
	

--		

RuleML+RR’24:	Companion	Proceedings	of	the	8th	International	Joint	Conference	on	Rules	and	Reasoning,	Septem-
ber	16—22,	2024,	Bucharest,	Romania	
∗	Corresponding	author	
†	These	authors	contributed	equally	

	michel.vandenbossche@odase.io;	lea.guizol@odase.io;	remi.le.brouster@odase.io	
				©	2.																		©	2024	Copyright	for	this	paper	by	its	authors.	Use	permitted	under	Creative	Commons	License	Attribution	4.0	International	(CC	BY	4.0).		

Ontologies and Semantic Rules in Real Life
A Mission-Critical Product and Pricing Solution for the Belgian Railways	

Michel	Vanden	Bossche-Marquette∗,†,	Léa	Guizol†	and	Rémi	Le	Brouster†	

ODASE	SRL,	Square	de	Meeûs	38-40,	1000	Brussels,	Belgium	

Abstract	
Software	is	often	delivered	late,	over	budget,	prone	to	errors,	and	at	risk	of	serious	negative	out-
comes.	This	article	presents	the	successful	delivery	of	a	digital	solution	for	the	Belgian	Railways,	
from	requirements	specification	to	roll-out	in	the	cloud.	This	was	achieved	using	an	ontology-
centric	software	development	and	execution	platform	(ODASE)	combining	OWL-RDF	ontologies	
and	Semantic	Rules	based	on	SWRL	with	extensions.	The	semantic	model	allows	for	a	complete	
description	and	execution	of	business	requirements,	and	programming	is	only	required	for	the	
technical	scaffolding	necessary	for	a	fully	working	solution.	This	mission-critical	application	has	
been	in	production	for	more	than	a	year	and	is	successful	on	all	fronts:	correctness,	transparency,	
changeability,	time-to-market,	cost	effectiveness	and	performance.	

Keywords		
Ontologies,	SWRL,	ontology-centric	development,	software	engineering,	transport	

1. Business Case

Due	to	changing	market	conditions	in	the	post-pandemic	era,	the	Belgian	Railway	Operator	
(BRail)	wanted	to	introduce	a	new	flexible	season	ticket	[1]	for	hybrid	working	train	trav-
elers.	Since	the	legacy	product	and	pricing	system	was	out-of-date,	and	as	Sales	and	Mar-
keting	were	looking	for	maximum	agility	and	minimum	time-to-market,	the	decision	was	
made	to	consider	a	bespoke	solution	based	on	ontology-centric	development.	

2. Challenges

The	business	side	of	the	company	required	1)	agility	to	quickly	adapt	the	product	and	prices	
to	new	market	conditions,	2)	a	short	time-to-market	for	the	first	release	and	following	iter-
ations,	 3)	 supporting	 combined	 transport	 (customers	 buying,	 in	 one	 transaction,	 BRail	
products	and	 those	 from	other	Public	Transport	Operators),	and	4)	cost	effectiveness	 in	
light	of	unknown	demand.	

The	IT	side	of	the	company	required	1)	integration	within	a	complex	landscape	of	existing	
systems	and	applications,	2)	compliance	with	OpenAPI	[2]	and	the	internal	DevOps	meth-
odology	and	infrastructure,	3)	deployment	in	the	cloud	using	Kubernetes	and	containerized	
applications,	and	4)	no	performance	penalty	for	maximum	users’	satisfaction.	

3. Rule-Based Solution

3.1. Introduction

The	business	logic	of	the	new	flexible	season	ticket	is	entirely	expressed	by	a	set	of	OWL	
ontologies	and	SWRL	[3]	logical	rules	(see	section	3.2).	

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

	

	

These	ontologies	and	rules	define	products,	generate	quotes,	and	calculate	the	prices	of	the	
flexible	season	ticket.	In	a	Business-to-Business	context,	the	customer	is	an	employer	or	a	
governmental	organization	and	contributes	to	the	payment	of	the	ticket.	The	system	dis-
tributes	the	total	price	between	the	employers	and	the	employee,	applying,	when	applica-
ble,	a	legal	minimum	contribution	from	the	employers.	It	also	calculates	the	reimbursement	
during	the	life-cycle	of	the	season	ticket.	

The	company	Odase	was chosen to develop the ontologies	in	interaction	with	subject	mat-
ter	experts, to provide the	OpenAPIs	needed	by	IT	for integration with other systems	and	
to	deliver	a	run-time	compatible	with	BRail’s	cloud	containerized	environment,	consistent	
with	their	DevOps	procedures	and	infrastructure.	

A	key	technical	component	of	the	project	is	the ODASE platform for ontology-centric devel-
opments.	It	is	developed	using	the	Mercury	logic/functional	language	[4]	to	maximize	qual-
ity	and	performance,	and	minimize	 the	 impedance	mismatch	between	the	 logic	world	of	
ontologies	and	rules,	and	the	imperative	world	of	mainstream	programming.	

3.2. Extended SWRL

When	we	want	to	implement	operational	ontologies	that	clearly	and	completely	separate	
the	 definition	 of	 the	 business	 problem	 from	 the	 technical	 implementation,	 the	 ontology	
must	be	able	to	specify	100%	of	the	business	logic.	We	cannot	therefore	limit	ourselves	to	
the	structural	part	of	the	ontology	(OWL,	RDF):	the	business	logic	must	be	tightly	associated	
with	the	ontology.	This	is	the	role	of	SWRL	designed	to	enable	declarative	assertions	using	
OWL	concepts	and	properties.	Without	SWRL,	part	of	the	business	logic	inevitably	requires	
programming	–	using	mainstream	languages,	libraries	and	frameworks	–	outside	of	the	on-
tology,	which	would	no	 longer	guarantee	a	complete	separation	between	the	declarative	
definition	of	the	problem	and	the	imperative	implementation	of	the	solution.	We	then	re-
lapse	 into	known	problems	associated	with	a	partial	modeling	of	 the	problem,	 typical	of	
Computer-Aided	Software	Engineering,	Model	Driven	Engineering	and	Semantic	Web	Tech-
nologies	limited	to	OWL,	RDF	and	SPARQL:	parts	of	the	business	logic	are	programmed	and	
no	longer	understandable	by	the	business,	nor	testable	and	explainable	(see	section	3.3).	

Our	experience	led	us	to	evolve	SWRL	in	two	directions:	1)	to	give	SWRL	a	textual	syntax	
that	is	understandable	by	business	experts,	and	2)	expressiveness	extensions	(aggregates,	
NAF	and	existentials).	Figure	1	is	an	example	of	NAF	(Negation	as	Failure)	and	Figure	2	an	
example	of	function	of	(existential).	Both	examples	show	the	textual	syntax.	

	

Figure	1:	Example	of	Negation	as	Failure	

	

	

	

Figure	2:	Example	of	Function	Of	

The	ontology,	stricto	sensu	(OWL,	RDF),	stays	generic,	and	can	be	used	for	other	tasks.	

3.3. Testing and Explanation

Since	the	ontology	is	an	executable	model,	 it	can	be	tested	before	the	first	line	of	code	is	
written.	The	results	of	these	tests	are	explainable	thanks	to	the	logic	foundations	of	the	Se-
mantic	Web	Language	and	the	ODASE	declarative	debugger,	with	an	example	shown	in	Fig-
ure	3.	

	

Figure	3:	ODASE	declarative	debugger	(or	explainer)	

As	a	result,	 fixing	conceptual	bugs	at	a	very	early	stage	 is	easy.	This	 is	not	the	case	with	
conventional	 software	 development,	 with	 the	 side	 effects	 associated	with	 classical	 pro-
gramming	compounding	the	problem.	Also,	explanations	are	of	primary	importance:	they	
help	subject	matter	experts	deepen	their	understanding	of	the	problem,	contributing	to	a	
specification	that	is	correct,	complete	and	unambiguous,	using	a	fast	iterative	process.	This	
has	a	major	positive	impact	on	cost,	speed	of	development,	quality	and	agility.	

3.4. Automatic Code Generation and Low Code

Unlike	other	requirements	specification,	the	ontology	is	not	used	as	a	reference	for	writing	
the	application	by	hand.	The	ODASE	platform	includes	a	tool	that	automatically	generates	a	
Java	API	from	an	ontology.	It	creates	a	Java	class	for	each	OWL	concept	and	Java	getters	and	

	

	

setters	for	each	OWL	property.	OWL	subclass	axioms	are	translated	into	up-	and	down-cast-
ing	methods.	This	ontology	API	interacts	with	the	RDF	stores	and	the	OWL/SWRL	reasoner	
which	enforces	the	business	logic	expressed	in	the	ontology	at	runtime.	This	API	provides	a	
type-safe	and	familiar	interface	to	the	business	logic	for	Java	developers,	keeping	the	rea-
soning	hidden.	The	hand-written	imperative	code	is	purely	technical	and	void	of	any	busi-
ness	dimension:	it	is	mainly	a	controller	for	REST/JSON	services.	The	amount	of	hand-writ-
ten	code	specific	to	these	services	is	very	small:	less	than	300	lines	of	Java	code.	

3.5. Integration

A semantic integration with the legacy systems has been developed thanks	to	an	interme-
diation ontology	which	maps	the	‘pure’	business	ontology	to	the	external	data structures.	A	
schematic	of	the	software	architecture	is	shown	in	Figure	4	below.	

	

Figure	4:	Software	architecture	

4. Performance

The	application	(with	all	the	business	capabilities	defined	ontologically),	deployed	in	the	
Microsoft	Azure	Cloud	using	Kubernetes,	delivers	160	rps	 (pricing	requests	per	second)	
with	75	ms	response	time	(95%	percentile)	on	4	PODs1	with	2	cores	each	(see	Figure	5).	

	

	

1	PODs	are	the	smallest	deployable	units	of	computing	that	can	be	created	and	managed	in	Kubernetes.	A	Pod	
(as	 in	a	pea	pod)	 is	a	group	of	one	or	more	containers,	with	shared	storage	and	network	resources,	and	a	
specification	for	how	to	run	the	containers.	

	

	

	

	

Figure	5:	Throughput	in	pricing	requests	per	second	(number	of	responses	
per	second)	and	response	time	distribution	(no	errors	[KO]	observed).	

Using	8	PODs	with	2	cores	each	delivers	350	rps	with	the	same	response	time.	This	demon-
strates	a	linear	scale-up.	This	easily	exceeds	the	original	performance	requirement.	

These	performance	goals	have	been	reached	by	a	combination	of	a	generic	algorithm	(a	
modified	version	of	OLDT	resolution	[6])	and	by	what	we	call	‘ontology	engineering’.	

Ontology	engineering	is	the	process	of	influencing	the	behavior	of	the	reasoner	to	improve	
the	performance.	This	is	done	by	analyzing	a	trace	of	events,	identifying	the	costliest	ones,	
making	hypothesis	and	adding	knowledge	in	the	form	of	rules.	These	engineering	rules	are	
technical	and	have	no	impact	on	the	definition	of	the	semantic	of	the	problem.	In	general,	
this	optimization	process	is	a	matter	of	a	few	days	of	work.	

5. Effort, Timing and Correctness

This	project	was	executed	by	a	 team	of	 three	 (ontologist,	 software	engineer	and	project	
manager),	delivering	a	first	version	of	correct	business	ontologies	and	rules	after	six	months	
and	a	production-ready	release	in	less	than	nine	months.	

The	first	release	of	the	flexible	season	ticket	system	went	live	on	March	23,	2023	and	has	
been	followed	by	two	other	major	releases.	

The	system	has	had	zero	defects	since	the	first	release.	

6. Longevity and Robustness

An	ontology	is	independent	of	the	technology	used	to	implement	the	application	it	specifies	
(architecture,	programming	 language,	database,	middleware,	etc.).	Being	a	mathematical	
model,	it	is	guaranteed	to	outlive	the	implementation	technology.	This	makes	the	ontology	
a	valuable	business	asset	in	a	way	that	traditional	implementations	are	not:	it	ensures	com-
plete	portability	when	changing	hardware	and	software	architectures.	The	ontology-centric	
approach	deals	with	the	complexity	of	changes	with	ease	and	robustness.	

7. Discussion

The	ontology-centric	approach	has,	of	course,	limitations.	It	is	not	usable	for	hard	real-time	
applications	(due	to	non-determinism	and	garbage	collection),	although	event-based	soft	
real-time	applications	have	been	developed.	It	is	also	not	adequate	for	applications	requir-
ing	 intensive	 calculus,	 although,	 when	 not	 dominant,	 numerical	 operations	 can	 be	 ab-
stracted	using	SWRL	built-ins.	See	example	in	Figure	6.	

	

	

	

Figure	6:	Example	of	built-in	(time:ageInYears)	

8. Related Work

SBVR	(Semantics	of	Business	Vocabulary	and	Business	Rules	[7]),	is	an	Object	Management	
Group	(OMG)	specification	inserted	in	its	wider	Model	Driven	Architecture	(MDA).	SBVR
is a comprehensive conceptual schema for understanding what business rules are and how
the meanings they express may be articulated and formalised. To	our	knowledge,	there	
are	no	SBVR	tools	available	to	create	a	continuum	between	the	specification	(vocabulary	
and	rules)	and	a	running	application,	more	so	in	real-life	conditions.	[8]	shows	how	an	SBVR	
model	can	be	translated	into	an	OWL+SWRL	knowledge	base.

Similar	expressiveness	extensions	to	SWRL,	as	the	ones	presented	in	3.2,	have	been	pro-
posed	by	different	researchers	(see	[5]	for	a	survey).	To	our	knowledge,	they	have	almost	
never	been	used	for	practical	real-life	applications.	

9. Future Work

We	are	currently	developing	additional	tools	and	APIs	to	help	subject	matter	experts,	who	
are	not	ontologists,	to	modify	key	data	by	themselves,	challenge	the	results	as	they	like	and	
gain	a	 full	understanding	of	how	the	ontologists	understood	and	described	 the	business	
domain	and	problem.	

In	the	longer	term,	we	wish	to	add	fuzzy	logic	to	the	SWRL	vocabulary	and	the	reasoners	in	
order	to	extend	the	expressivity.

10. Conclusions

The	use	of	OWL,	RDF	and	SWRL	makes	it	possible	to	effectively	separate	the	formal	defini-
tion	of	the	problem	from	the	technical	implementation	of	the	solution.	This	is	possible	be-
cause	SWRL	rules	expressing	the	business	logic	are	tightly	associated	with	the	business	on-
tology.		SWRL	as	such	is	not	sufficient	to	model	real-life	applications:	it	must	be	extended	
with	aggregates,	NAF	and	existentials.	Experience	shows	that	it	is	preferable	to	give	SWRL	
a	textual	syntax	that	is	easily	understandable	by	the	business.	Finally,	it	is	essential	to	use	
high-performance	reasoners	geared	towards	using	SWRL	and	OWL	for	online	business	ap-
plications	where	data	 is	continuously	changing:	classification-based	reasoners	should	be	
avoided,	and	reasoners	must	exploit	the	parallelism	offered	by	the	multi-core	CPU	available.	

By	working	in	this	way,	a	true	continuum	is	achieved	between	the	formal	logic-based	busi-
ness	specification	and	the	technical	construct	exploiting	the	mainstream	languages,	librar-
ies	and	frameworks	on	which	all	developers	depend.		

The	ontology-centric	approach,	exemplified	by	this	real-life	use	case,	shows	that	Semantic	
Web	Technologies	bring	a	major	contribution	to	software	engineering.	It	offers	a	response	

	

	

to	Fred	Brooks’	observation	that	‘The	hardest	part	of	the	software	task	is	arriving	at	a	com-
plete	and	consistent	specification,	and	much	of	the	essence	of	building	a	program	is	in	fact	the	
debugging	of	the	specification”	[9].	

And	last	but	not	least,	“…	formalizing	one’s	knowledge	in	logic	is	often	an	intellectually	re-
warding	activity,	and	usually	reflects	back	on	or	adds	insight	to	the	problem	under	considera-
tion”	[10].	

Acknowledgements

We	thank	the	business	and	IT	teams	of	BRail	for	their	contributions	to	the	success	of	this	
project.	

References

[1] https://www.belgiantrain.be/en/tickets-and-railcards/flex-abonnement	
[2] OpenAPI	specification	https://swagger.io/specification/	
[3] Horrocks,	I.,	Patel-Schneider,	P.F.,	Boley,	H.,	Tabet,	S.,	Grosof,	B.,	Dean,	M.,	et	al.:	Swrl:	A	

semantic	web	rule	language	combining	owl	and	ruleml.	W3C	Member	submission	21,	
79	(2004);	https://www.w3.org/submissions/SWRL/		

[4] Somogyi,	 Z.,	 Henderson,	 F.	 and	 Conway,	 T.:	The	 execution	 algorithm	 of	Mercury,	 an	
efficient	purely	declarative	logic	programming	language.	Journal	of	Logic	Programming,	
29(1–3):17–64,	1996.	See	also	https://www.mercurylang.org/	

[5] Lawan,	L.	and	Rakib	A.:	The	Semantic	Web	Rule	Language	Expressiveness	Extensions-A	
Survey;	https://arxiv.org/abs/1903.11723	

[6] Tamaki,	H.	and	T.	Sato.	T.:	OLD	resolution	with	tabulation.	In	Proceedings	of	ICLP	’86,	
pages	84–98,	July	1986.	

[7] SBVR	specification:	https://www.omg.org/spec/SBVR/1.5/About-SBVR		
[8] Ceravolo,	P.,	Fugazza,	C.	and	Leida,	M.:	Modeling	Semantics	of	Business	Rules.	Proceed-

ings	of	the	2007	Inaugural	IEEE-IES	Digital	EcoSystems	and	Technologies	Conference,	
DEST	2007.	171-176.	10.1109/DEST.2007.371965.	

[9] Brooks,	F.:	No	Silver	Bullet:	Essence	and	Accidents	of	Software	engineering.	In	Computer,	
Vol.	20,	No.	4	(April	1987)	pp.	10-19.	

[10] Sterling	L.	and	Shapiro	E.:	The	Art	of	Prolog.:	1st	edition.	Advanced	Programming	Tech-
niques.	MIT	Press,	1986,	p.	xvi.	

