
Towards Optimizing Ontology-Based Data Federation:
Performance Insights from Experimental Studies
Marco Di Panfilo1

1Supervised by Diego Calvanese and Davide Lanti,
Free University of Bozen-Bolzano

Abstract
Ontology-Based Data Federation (OBDF) is a recently introduced framework that utilizes virtual knowledge
graphs for real-time, unified data querying across diverse data sources. This approach significantly enhances data
integration efficiency. As part of a PhD research, we aim to further investigate and optimize the performance of
OBDF. To this end, we have set up and conducted extensive experiments with OBDF using three representative
data federation systems, which allow for a comprehensive assessment of the framework and the extensions
developed in this thesis. This paper provides a recap of OBDF and details the experimental work conducted and
its results, paving the way for further OBDF refinements to be developed during the PhD thesis.
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1. Introduction

Data is recognized as one of the most valuable resources, whether the context is industrial, academic,
or private [1]. In today’s world, timely and accurate access to data, and the insights derived from it,
are crucial for driving meaningful impact and informed decision-making. Granting such an access to
data, though, becomes even more challenging when the data does not originate from a single consistent
source but rather from multiple heterogeneous sources that may be inconsistent with one another.
This challenge leads to the problem of Data Integration, which involves ensuring timely and accurate
accessibility of multiple data sources to the end-user.

Today’s rapid expansion in the volume, variety, and velocity of data [1] presents significant chal-
lenges for traditional data integration solutions, particularly those based on data warehousing. These
approaches are becoming increasingly costly and face difficulties to maintain data freshness. In con-
trast, data integration based on a virtual approach addresses these challenges by enabling the uniform
and virtual management of heterogeneous data. This is achieved by unifying diverse sources, often
controlled by different authorities, under a common global schema without the need to materialize a
replica of the integrated data [2]. Within the context of virtual data integration, a popular approach
is provided by Data Federation systems. Traditionally defined as a type of metadatabase management
system, these systems follow the virtual paradigm by transparently mapping multiple autonomous
databases – often relational – into a single, unified federated relational database [3].

Ontology-Based Data Access (OBDA) [4] also implements a virtual approach. OBDA allows exposing
and querying of a (typically relational) data source as a Virtual Knowledge Graph (VKG) built around an
ontology that formally represents knowledge as a set of concepts and roles within a domain. Ontologies
in OBDA are expressed in lightweight conceptual languages from the DL-Lite family of description
logics [5], making it possible to interpret data stored in a single relational database in a semantically
rich way and with a terminology closer to the one of domain experts. This facilitates users’ access to
complex data, without sacrificing performance, as OBDA systems nowadays are capable of supporting
efficient querying of large amounts of data.
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Building on the same virtual roots, the combination of OBDA — to facilitate access to complex
data — and Data Federation — to integrate multiple data sources — appears particularly appealing. While
existing OBDA systems can be straightforwardly layered on top of data federation systems, this solution
leads to inefficient native queries. Several research challenges remain open in order to fully realize the
considered combination in real-world scenarios. The goal of the research that we intend to carry out
within the PhD is to study such setting in depth and improve the currently available techniques and
technologies along different directions. On the one hand, the aim is to optimize the query processing
task to make data access as simple, fast, and accurate as possible, while minimizing computational
resource requirements. On the other hand, we are also interested in making more convenient for users
to access federated heterogeneous data through a VKG, e.g., by providing (semi-)automated means to
bootstrap the VKG mappings and/or ontology.

Along these lines, we previously introduced Ontology-Based Data Federation (OBDF) [6, 7], a principled
framework that combines Data Federation and OBDA, which we evaluated on a data federation system
(Teiid), demonstrating substantial query performance improvements. Building on this contribution and
to further advance this PhD research, we are now conducting an extensive experimental evaluation
of the developed OBDF algorithms, extending our analysis to include two additional data federation
systems (Dremio, Denodo). These experiments enable us to assess the generalization capabilities of our
approaches, laying the foundation for future research. Specifically, we address the following research
question: do the performance improvements observed in [6, 7] generalize across different data federation
systems? In this paper, we revisit OBDF using an illustrative example and report on the new experiments,
which represent the novel contributions of this work.

The paper is structured as follows: Section 2 provides a review of the state of the art, including key
concepts and previous work in Ontology-Based Data Access (OBDA), Data Federation, and attempts at
their integration. Section 3 introduces the OBDF framework, detailing its formalization, the use of data
hints, and the optimization techniques applied, supported by illustrative examples. Section 4 reports on
our extended experiments and discusses the results obtained from evaluating the OBDF framework
across different data federation systems. Finally, Section 5 concludes the paper with a summary of
findings and outlines the next steps in this PhD research, as well as potential future research directions.

2. State of the Art

The core of this PhD research lies in the combination of two techniques: Data Federation and OBDA,
with our initial focus on optimizing query answering in the resulting setting. Therefore, we report here
the relevant state of the art for each of these two techniques along with previous attempts towards their
combination.

2.1. Ontology-Based Data Access (OBDA)

OBDA [8, 9] is a widely used paradigm developed since the mid-2000s [4, 10], aimed at facilitating access
to large-scale databases through domain ontologies. The classical OBDA framework comprises three
core components: the user-facing ontology 𝒯 consisting of a DL-Lite TBox, the underlying database 𝒟,
and the mappings ℳ that connect the database data to the ontology. We call the database schema 𝛴
and the database instance 𝐷. In traditional OBDA query answering, a SPARQL user query 𝑄 over the
ontology 𝒯 is first translated into a SQL query 𝑞 over the database, which is then evaluated over 𝐷.
Given a so-called OBDA specification (𝒯 ,ℳ, 𝛴), the process of producing 𝑞 out of 𝑄 is carried out
in two steps: (i) query rewriting, which is the process of rewriting 𝑄 into a query 𝑄𝒯 that takes into
account the intensional knowledge in 𝒯 ; (ii) query unfolding, which is the process of translating the
rewritten query 𝑄𝒯 based on the mappings ℳ into a SQL query that can be evaluated over the database
instance 𝐷.

Query optimization [11] occurs during the translation process, to produce a query that can be
efficiently executed over the database. To simplify the query answering procedure, the concept of
𝒯 -mappings was introduced [12, 13]. This approach involves encoding the axioms from 𝒯 into ℳ to



obtain an extended mapping set ℳ𝒯 , allowing 𝒯 to be disregarded during query answering, with only
ℳ𝒯 being considered. Therefore, we can focus our attention on the unfolding. In this work we consider
the variant of the unfolding where a join of union of conjunctive queries (JUCQ) [14, 15] is produced at
the intermediate step. This strategy is also the one implemented in the state-of-the-art OBDA system
Ontop [16]. This JUCQ query will be further optimized through algebraic transformations, often by
pushing the joins at the bottom of the algebraic tree, where they can often be simplified, to obtain a
query that has the shape of a union of conjunctive queries (UCQ) [17].

2.2. Data Federation

Data Federation is a well-studied problem in several related fields such as Database and the Semantic
Web, as reported in [3]. The primary goal of data federation is federated query answering, which entails
accessing multiple, potentially heterogeneous data sources through a unified schema, often referred
to as a virtual database (VDB). To compute the answers for a federated query over the VDB, a data
federation system can delegate operations (e.g., joins) or entire sub-queries to individual data sources,
or perform them itself. We thus distinguish between: local operations, which are handled within a single
source, and federated operations, which affect more than one source and whose execution, which is
computationally more expensive, involves the data federation system.

On these bases, federated query answering generally involves several key steps: identifying the data
sources relevant to the query components and partitioning the query into sub-queries; devising a plan
for evaluating these sub-queries, including determining the order of execution and the types of joins to
be used for merging sub-query results; and finally, executing the sub-queries on the identified sources
and combining the results according to the established query plan [3]. To carry out these steps, most
data federation systems rely on the relational model [18]. Query answering in the relational model
typically relies on SQL and relational algebra as the underlying query formalization framework.

In recent years, there have been significant advancements in data federation systems in both academia
and industry. These advancements have led to mature implementations, including open-source and/or
freely available systems such as Teiid1, Denodo2, and Dremio3, which combine federation capabilities,
data security, and, not least, usable interfaces.

2.3. Combining Data Federation and OBDA

Although a combination of OBDA and Data Federation appears both reasonable – given that both
approaches are inherently virtual – and practically interesting, as it would extend OBDA capabilities
beyond a single source and make federated queries more accessible to domain experts, this research
direction has been sparsely explored in the literature. To the best of our knowledge, few works have
attempted to fully integrate these approaches.

An interesting work in this area is Obi-Wan [19], an OBDA system capable of integrating hetero-
geneous data sources, including relational, graph-based, and NoSQL databases. Obi-Wan follows the
classical OBDA framework by rewriting queries based on the ontology and mappings and then evalu-
ating these queries using a mediator across multiple heterogeneous data sources. However, Obi-Wan
primarily serves as a proof-of-concept and does not include specific optimization techniques tailored
to the federated setting, limiting its applicability in real-world, complex scenarios. Other systems
like Squerall [20] and PolyWeb [21, 22], also attempt to address the integration of heterogeneous data
sources by leveraging OBDA mappings. However, they lack reasoning support and therefore do not
qualify as fully-fledged OBDA systems according to the definition in the literature [8]. Overall, the
mentioned works highlight the challenges faced and the substantial effort required when building
OBDA systems over federated data sources from scratch.

1https://teiid.io/
2https://www.denodo.com/en
3https://www.dremio.com
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Figure 1: OBDF framework and query answering procedure. [6]

Our OBDF framework [6, 7] takes a different approach, aiming to combine the strengths of state-of-
the-art OBDA and Data Federation systems. Rather than reinventing the process of federated query
answering, OBDF leverages existing, highly-optimized data federation systems and enhances them
through a refined query rewriting process. This process is designed to minimize the computational over-
head associated with federated joins, thereby ensuring that queries can be executed more efficiently by
the data federation systems. To achieve this, OBDF incorporates data hints and hint-based optimization
techniques, which are discussed in detail in the following section. Furthermore, the OBDF framework
has been tested on an adapted version of the Berlin SPARQL Benchmark (BSBM) [23] using a single
data federation system (Teiid). This evaluation will be extended to three data federation systems and
elaborated upon in this paper.

3. OBDF Framework

This section presents the OBDF framework [6, 7], whose extension and validation are part of this PhD
research. We focus here on the core concepts and intuitions behind OBDF also through the discussion
of an illustrative example, referring the reader to [6] for further specific details about the algorithms
implementing OBDF.

3.1. Overview and Formalization

The main objective of OBDF is to perform query answering using existing optimized OBDA and data
federation systems. To capture the semantics of such combination, we formally introduce the notion
of OBDF specification, as a triple ℱ = (𝒯 ,ℳ,ΣS) where 𝒯 is an ontology, ΣS is a VDB schema over
(heterogeneous) data sources S, and ℳ is a set of mappings from ΣS to 𝒯 . This definition is derived
from the established one of OBDA specification, where we replace the database schema 𝛴 with the
VDB schema ΣS.

Figure 1 depicts the full process of query answering in OBDF and the involved systems. A SPARQL
query 𝑄 is posed over the VKG exposed by the OBDA system. The OBDA system is responsible to
rewrite the query with respect to the ontology 𝒯 and in a second step to unfold it according to the
mappings ℳ of the OBDA system. The resulting SQL query 𝑞 is forwarded to the data federation
system, like Teiid, Denodo, or Dremio, to be evaluated over the VDB data instance D through the issuing
of sub-queries to the involved data sources. This way, the federation system facilitates the integration
of potentially heterogeneous data sources, enabling the OBDA system to interact with it as it would
with a single relational database in a standard OBDA setting.

The OBDF framework inherits challenges from both OBDA and data federation systems, along with
new challenges that emerge from their interaction. The OBDA system alone is not aware of the different
types of sources and naive query rewriting and unfolding of a SPARQL query can generate inefficient



queries for the data federation system. For instance, an unfolding typically contains several joins, which
poses a challenge in the federated setting where many of these joins could be federated, thus expensive
to compute. In a data federation setting it is also likely that the data is spread over different sources
and thus results are overlapping and redundant, which can further complicate query processing. If this
system is not optimized, it can lead to inefficient operations and does not scale for big data analysis.

To address these challenges, we introduced a novel unfolding procedure for OBDF [6], which relies
on specific statistics computed over the sources. We call these data hints.

3.2. Data Hints

The execution of federated joins in federated query answering is inherently time-intensive. A pivotal
strategy in OBDF query optimization involves the preliminary identification of federated joins potentially
present in SQL query translations. This step facilitates their query-time restructuring into forms more
amenable to efficient evaluation by data federation systems. As articulated in the standard OBDA
formalization [8] and expounded in [15], all possible joins in SPARQL to SQL translations can be
identified by analyzing the ontology and mappings within the OBDA specification. A central aspect is
to provide an algorithm for doing so, as proposed in [6] and may be the subject of future work.

Moreover, scenarios involving multiple data sources inherently involve data redundancy. Within
OBDF, the top-level ontology provides a unified semantic overlay for diverse data sources. Our approach
is to analyze the ontology and the mappings in order to identify redundancies across different data
sources and thus optimize SQL query translations by pruning redundant subqueries.

To encapsulate the query optimization methodology in OBDF, three types of data hints were thus
identified:

• Empty Federated Join ℰ refers to joins across distinct data sources that are expected to yield no
results within the current data federation context. Formally, A ◁▷D B = ∅, where A ◁▷ B denotes
a federated join, and the subscript D indicates that the equivalence must hold in the current
federated data instance D.

• Containment Redundancy 𝒞 refers to detectable redundancies that are across data sources. Formally,
given a data instance D and two algebraic expressions A and B, we say that A is data-contained
in B, denoted as A ⊆D B, if the set of answers of A over the data instance D is contained in the
set of answers B over the data instance D. We use A ≡D B to indicate that A ⊆D B and B ⊆D A,
meaning that A and B produce equivalent results within the data instance D.

• Materialized Views M, as discussed in [17], are known to significantly improve query processing
performance and are supported by some data federation systems such as Teiid and Dremio.

In [6, §5.1], we presented an algorithm hintify on how to extract the data hints from a specific data
instance D. This algorithm enumerates possible federated joins and redundancies as mentioned above,
restricted to VDB relations labeled as static (i.e., whose content is not expected to change), and analyzes
them on the current data instance D (e.g., checking whether a federated join is empty) to derive hints
that can be expected to hold across data instances. Materialized views are introduced for selected
non-empty federated joins, according to customizable heuristics and pending possible further research
work to optimize such selection.

3.3. Hints-Based Query Optimization

In our exploration of optimizing SQL translations of SPARQL queries within the OBDF framework, we
focus on three integral components: query optimization rules, cost model, and unfolding algorithm.

Query Optimization Rules Our methodology extends standard optimization rules in OBDA, like the
self join elimination rule [24], and introduces a comprehensive set of query optimization rules, shown



Figure 2: List of standard optimization rules applied by OBDA systems (first group), and the new rules specific
to OBDF (second group). The former is not complete (e.g., we omit trivial transformations like commutativity
rule). The letters A, B, C denote relational algebra expressions, whereas T denotes base relations. We use
standard relational algebra notation, where for conciseness we introduce the abbreviation 𝜋r1/a1 ,...,rn/an

for the
combination 𝜌r1/a1 ,...,rn/an

𝜋a1 ,...,an
of projection and renaming.

in Figure 2. These rules are determined on the principles of semantic equivalence and the utilization of
pre-computed data hints as in Section 3.2.

The top part of Figure 2 shows the following classic optimization rules:

• The distributive rule (dlr) is typically used to “push” joins into unions, in order to transform JUCQ
into UCQ unfoldings. This is the core optimization applied by state-of-the-art OBDA systems.

• The self-join elimination rule (sjr) handles the explosion of self-join operations during the unfolding,
arising from the mismatch between the n-ary model of relational databases against the ternary
model of RDF graphs.

The bottom part of Figure 2 introduces the novel hint-based rules:

• The Empty Join Elimination Rule (ejr) removes unnecessary empty joins in SQL queries. The rule
is applicable if the empty federated join hint A ◁▷D B = ∅ belongs to the set of hints.

• The Containment Elimination Rule (cr) aims to eliminate redundant unions in SQL queries using
the identified set of containment redundancy hints.

• The Equivalence Elimination Rule (er) modifies or replaces join operations in SQL queries. It
checks for data equivalence, i.e., two-sided containment, similar to rule cr, and also assesses a
condition † to ensure that the cost of the new expression is less than the original cost. The method
for cost computation is detailed below.

• Finally, the Materialization Rule (mtr) enhances the efficiency of federated joins in SQL queries
by utilizing pre-computed views. This rule replaces complex join operations with these more
optimized views.



Cost Model Our approach incorporates a straightforward cost model [6, §5.3] that assigns an evalua-
tion cost to each relational algebra expression. This model follows a set of heuristic principles:

• Preference for local joins over federated joins,
• Prioritization of efficient data sources,
• Elimination of redundant or empty sub-expressions,
• Utilization of materialized views, when available.

In addition to these federation-specific heuristics, the model integrates standard OBDA heuristics,
providing a comprehensive framework for evaluating query efficiency.

Hints-Based Unfolding Algorithm The hints-based unfolding algorithm defines how the query
optimization rules and the cost model are integrated in the query processing workflow of an OBDF
framework. The algorithm unfoldOBDF was originally presented in [6, §5.4] and since then it has been
further streamlined based on implementation and evaluation feedback, and is currently being improved
for additional optimizations.

3.4. Example

In this section, we provide concrete examples demonstrating the application of the data hints discussed
in Section 3.2, in conjunction with the unfoldOBDF [6] algorithm. For simplicity in this example, we
will focus primarily on the key objective of the cost model, which is to prefer local joins over federated
joins. This should suffice to illustrate the algorithm’s operation and main intuitions.

Figure 3 depicts the entire process of query optimization. As a first step, we describe all the input
variables required by the unfoldOBDF algorithm:

OBDF Specification ℱ = (𝒯 ,ℳ,ΣS):
The OBDF specification ℱ consists of the ontology 𝒯 the mappings ℳ and the Federated VDB
schema ΣS. They are depicted with a purple background on the top right of Figure 3.

– The Ontology 𝒯 consists of two axioms stating that ConvenienceGoods and ShoppingGoods
are both Products.

– The Federated VDB Schema ΣS (Virtual Database Schema) comprises relation names used
by the federation system, capable of integrating multiple federated sources. In our example,
subscripts are used to specify the exact federated source for each relation, with the sources
ranging from Source 1-4.

– The Mappings ℳ define how the data in the data sources is mapped to the concepts and
roles of the virtual knowledge graph. In our example, the source component, positioned
on the left side of the mapping, is represented by a query in algebraic form that operates
over the data sources. Conversely, the target component on the right is described by a
first-order logic atom, which includes IRI templates 𝑓, 𝑔, ℎ and details on the transformation
of database values into RDF literals. The mappings show that ConvenienceGoods and their
attributes are sourced from the table CG1, while ShoppingGoods are derived from the table
SG2. Additionally, the role ℎ𝑎𝑠𝑁𝑎𝑚𝑒, which specifies the names of inspectors, links to the
tables PerInfo3 and Employee4.

SPARQL Query 𝒬:
The topmost box 𝑄 of Figure 3 contains the SPARQL query of our example. We use a SPARQL
query to retrieve information about all products. This includes each product’s name, the inspector
associated with the product, and the inspector’s name.



Mappings M

Ontology T

Federated VDB Schema ΣS

SPARQL unfolding to JUCQ

Apply distributive rule dlr

SELECT f(Products.i), g(Products.n), h(Products.r), e(PerInfo3.pn)

FROM (

    SELECT cid AS i, cname AS n, cinsp AS r

    FROM CG1


    UNION

    SELECT sid AS i, sname AS n, sinsp AS r

    FROM SG2


) AS Products

JOIN PerInfo3 ON Products.r = PerInfo3.piid;

Apply self join elimination rule sjr

Apply empty join elimination rule ejr 
with :
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Optimizations are directed by a cost 
model estimating costs of intermediate 
queries
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federated joins
 Efficient sources should be favoured 

over inefficient ones
 Whenever available, prefer 

materialized views.

Figure 3: Example of query optimization using the Hint-Based Unfolding Algorithm. 𝑞1 illustrates the relational
algebra representation of the SPARQL query 𝑄, produced by standard unfolding techniques. Following the
unfoldOBDF algorithm through steps 𝑞1 to 𝑞5, a combination of standard and novel hint-based optimization
techniques is applied, effectively reducing the number of federated joins and unions, thereby enhancing query
efficiency.

Optimization Data Hints:
In this example we assume that the pre-computation of the hints following the hintify algorithm
in [6] has detected the following data hints.

– Empty Federated Join Hints ℰ : CG1 ⋊⋉ SG2 ≡D ∅
The presence of an empty federated join hint between the relations CG1 and SG2 signifies
that the sets of ConvenienceGoods in CG1 and ShoppingGoods in SG2 are disjoint in this
specific database instance, indicating no shared records between them.

– Containment Redundancy Hints 𝒞: Employee4 ⊆D PerInfo3



This containment redundancy hint indicates that, for this specific database instance, all
records from the relation Employee4 are already included within the records of PerInfo3.
Therefore, this implies that the records in Employee4 are a subset of those in PerInfo3.
Consequently, performing a union of both tables would result in no additional records beyond
what is already present in PerInfo3, underscoring the unnecessary nature of combining
Employee4 with PerInfo3.

– Materialized Views Hints M: ∅
In this particular example, no hints related to materialized views have been identified.

The SPARQL query 𝑄 is transformed into an SQL query as follows:

• Q → q1 The initial phase of the unfoldOBDF algorithm involves invoking the unfoldwrap algo-
rithm. This algorithm, as detailed in [15, 14], is an unfolding method that results in a query in
JUCQ form, as illustrated in the relational algebra expression of 𝑞1 in Figure 3.

• q1 → q2 Subsequently, in the transition from 𝑞1 to 𝑞2, highlighted in green in Figure 3, the
distributive law rule (dlr) is applied to the initial join, effectively pushing the join operation inside
the unions. This transformation produces a union of four joins involving the relations CG1 and
SG2.

• q2 → q3 In 𝑞2, several optimization opportunities become apparent. Firstly, the self-join
elimination rule (sjr) can be employed to remove the join with the same relation on the renamed
primary key 𝑐𝑖𝑑. More notably, the empty join elimination rule (ejr) can be applied, given
the hint that CG1 ⋊⋉ SG2 ≡D ∅. These optimizations lead to the removal of all joins in the
green-highlighted section of 𝑞2, resulting in the more efficient 𝑞3. Our cost model supports this
optimization from 𝑞1 to 𝑞3, as it reduces the number of federated joins from three to two.

• q3→ q4 The section of 𝑞3 highlighted in red mirrors the characteristics of the green-highlighted
part of 𝑞1. Thus, the same optimization techniques - dlr, sjr, and ejr - can be applied, leading to
the more simplified query 𝑞4, which contains only one federated join.

• q4 → q5 In the final transition from 𝑞4 to 𝑞5, the unfoldOBDF algorithm checks for unions
where the containment elimination rule (cr) can be applied. Given the containment redundancy
hint Employee4 ⊆D PerInfo3, the query can be further optimized by removing the Employee4
relation from the union, as all records in Employee4 are already present in PerInfo3.

• q5 → SQL The final query, 𝑞5, represents the optimized execution plan, which is then translated
into an SQL query.

The illustrated transformation demonstrates the optimization of the original SPARQL query depicted
in 𝑄. Initially, the query involved three federated joins and four federated unions across relations from
four different sources. The optimized query in 𝑞5 significantly reduces complexity, featuring only one
federated join and one federated union.

4. Experiments and Results

In this section, we report on the extended experiments we conducted using our hint-based optimization
approach, and discuss and analyze the results obtained.

4.1. Experimental Setup and Methodology

We extend the experiments in [6] by expanding our tests from a single data federation system to three
different systems: Teiid, Denodo, and Dremio. This broader evaluation allows us to assess the general
effectiveness of our optimizations across diverse data federation systems.



As in [6], our evaluation is based on the Berlin SPARQL Benchmark (BSBM) from [23],4 which we
adapt here to the OBDF scenario. This well known synthetic benchmark comes in two aligned RDF and
SQL versions, which together allow evaluating and comparing query answering performance of RDF
triplestores, RDBMSs, and OBDA systems as well as demonstrated in [25, 26]. BSBM is designed around
an e-commerce scenario. It simulates a diverse marketplace where multiple vendors offer products
coming from producers and subsequently reviewed by consumers. Synthetic data for such scenario
can be created through the BSBM data generator. Given a scale factor 𝑛 corresponding to the desired
number of products, the generator produces a corresponding dataset.

We start from the OBDA instance ((𝒯 ,ℳ, 𝛴), 𝐷) of BSBM (for a given scale factor 𝑛) and we aim
at transforming it into an OBDF instance ((𝒯 ,ℳ′, 𝛴′),D). There, D is a VDB instance obtained using
partitioning and replication to reorganize 𝐷 into multiple federated database instances 𝐷𝑖, which we
allocate to either: (i) a set of relational sources, to test performance in a homogeneous setting (hom); or
(ii) a mix of relational and NoSQL sources, to test a heterogeneous setting (het)5. 𝛴′ is the VDB schema
for D, which matches 𝛴 except for partitioned and replicated tables and is obtained by setting up
multiple data federation systems. Lastly, ℳ′ are the new mappings derived from ℳ, which produce the
same virtual ABox, which we use with other specification components to configure the tested system.

Besides the aforementioned hom and het settings for the obtained OBDF instances, we also consider
two reference centralized settings sc1 and sc2, where all data is stored in a single PostgreSQL database
directly accessed by the OBDA system without a data federation system: sc1 employs OBDA instance
((𝒯 ,ℳ, 𝛴), 𝐷) for the original BSBM, whereas sc2 employs OBDA instance ((𝒯 ,ℳ′, 𝛴′),D) where
data partitioning and replication are introduced, although in a centralized setting.

To conduct our tests, we slightly adapt and reuse the 12 queries of BSBM Explore. We evaluate query
answering with and without our approach focusing on execution time, measured in milliseconds (ms),
which refers to the total time required to evaluate either an individual query 𝑄 or a query mix 𝑀 ,
the latter comprising one execution of each of the 12 BSBM Explore queries. For a query mix, the
execution time is determined by geometrically averaging the execution times of its individual queries,
calculated as 𝑇𝑀 = |𝑀|

√︁∏︀
𝑄∈𝑀 𝑇𝑄, where 𝑇𝑀 represents the mix execution time and 𝑇𝑄 represents

the execution time for each query. Note that using a geometric mean to evaluate a query mix, rather
than a simple arithmetic mean or sum, helps to prevent slower queries with large execution times from
disproportionately influencing the results, particularly when the execution times of faster queries are
several orders of magnitude smaller, as observed in some BSBM queries.

We evaluate the aforementioned metrics for different configurations of our evaluation environment,
and specifically:

• for different scale factors 𝑛 of the BSBM benchmark, 2k, 20k 200k.
• for each setting sc1, sc2, hom, het;
• for each data federation system Teiid, Dremio, Denodo (only for federated settings hom, het);
• with or without our hint-based optimization approach, considering these three conditions:

– base: no hint-based optimization (our baseline, all four settings);
– opt: hint-based optimization without materialized views (only for settings hom, het);
– optm: hint-based optimization also using materialized views (only for settings hom, het).

For each configuration we run a number 𝑛𝑤 of warm up mixes, which serve to initialize caches and
whose execution time we do not measure, followed by a number 𝑛𝑡 of test mixes, over which we compute
and average our metrics. We set 𝑛𝑡 = 20 to have sufficient mixes to conduct statistical analyses. We set
𝑛𝑤 = 50 after having verified that measured average execution times (on a moving average on 𝑛𝑡 = 20
mixes) do not change considerably by running further warm up mixes.

Note that we report optimizations with and without materialized views for two primary reasons.
First, the application of materialized views in our experiments was limited to only 2 out of 12 queries
4http://wbsg.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/index.html
5Specifically PostgresSQL, MariaDB, MySQL, MS SQL Server for setting hom and PostgresSQL, MS SQL Server, MongoDB
and CSV files for setting het. See [6] for further details, such as the allocations of tables to data sources.

http://wbsg.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/index.html


Table 1
Mean execution times (ms) for each Query mix 𝑀 , averaged over 20 test runs. The table organizes execution
times by baselines (sc1, sc2) and data federation systems in the hom and het settings. It also categorizes the
data based on optimization levels: base (not optimized), opt (optimized), and optm (optimized with materialized
views), alongside the BSBM scale (2k-200k). Each Query mix 𝑀 corresponds to the geometric mean of the
execution times of queries 𝑄1 - 𝑄12.

2k 20k 200k
setting system base opt optm base opt optm base opt optm

sc1 41 44 69
sc2 150 304 873

hom

Teiid 107 60 59 282 72 71 1408 126 108
Denodo 143 87 85 415 113 105 2098 183 154
Dremio 352 175 155 537 198 178 1660 294 243
avg 200 107 100 411 128 118 1722 201 168

het

Teiid 533 299 217 5120 2179 1139 51690 17896 6877
Denodo 294 187 157 1818 926 629 17938 7963 3837
Dremio 780 489 418 2394 1321 973 13141 8440 4652
avg 536 325 264 3111 1475 914 27590 11433 5122

(𝑄2 and 𝑄12). Second, materialized views come with a significant drawback: they require substantial
storage space. In contrast, the only negative impact of leveraging empty federated join and containment
redundancy hints, which we consider in opt, is a negligible increase of query reformulation time.

4.2. Results

Figure 4 shows the average execution time of the aforementioned settings for Denodo (a), Dremio (b)
and Teiid (c) at a BSBM scale of 200k, for each query 𝑄1-𝑄12 and at query mix level. Furthermore, the
x-axis also displays the hint-based optimization rules that have been adopted in the optimizations of the
single queries. We observe that the application of hints has been very selective among the queries. The
empty join elimination rule (ejr) together with the empty federated join hint has been used to optimize
queries 𝑄1-𝑄6. Meanwhile the containment redundancy hint and containment elimination rule (cr) has
been used to optimize 𝑄7-𝑄9. No data hints and rules have been applied to queries 𝑄10-𝑄11, whereas
materialization rule (mtr) has been used in 𝑄2 and 𝑄12.

An analysis of Figures 4 aligns with the expectations and validates the initial findings presented
in [6]. The red bar, representing centralized setting sc1 without data partitioning, consistently shows
the shortest execution times, particularly in contrast to centralized setting sc2 (blue bar), where data
partitioning is implemented. In general, the execution times relative to setting sc2 are slightly lower
than those for the baseline homogeneous setting hom, indicated by the first green bar, demonstrating
that the introduction of a data federation layer has no major impact on query execution time. This is
especially true at lower BSBM scales like 2k, where we observe sc2 underperforms compared to the
homogeneous setting in queries 𝑄4, 𝑄7, 𝑄8, and 𝑄9. At higher BSBM scales, the blue bar relative to
sc2 remains below the first green bar for the hom baseline, with 𝑄1 being an exception due to high
data variance, as indicated by the error bars, and attributable to different PostgreSQL query execution
plans for different instantiations of 𝑄1 depending on the specific choice of query template parameters.

Figure 4 reveals a key observation, appreciable by noting that for each federation system and query, the
execution times are displayed in three stages (via different shades of color) – first without optimizations
(base), then with optimizations but without materialization, and finally with materializations. In nearly
every instance, the execution time with optimizations is consistently lower than when no optimizations
are applied. The only exceptions are queries 𝑄10 and 𝑄11, where no optimization rules were triggered,
and queries 𝑄1, 𝑄3, and 𝑄5 in Dremio, which present an opportunity for further analysis to gain
insights into the unexpected behavior.
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Figure 4: Average execution time (± standard deviation) over 20 test runs for the federation systems Denodo (a),
Dremio (b), and Teiid (c) over the BSBM scale of 200k. The x-axes represent queries 𝑄1 to 𝑄12 and the query mix
geometric averages, with the additional indication of applied hint-based optimization rules.



Further supporting these observations, the right-most set of bars labeled as query mix represents
the geometric average of all the queries, where the reduction in execution time is clearly evident,
further confirming the effectiveness of the hint-based optimizations. Table 1 provides the specific values
corresponding to the right-most set of bars for the query mix of Figure 4 and also includes values for
lower BSBM scales of 2k and 20k. As previously stated, the aggregated results of the query mix indicate
consistent improvements. Notably, when using the materialized view and at a BSBM scale of 200k,
we observe an average reduction in execution time of the query mix from 1.722 ms to 168 ms in the
homogeneous setting and from 27.590 ms to 5.122 ms in the heterogeneous setting. This corresponds to
an approximate 90% reduction in execution time for the homogeneous setting and a 77% reduction in
the heterogeneous setting. Additionally, the table shows that these values decrease as the BSBM dataset
scale increases, underscoring the enhanced efficiency of the optimizations in large data contexts.

Across all federation systems and BSBM scales, the inclusion of hint optimizations consistently
yielded the shortest execution times, as revealed by Table 1. This outcome validates the effectiveness of
hint-based optimization techniques proposed by [6] and examined in this study.

5. Conclusions and Future Work

In this paper, we presented an ongoing PhD research tackling the combination of OBDA and Data
Federation, both in terms of efficient query evaluation and convenience for users in accessing federated
data. We focused here on the former querying aspect, for which we previously introduced the Ontology-
Based Data Federation (OBDF) framework [6], and for which we presented here a novel, extended
evaluation aimed at assessing generalization of performance improvements across multiple federation
systems. Notably, this was achieved by considering two additional data federation systems (Dremio and
Denodo) in addition to the one (Teiid) previously considered in [6].

5.1. Summary of Results

The results of the presented extended experiments confirm the performance improvements and the
findings from our previous work [6] across all the considered data federation systems. The improvements
in query execution times due to OBDF optimizations are substantial, ranging from a 90% reduction
(see Table 1) in the considered homogeneous setting anto a 77% reduction in the heterogeneous setting.
Overall, the reported extended experiments indicate that the optimization techniques integrated within
OBDF are effective regardless of the specific federation system employed, providing evidence for the
framework’s generalization and adaptation capabilities.

Based on these results, which may possibly further improve due to ongoing enhancements to the
OBDF algorithms, we can conclude that efficient OBDA query evaluation over data federation systems
is achievable and has been obtained within the scope of the OBDF framework, and we can turn our
main focus on the other goal (convenience for users) of this PhD research.

5.2. Next Activities in this PhD Research

The immediate next steps in this PhD research will deal with completing the current revision of the
OBDF algorithms. This will involve refining the algorithms, particularly those discussed in the context
of hint-based query optimization, and preparing a comprehensive journal publication that encapsulates
all contributions and results obtained thus far.

Following that, we will shift our focus from query execution and optimization techniques to supporting
OBDF/OBDA users in designing a Virtual Knowledge Base system, with a particular emphasis on defining
mappings. Building on the mapping patterns proposed in recent literature, an automated data-driven
approach for bootstrapping mappings directly from data sources will be explored, to avoid the need for
users to fully perform this task manually. This approach aims to enhance the flexibility and efficiency
of the system, thereby facilitating more seamless integration and utilization of diverse data sources.



5.3. Related Future Work Directions

Further extensions of OBDF, based on the results obtained so far, present several promising avenues for
future research, to be carried out either within (if opportunities will arise) or beyond this PhD research.
These extensions regard:

• Precomputation of hints and identification of materialized views. Further research may delve
deeper into optimizing the precomputation of hints, particularly focusing on the identification
of materialized views. Ideally, this should involve balancing additional storage usage against
improvements in query evaluation times due to the use of materialized views, potentially leading
to more sophisticated heuristics that are finely tuned for different data environments.

• Algorithm unfoldOBDF. Additional research can be directed toward extending the unfoldOBDF

algorithm, enhancing its capability to handle more complex queries and data scenarios.

• Support for graph databases. A related new line of research may focus on integrating graph
databases, like Neo4J, as a source within the Data Federation environment. Such source inherently
provides additional query language features, such as navigational queries. To fully leverage these
new capabilities, one should enrich the query language of the OBDF framework as well, allowing
it to support and exploit these navigational features. This research should thus investigate how
established query languages can be extended to incorporate the navigational elements typical
of graph query languages. The primary challenge will be to reformulate navigational queries
within the ontology context, taking full advantage of the graph database’s inherent navigational
capabilities. This enhancement has the potential to enable the OBDF framework to handle more
complex queries, including those that return not only individual nodes or values but also entire
paths or sub-graphs, thus significantly expanding the expressiveness and utility of the framework.
This future research direction not only aims to enhance the theoretical underpinnings of the
OBDF framework but also seeks to develop practical tools and methodologies that can be applied
in real-world scenarios, making the system more robust and versatile for various applications
leveraging graph data.
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