [1, 2]
Ax{},M, [1]
Ext

[2],M, [1]
Ax{},M, []
Ext

[1],M, []
St

ε,M, ε

Figure 7: Proof in sequent-style interpreted by a LaTeX system of PolyCoP generated proof.

Listing 1 shows a fragment of the code generated by PolyCoP. Using PolyCoP, the user can export it
to a file and generate the corresponding sequent-style proof.

\ d o c u m e n t c l a s s [ . . . ] { s t a n d a l o n e }
\ usepackage { b u s s p r o o f s } % f o r sequent − s t y l e p r o o f s
\ beg in { document }
\ AxiomC { }
\ R i g h t L a b e l { Ax }
\ UnaryInfC { $ \ { \ } , M, [ 1 ] $ }
. . .
\ AxiomC { }
\ R i g h t L a b e l { Ax }
\ UnaryInfC { $ \ { \ } , M, [ ] $ }



\ R i g h t L a b e l { \ t e x t i t { Ext } }
\ B i n a r y I n f C { $ [ −2 ] , M, [ ] $ }
\ R i g h t L a b e l { \ t e x t i t { Ext } }
\ B i n a r y I n f C { $ [ 1 , −2] , M, [ ] $ }
\ R i g h t L a b e l { \ t e x t i t { S t } }
\ UnaryInfC { $ \ v a r e p s i l o n , M, \ v a r e p s i l o n $ }

\ D i s p l a y P r o o f

\ end { document }

Listing 1: Fragment of code generated by PolyCoP of Example’s proof.

4. Conclusion

In this paper, we presented the PolyCoP, a general CM prover that benefits from the uniformity of CMs
implementing a single prover to possibly any logical language.

This is the first implementation of the general connection prover. However, further optimized
implementations will easily reuse the Java strategy interfaces without any change. Take the lemmata
optimization [15], for instance. It reuses subproofs of literals if they already have been proved in the
proof search. We can provide such behaviour by adding a new structure to store the proofs and look for
them each time PolyCoP calls the proof method. If 𝑁 logical language strategies were implemented,
the optimization would improve the proof search for the 𝑁 logical languages.

Another easy win is to extend the implementation to a multi-thread approach once immutable states
can be shared with less or no effort between the threads during the proof search. On the other hand,
low-level optimization and logical language full implementations such as leanCoP [2] and Raccoon [16]
should be more efficient.

As a first version, we understand that a few changes may be necessary until a stable general connection
prover version is obtained. In future work, we can explore the best design decisions, such as the best
data structures, from a benchmark and thus check whether a better approach for implementing the
general prover.

The next step of this work is to provide more provers and logical language strategies to illustrate
the general approach and create benchmarks for different cases, such as CASC and ORE competitions,
using the very same prover.
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