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Abstract
Several domains have widely benefited from the adoption of Knowledge graphs (𝒦𝒢𝑠). For recommender
systems (RSs), the adoption of 𝒦𝒢𝑠 has resulted in accurate, personalized recommendations of item-
s/products according to users’ preferences. Among different recommendation techniques, collaborative
filtering (CF) is one the most promising approaches to build RSs. Their success is due to the effective
exploitation of similarities/correlations encoded in user interaction patterns. Nonetheless, their strength
is also their weakness. A malicious agent can add fake user profiles into the platform, altering the
genuine similarity values and the corresponding recommendation lists. While the research community
has extensively studied 𝒦𝒢𝑠 to solve various recommendation problems, including the empowerment of
semantic-aware shilling attacks, limited attention has been paid on exploiting 𝒦𝒢𝑠 relatedness measures,
i.e., Katz and Exclusivity-based, computed considering 1-hop of graph exploration. We performed an ex-
tensive experimental evaluation with four state-of-the-art recommendation systems and two well-known
recommendation datasets to investigate the effectiveness of introducing relatedness information on
semantic-aware shilling attacks. Since the semantics of relations has a crucial role in 𝒦𝒢𝑠, we have also
analyzed the impact of relations’ semantics by grouping them in various classes. Experimental results
indicate the benefit of embracing 𝒦𝒢𝑠 in favor of the attackers’ capability in attacking recommendation
systems.
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1. Introduction

The advent of Knowledge Graphs (𝒦𝒢𝑠) has changed the way structured information is stored.
It has become much more than that developed to make the Semantic Web a concrete idea. The
core idea of building a semantic network in which information is represented as directed labeled
graphs (RDF graphs) is disarmingly simple. Nevertheless, thanks to the possibilities it paves,
it has been welcomed with several promises and expectancies. Complete interoperability, the
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ability to link knowledge across domains, and the possibility to exploit Logical inference and
proofs are just a few of them. In numerous domains, the exploitation of the 𝒦𝒢 information has
become the norm. Thanks to the appearance of wide-ranging Linked Datasets like DBpedia and
Wikidata, we have witnessed the flourishing of novel techniques in several research fields, like
Machine Learning, Information Retrieval, and Recommender Systems. To date, Recommender
Systems (RSs) are considered the focal solution to assist users’ decision-making process. Since
the volume of the available products on the Web overwhelms the users, RSs support and ease the
decision process. Among them, collaborative filtering (CF) recommendation techniques have
shown very high performance in real-world applications (e.g., Amazon [1]). Their rationale is
to analyze products experienced by similar users to produce tailored recommendations. Algo-
rithmically speaking, they take advantage of user-user and item-item similarities. Regrettably,
malicious users may want to jeopardize the operation of the recommendation platform. For
example, they might be a rival company or agents who want to increase (or decrease) the
visibility of a particular product. Whatever they are motivated by, the problem is that these
similarities are vulnerable to the insertion of fake profiles. This kind of attack is called the
shilling attack [2], which aims to push or nuke the probabilities to recommend an item. The
malicious agent (or adversary) can rely on an extensive list of techniques to conduct the attack.
Researchers and companies have classified them into two broad categories [3]: low-knowledge
and informed attack strategies. In the former attacks, the adversary has poor system-specific
knowledge [4, 5]. In the latter, the attacker has an accurate knowledge of the recommendation
model and the data distribution [4, 6].

Interestingly, despite the astonishing spread of 𝒦𝒢𝑠, little attention has been paid to
knowledge-aware strategies to mine RS’s security. Since 𝒦𝒢𝑠 provide comprehensive informa-
tion on numerous knowledge domains, a malicious agent can decide to attack RSs making use of
the items’ semantic descriptions. One work exploiting publicly available information obtained
from 𝒦𝒢 to generate more influential fake profiles to threaten CF models’ performance is named
semantics-aware shilling attack SAShA [7]. This work extended state-of-the-art shilling attack
approaches such as Random, BandWagon, and Average profiting from publicly available semantic
information without supposing any additional knowledge about the system. While the previous
study modified these attacks considering the cosine vector similarity between the semantic
description of items, in this work, we identify that SAShA only considers the cosine similarity
across the semantic details, which is not particularly suited to bring out semantic relatedness.

In this work, we have overcome this limitation by going beyond the cosine similarity by con-
sidering Katz centrality and Exclusivity-based relatedness. Finally, to provide a more fine-grained
analysis, we have grouped the semantic relations into three classes: ontological, categorical,
and factual relations.

In detail, this study extends the state-of-the-art approach for the integration of semantics in
the shilling attacks [7] in numerous directions:

1. two novel graph topological and semantic approaches to build the set of items from which
the adversary can craft the fake profiles;

2. a novel semantic shilling attack strategy based on BandWagon strategy;

3. a deeper discussion of the experimental results involving several dimensions: type of



considered relation, recommendation model, amount of injected fake profiles, and dataset.

We have conducted extensive experiments to evaluate the impact of proposed attacks against
the recommendation models. To this end, we have exploited two real-world recommender system
datasets (LibraryThing and Yahoo!Movies). Experimental results sharply indicate that 𝒦𝒢
information is a valuable source of knowledge that improves attacks’ effectiveness. Moreover,
adopting semantic relatedness measures can unleash the full potential of the semantics-aware
attacks.

The remainder of the paper proceeds as follows. In Section 2, we provide an overview of the
state-of-the-art recommendation models and shilling attacks. Section 3 describes the proposed
extensions to the SAShA by introducing the semantic relatedness measures, and formalizes the
semantic attack strategies. Section 4 focuses on the experimental validation of the proposed
attack scenarios. We also provide an in-depth discussion of the experimental results analyzing
the several dimensions of the study. Finally, in Section 6, we draw some conclusions and
introduce the open challenges.

2. Related Work

2.1. Recommender Systems

A recommendation problem can be stated as finding a utility function to automatically predict
how much users will like unknown items.

Definition 1 (Recommendation Problem). Let 𝒰 and ℐ denote a set of users and items in a
system, respectively. Each user 𝑢 ∈ 𝒰 is related to ℐ+

𝑢 , the set of items she has consumed, or her
user profile. Given a utility function 𝑔 : 𝒰 × ℐ → R a Recommendation Problem is defined as

∀𝑢 ∈ 𝒰 , 𝑖′𝑢 = argmax
𝑖∈ℐ

𝑔(𝑢, 𝑖)

where 𝑖′𝑢 denotes an item not consumed by the user 𝑢 before. We assume that the preference of
user 𝑢 ∈ 𝒰 on item 𝑖 ∈ ℐ is encoded with a continuous-valued preference score 𝑟𝑢𝑖 ∈ ℛ, where ℛ
represent the set of (𝑢, 𝑖) pairs for which 𝑟𝑢𝑖 is known.

The major class of recommendation models includes content-based filtering (CBF), collab-
orative filtering (CF), and hybrid [8, 9]. CBF models build a profile of user interests based on
the content features of the items preferred by that user (liked or consumed), characterizing the
nature of her interests. CF models compute recommendations based on similarities in preference
patterns of like-minded users. They can be classified according to neighborhood-based and
model-based. Neighborhood-based models compute recommendations exclusively based on cor-
relations in interactions across users (user-based CF [10, 11]) or items (item-based CF [12, 11]),
while model-based approaches learn a model that can be queried in the production phase to
generate recommendations for a given user profile, e.g., MF [13].



2.2. Knowledge-aware RSs

RSs exploit various side information such as metadata (e.g., tags, reviews) [14], social connec-
tions [15], image and audio signal features [16], and users-items contextual data [17] to build
more in-domain [18] (i.e., domain-dependent), cross-domain [19], or context-aware [20, 21]
recommendation models. Among the diverse information sources, Knowledge Graphs (𝒦𝒢𝑠)
are one of the most relevant. A 𝒦𝒢 is a heterogeneous network that encodes multiple rela-
tionships, edges, nodes, and links items at high-level relationships, making them a strong item
representation technique. Thanks to the heterogeneous domains that 𝒦𝒢𝑠 cover, the design of
knowledge-based recommendation systems has arisen as a specific research field of its own
in the community of RSs, usually referred to by Knowledge-aware Recommender Systems
(KaRS [22, 23]). Knowledge-aware Recommender Systems have been particularly impactful for
several research domains:
𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝐾𝐺/graph-embeddings [24, 25, 26, 27, 28, 29, 30], hybrid collaborative/content-based
recommendation [25, 31], knowledge-completion, link-prediction, knowledge-discovery [32,
33, 34, 30, 35, 36, 37, 38], knowledge-transfer, cross-domain recommendation [39, 19, 40],
interpretable/explainable-recommendation [41, 42, 43, 44, 31], graph-based recommendation [45,
46, 47, 48, 49, 50], content-based recommendation [51, 52].

All the former advances have been shown to enhance the recommendation quality or the
overall user experience. Although the algorithms differ on many levels, we can still classify rec-
ommendation techniques into two broad approaches: Path-based methods [45, 46, 47, 50, 53, 54],
which employ paths and meta-paths to estimate the user-item similarities or the nearest items;
and KG embedding-based techniques [45, 26, 31, 55, 21, 56], which leverage 𝒦𝒢 embeddings
(usually obtained through matrix factorization or neural network encoding) for items’ represen-
tation.

2.3. Security of RSs

Malicious users, the adversaries, can meticulously craft fake profiles to poison the data and alter
the recommendation behavior toward malicious goals [57, 58, 59]. An adversary may execute a
shilling attack (injection of malicious profiles) to achieve a whole different set of objectives.
To name a few, she may want to demote competitor products [4], misuse the underlying
recommendation system [2], or increase the recommendability of specific products [60, 61].

The research works on shilling attacks explored two main research perspectives: proposing
and investigating attack strategies with their effects on the recommendation performance [4,
62, 63, 64] and exploring defensive mechanisms [59, 65, 66, 67, 68, 69].

A typical characteristic of the first line of research on shilling attacks is that the adversary’s
knowledge is related only to the recommender system’s user-item interaction matrix. Further-
more, Anelli et al. [7] demonstrate that publicly available 𝒦𝒢 improves adversary’s efficacy,
also in the case of low-informed attacks (e.g., Random). In this work, we extend the SAShA
framework to verify the possible improvement of the adversary’s efficacy when processing the
𝒦𝒢 information with semantic similarity measures.

Note that this work focuses on shilling attacks, that are hand-engineered strategies to study
recommender systems’ security. This research line is different from machine-learned data



poisoning attack [70, 71, 72, 73, 74] and adversarial machine-learned attacks [75, 76, 61, 77, 78, 79]
where adversaries adopt optimization techniques to create perturbations.

3. Method

This section introduces the reader to the notations and formalisms that may help understand
the design of shilling attacks against targeted items integrating information obtained from a
knowledge graph (𝒦𝒢).

3.1. Knowledge Graph Content Extraction

A knowledge graph is a structured repository of knowledge, designed in the form of a graph,
that encodes various kinds of information:

• Factual. General statements as Rika Dialina was born in Crete or Heraklion is the capital of
Crete that describe an entity by using a controlled vocabulary of predicates that connect
the entity to other entities (or literal values).

• Categorical. These statements connect the entity to a particular category (i.e., the
categories associated with a Wikipedia page). Often, categories are in turn organized as a
hierarchy.

• Ontological. These are formal statements that describe the entity’s nature and its
ontological membership to a specific class. Classes are often organized in a hierarchical
structure. In contrast to categories, sub-classes and super-classes are connected through
IS-A relations.

In a knowledge graph, we can express statements through triplets 𝜎
𝜌−→ 𝜔, with a subject (𝜎), a

predicate (or relation) (𝜌), and an object (𝜔). There are several ways to transform the knowledge
coming from a knowledge graph into a feature. We have chosen to represent each distinct path
as an explicit feature [31].

Given a set of items 𝐼 = {ℐ1, ℐ2, . . . , ℐ𝑁} in a collection and the corresponding triples
⟨𝑖, 𝜌, 𝜔⟩ in a knowledge graph, the set of 1-hop features is defined as 1-𝐻𝑂𝑃 -𝐹 = {⟨𝜌, 𝜔⟩ |
⟨𝑖, 𝜌, 𝜔⟩ ∈ 𝒦𝒢 with 𝑖 ∈ 𝐼}.

3.2. Entity Similarity/Relatedness in KGs

The keystone of the Knowledge Graph representation is the semantics enclosed in the resource
description and the predicates that connect the different resources. Nevertheless, if the metric
to compute similarities between the resources is not carefully chosen, this piece of information
is lost irretrievably. Motivated by this awareness, we decided to consider a broad spectrum of
diverse similarity/relatedness metrics in addition to the cosine vector similarity [80] (used
in 𝑆𝐴𝑆𝐻𝐴 [7]: Katz centrality [81] and Exclusivity-based semantic relatedness [82]. In
general, the three metrics cover different aspects of the similarity between the resource a signal



of the overlap of the descriptions and a semantics-aware signal that highlights the specificity of
the relations between the resources.
Cosine Vector Similarity is a well-known similarity that is very popular in recommendation
systems. The idea is to measure how similar the two different representations are. Suppose a
numerical vector can represent the resource description, with the number of the predicate-object
chains observed in the 𝒦𝒢 being the vector’s cardinality. Mathematically, it measures the cosine
of the angle between two vectors that represent two different resources. The smaller the angle,
the higher the cosine similarity is, and thus the similarity. Suppose 𝑖 and 𝑗 are two items in the
𝒦𝒢, and 𝐹 (·) is a function that returns the features associated with an entity in the 𝒦𝒢. Hence
𝑖𝑛(𝑖, 𝑓) is a function that returns 1 if entity 𝑖 is associated with feature 𝑓 , else 0. The Cosine
Vector Similarity has been already formulated for 𝒦𝒢 as follows [80]:

𝑠𝑖𝑚(𝑖, 𝑗) =
∑︀

𝑓∈𝐹 (𝑖)∪𝐹 (𝑗) 𝑖𝑛(𝑖,𝑓)·𝑖𝑛(𝑗,𝑓)√︁∑︀
𝑓∈𝐹 (𝑖) 𝑖𝑛(𝑖,𝑓)

2·
√︁∑︀

𝑓∈𝐹 (𝑗) 𝑖𝑛(𝑗,𝑓)
2

(1)

This is the baseline method used in 𝑆𝐴𝑆ℎ𝐴 [7]/
Katz centrality [81] is a famous graph-centrality measure that inspired several semantics-
aware metrics [83, 82]. Katz suggests that the probability of the path between two nodes can
indicate the effectiveness of the link. Given a constant probability for a single-hop path, called
𝛼, the whole path’s overall probability is 𝛼𝑦 , where 𝑦 is the number of the nodes involved.
Hulpus [82] exploits the rationale to build a relatedness measure. Therefore, he defined the
Katz relatedness between two items 𝑖 and 𝑗 as the accumulated score over the top-𝑡 shortest
paths between them.

𝑟𝑒𝑙
(𝑡)
𝐾𝑎𝑡𝑧(𝑖, 𝑗) =

∑︀
𝑝∈𝑆𝑃 (𝑡)

𝑖𝑗

𝛼𝑙𝑒𝑛𝑔𝑡ℎ(𝑝)

𝑡
(2)

where 𝑆𝑃
(𝑡)
𝑖𝑗 is the set of the top-𝑡 shortest paths between items 𝑖 and 𝑗. This is the first novel

similarity metric tested in this work. Note that the shortest path has a larger implication in
multi-hops experiments; results on these have been reported in .
Exclusivity-based semantic relatedness [82] is a semantic relatedness measure that takes
into account the type of relations that connect two nodes. The idea is that two concepts are
strongly connected if the type of relations between them is different from the type of relations
they have with other concepts. This property of relations, named exclusivity, is defined as
follows.

Suppose a predicate 𝜌 of type 𝜏 between two items 𝑖 and 𝑗, directed from 𝑖 to 𝑗. The exclusivity
of predicate 𝜌 is the probability of selecting, with a uniform random distribution, a predicate
𝜌′ of type 𝜏 among the predicates of type 𝜏 that exit resource 𝑖 and enter node 𝑗, such that
predicate 𝜌′ is exactly the predicate 𝜌:

𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑖𝑡𝑦(𝑖
𝜏−→ 𝑗) =

1

|𝑖 𝜏−→ *|+ |* 𝜏−→ 𝑗| − 1
(3)

where |𝑖 𝜏−→ *| denotes the cardinality of relations of type 𝜏 ∈ 𝒯 that exit resource 𝑖, and
|* 𝜏−→ 𝑗| denotes the number of relations of type 𝜏 ∈ 𝒯 that enter resource 𝑗. Since the relation
𝑖

𝜏−→ 𝑗 is in |𝑖 𝜏−→ *| and in |* 𝜏−→ 𝑗|, 1 is subtracted from the denominator. The exclusivity score



for a predicate falls inside the (0, 1] interval. The value 1 denotes the extreme case in which the
predicate is the only relation of its type for both 𝑖 and 𝑗.

Given a path through 𝒦𝒢, 𝒫 = 𝑛1
𝜏−→ 𝑛2

𝜏2−→, . . . , 𝑛𝑘 with 𝜏𝑖 ∈ 𝒯 ∓, the weight of the path
is defined as:

𝑤𝑒𝑖𝑔ℎ𝑡(𝒫) =
1∑︀

𝑖
1

𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑖𝑡𝑦(𝑛𝑖

𝜏𝑖−→𝑛𝑖+1)

(4)

Finally, the relatedness between two resources can be computed as the sum of the path weights
of the top-𝑡 paths between the resources with the highest weights. To penalize longer paths,
a constant length decay factor, 𝛼 ∈ (0, 1], can be introduced. The overall exclusivity-based
relatedness measure is therefore defined as follows:

𝑟𝑒𝑙
(𝑡)
𝐸𝑥𝑐𝑙(𝑖, 𝑗) =

∑︁
𝒫𝑛∈𝑃 𝑡

𝑖𝑗

𝛼𝑙𝑒𝑛𝑔ℎ𝑡(𝒫𝑛)𝑤𝑒𝑖𝑔ℎ𝑡(𝒫𝑛) (5)

This is the second novel similarity metric tested in this work.

3.3. Attacks

Table 1
Overview of shilling attack strategies and their profile composition for adversaries’ goal of pushing a
target item (ℐ𝑇 ).

Selected Items (ℐ𝑆) Filler Items (ℐ𝐹 ) ℐ𝜑 ℐ𝑇Attack Type Number Items Rating Selection Number Items Rating
Random [4] ∅ Random

∑︀
𝑢∈𝒰 |ℐ𝑢|
|𝒰| − 1 𝑟𝑛𝑑(𝑁(𝜇, 𝜎2)) ℐ − ℐ𝐹 𝑚𝑎𝑥

Love-Hate [84] ∅ Random
∑︀

𝑢∈𝒰 |ℐ𝑢|
|𝒰| − 1 𝑚𝑖𝑛 ℐ − ℐ𝐹 𝑚𝑎𝑥

Popular [85]
∑︀

𝑢∈𝒰 |ℐ𝑢|
|𝒰| − 1 𝑚𝑖𝑛 if 𝜇𝑓 < 𝜇 else𝑚𝑖𝑛+ 1 ∅ ℐ − ℐ𝑆 𝑚𝑎𝑥

Average [4] ∅ Random
∑︀

𝑢∈𝒰 |ℐ𝑢|
|𝒰| − 1 𝑟𝑛𝑑(𝑁(𝜇𝑓 , 𝜎

2
𝑓 )) ℐ − ℐ𝐹 𝑚𝑎𝑥

Bandwagon [62] (
∑︀

𝑢∈𝒰 |ℐ𝑢|
|𝒰| )/2− 1 𝑚𝑎𝑥 Random (

∑︀
𝑢∈𝒰 |ℐ𝑢|
|𝒰| )/2 𝑟𝑛𝑑(𝑁(𝜇, 𝜎2)) ℐ − ℐ𝑆 − ℐ𝐹 𝑚𝑎𝑥

P. Knowledge [57]
∑︀

𝑢∈𝒰 |ℐ𝑢|
|𝒰| − 1 𝑚𝑎𝑥 ∅ ℐ − ℐ𝑆 𝑚𝑎𝑥

SAShA Random ∅ Semantics-aware
∑︀

𝑢∈𝒰 |ℐ𝑢|
|𝒰| − 1 𝑟𝑛𝑑(𝑁(𝜇, 𝜎2)) ℐ − ℐ𝐹 𝑚𝑎𝑥

SAShA Love-Hate ∅ Semantics-aware
∑︀

𝑢∈𝒰 |ℐ𝑢|
|𝒰| − 1 𝑚𝑖𝑛 ℐ − ℐ𝐹 𝑚𝑎𝑥

SAShA Average ∅ Semantics-aware
∑︀

𝑢∈𝒰 |ℐ𝑢|
|𝒰| − 1 𝑟𝑛𝑑(𝑁(𝜇𝑓 , 𝜎

2
𝑓 )) ℐ − ℐ𝐹 𝑚𝑎𝑥

SAShA Bandwagon (
∑︀

𝑢∈𝒰 |ℐ𝑢|
|𝒰| )/2− 1 𝑚𝑎𝑥 Semantics-aware (

∑︀
𝑢∈𝒰 |ℐ𝑢|
|𝒰| )/2 𝑟𝑛𝑑(𝑁(𝜇, 𝜎2)) ℐ − ℐ𝑆 − ℐ𝐹 𝑚𝑎𝑥

where (𝜇, 𝜎) are the dataset average rating and rating variance, (𝜇𝑓 , 𝜎𝑓 ) are the filler item ℐ𝐹 rating average and variance, and 𝑚𝑖𝑛 and 𝑚𝑎𝑥 are the minimum
and maximum rating value. 𝑟𝑛𝑑 function generates one integer (i.e., rating) from a discrete uniform distribution.

Given a Recommendation Problem, a Shilling Profile (𝒮𝒫) is a rating profile partitioned
into four sets:

𝒮𝒫 = ℐ𝑆 + ℐ𝐹 + ℐ𝜑 + ℐ𝑇 (6)

where ℐ𝑆 denotes the selected item set containing items identified by the attacker to maximize
the effectiveness of the attack, ℐ𝐹 is the filler item set, containing a set of randomly selected
items to which rating scores are assigned to make them imperceptible. ℐ𝑇 is the target item,
for which the recommendation model will make a prediction, aimed to be maximal (for push
attack) or minimum (for nuke attack). Finally, ℐ𝜑 is the unrated item set, holding a number of
items without any ratings.

Note that ℐ𝑆 and ℐ𝐹 are chosen depending on the attack strategy, and the attack size is the
number of injected fake user profiles. Throughout this paper, we use 𝜑 = |ℐ𝐹 | to represent the



filler size, 𝛼 = |ℐ𝑆 | the selected item set size and 𝜒 = |ℐ∅| to show the size of unrated items.
Table 1 summarizes the main parameters involved in the implementation of most prominent
shilling attacks against rating-based CF models. For instance, it can be seen that 𝑆𝐴𝑆ℎ𝐴 attacks
are the extension of state-of-the-art shilling attacks, with the difference that selection of the
filler item set (ℐ𝐹 ) is chosen semantically, not randomly.

Semantics-aware Random Attack is an extension of the baseline Random Attack [4]. The
baseline version is a naive attack, which uses randomly chosen items (𝛼 = 0, 𝜑 = profile-size) to
create a fake user profile. The ratings attributed to ℐ𝜑 are sampled from a uniform distribution
(see Table 1). 𝑆𝐴𝑆ℎ𝐴 modify this attack by selecting the items to complete ℐ𝐹 with the cosine-
similarity. In this work, we exploit semantic similarities/relatedness between the items in the
catalog e the target item using 𝒦𝒢-based features (cf. Section 3.1). Afterward, we identify the
most similar items (ℐ𝑇 ) by considering the first quartile of most similar items, and we extract 𝜑
items from this set by adopting a uniform distribution.

Semantics-aware Average Attack is an informed attack strategy that extends the Aver-
ageBots attack [5]. The baseline attack leverages the mean and variance of the ratings, which
is then used to sample each filer item’s rating from a normal distribution built using these
values. Similar to the previous semantics-aware attack extension, we extract the filler items by
exploiting semantic similarities derived from a 𝒦𝒢. Finally, as before, we consider the items in
the first quartile of the most semantically similar/related to ℐ𝑇 as the candidate filler items (ℐ𝐹 ).

Semantics-aware BandWagon Attack is a low-knowledge attack that extends the standard
BandWagon attack [62]. We leave unchanged the injection of the selected items (ℐ𝑆), which are
the most popular ones and on which we associate the maximum possible rating (see Table 1).
However, similarly to the previous two semantic attack extensions, we complete ℐ𝐹 by taking
into account the semantic similarity/relatedness between the target item ℐ𝑇 and the rest of the
catalog.

4. Experimental Setting

4.1. Dataset

We tested the proposed approaches on two datasets. The first is LibraryThing [50] and it is
a popular dataset whose interactions originate from librarything.com, a social cataloging
web application. The dataset contains user-item rating scores ranging from a minimum of 1
to a maximum of 10. As presented in [7], we use a reduced version by randomly extracting
the 25% of products in the catalog. Furthermore, we apply a 5-core filtering by removing all
the users with less than five interactions to focus the study on active users. These users are of
adversaries’ interest since they could more likely buy the pushed products.

The second is Yahoo!Movies which is a recommendation dataset released by re-
search.yahoo.com with ratings collected up to November 2003. The dataset also provides
mappings to the MovieLens and EachMovie catalogs. The recorded interactions consist of
ratings ranging from 1 to 5.

Both datasets have a mapping between the items in the catalogs and DBpedia knowledge-base
entities. In particular, we use the mappings publicly available at https://github.com/sisinflab/
LinkedDatasets. Table 2 reports the statistics of both datasets.

https://github.com/sisinflab/LinkedDatasets
https://github.com/sisinflab/LinkedDatasets


Table 2
Datasets statistics.

Dataset #Users #Items #Ratings Sparsity #F-1Hop
LibraryThing 4,816 2,256 76,421 99.30% 56,019
Yahoo!Movies 4,000 2,526 64,079 99.37% 105,733

Table 3
Selected features.

Categorical Ontological Factual
Dataset Total Selected Total Selected Total Selected
LibraryThing 3,890 373 2,090 311 50,039 1,972
Yahoo!Movies 5,555 1,192 3,036 722 97,142 7,690

4.1.1. Feature Extraction

Once the items are semantically reconciled with DBpedia entities, we remove the noisy
features whose triples contain one of the following predicates: owl:sameAs, dbo:thumbnail,
foaf:depiction, prov:wasDerivedFrom, foaf:isPrimaryTopicOf. The feature denois-
ing procedure follows the methodology proposed in [42, 31].

4.1.2. Feature Selection

To perform the analysis of the groups (or types) of semantic features, we implement our proposed
semantics-aware attacks by considering three different types of features, i.e., categorical (CS),
ontological (OS), and factual (FS), a feature taxonomy commonly adopted in the Semantic Web
community [31]. We apply the following policies Categorical-1H, we use the features with the
property dcterms:subject, Ontological-1H, we select the features containing the property
rdf:type, and Factual-1H, we consider all the features except ontological and categorical
features.

4.1.3. Feature Filtering

This work aims to study the attack performance differences up to the first hop. Addressing this
aim, we obtain thousands of features for both LibraryThing and Yahoo!Movies as reported
in the last two columns of Table 2. Measuring semantic similarities across the item catalog would
quickly become unfeasible. However, some features only occur once and provide no useful
informative or collaborative information. Therefore, we decided to drop off irrelevant features
following the filtering technique proposed by Di Noia et al. [50], Paulheim and Fürnkranz [86].
In detail, we removed all the features with more than 99.74% of missing values and distinct
values. Table 3 shows the remaining features’ statistics after applying the extraction, selection,
and filtering.



4.2. Recommender Models

In this work, we test our attack proposal (see Section 3.3) against four baseline collaborative RSs.
Two neighborhood-based: User-kNN, on which we [10, 11] set the size of the neighborhood 𝑘
to 40, and Item-kNN [12, 11], where 𝑘 = 40 too. Two model-based: Matrix Factorization
(MF) [13], where we set the size of latent vectors to 100, and Neural Matrix Factorization
(NeuMF) [87], on which we used a deep neural network composed by 4 fully connected dense
layers with {64, 32, 16, 8} hidden units.

4.3. Evaluation Metrics

We evaluate the attack performance using 𝐻𝑅@𝑁 . The metric describes the average presence
of target items in the top-𝑁 recommendation lists generated for all the users after the attack.
Since we will experiment with the case of push attacks, it follows that the adversary’s goal is to
increase/maximize the HR of the attacked/targeted items.

4.4. Evaluation Protocol

We perform 180 experiments for each dataset, totaling 720 experiments. Following the evalua-
tion procedure used in [60, 4], we generate the list of recommendations for each recommendation
model before executing the attack. After having measured the position and predicted score
for each target item-user pair, we simulated the attack. Each attack is performed against 50
randomly selected items in each dataset. Furthermore, we perform each attack using three
different amounts of injected shilling profiles: 1%, 2.5%, and 5% of the total number of users,
as adopted in [7, 63, 5]. Regarding the relatedness measures, we set the 𝛼 = 0.25 and the 𝑡-path
length to 10 for both metrics. Datasets and code will be made publicly available.

5. Experimental Results

Table 4 and Table 5 report the results. Across the next sections, we identify an attack combination
using the format <dataset, recommender, attack strategy, feature type, similarity measures,
granularity>, e.g., <Yahoo!Movies, User-𝑘NN, Average, Categorical, Katz, 1%>.

First, we observe that the results obtained on the Yahoo!Movies dataset (Table 5) are more
indicative of attacks’ effectiveness independently of the attack dimensions, confirming the
findings in the previous work by Anelli et al. [7]. Furthermore, Table 4 confirms the semantics-
aware strategy’s efficacy over the baseline, either for the average or random attacks. For instance,
the semantic strategies outperformed all the <LibraryThing, Random> and <LibraryThing,
Average> baseline attacks independently of the recommender model and the size of attacks.
However, differently from the results on Yahoo!Movies, on <LibraryThing, BandWagon>,
the baseline attack’s effectiveness did not improve. This behavior might be justified by the fact
that a bandwagon attack builds profiles by filling the 50% of the profile with the most popular
items, it might make the semantic strategy that identifies the informative filler items ineffective.

In addition to the general results, we provide a more in-depth discussion answering three
research questions.



Table 4
Hit Ratio (𝐻𝑅) result values evaluated on top-10 recommendation lists for the LibraryThing dataset.
We report in bold the highest value of each column given an adversary budget and knowledge. The
usage of Cosine similarity is the baseline approach proposed in SAShA.

User-𝑘NN Item-𝑘NN MF NeuMF
Attack Feature Type Similarity 1 2.5 5 1 2.5 5 1 2.5 5 1 2.5 5
Random No Attack .0736 .1570 .2301 .2885 .4588 .5590 .7660 .8987 .9419 .0612 .1130 .2216

Categorical Cosine .0745 .1576 .2311 .2804 .4575 .5687 .7837 .9014 .9439 .0802 .1324 .1653
Katz .0808 .1698 .2441 .2862 .4610 .5691 .7885 .9021 .9418 .0808 .1105 .1812
Exclusivity .0816 .1703 .2456 .2915 .4635 .5707 .7897 .8993 .9427 .0886 .1479 .2417

Ontological Cosine .0709 .1503 .2252 .2748 .4483 .5634 .7720 .8979 .9423 .0561 .1493 .1926
Katz .0774 .1622 .2355 .2837 .4592 .5670 .7845 .9021 .9416 .0751 .1392 .1857
Exclusivity .0766 .1619 .2349 .2848 .4602 .5686 .7846 .9010 .9433 .1091 .0999 .2240

Factual Cosine .0740 .1558 .2280 .2786 .4528 .5642 .7835 .9023 .9419 .0676 .1009 .1285
Katz .0760 .1591 .2319 .2823 .4570 .5662 .7839 .9015 .9417 .0685 .1366 .1823
Exclusivity .0793 .1672 .2425 .2890 .4646 .5722 .7888 .9029 .9434 .0921 .1034 .2143

Average No Attack .0857 .1994 .2863 .3170 .5085 .6070 .8043 .9140 .9500 .0416 .0670 .1362
Categorical Cosine .0864 .1967 .2823 .3060 .5115 .6202 .8128 .9127 .9502 .0634 .0950 .1316

Katz .0940 .2094 .2922 .3136 .5133 .6136 .8149 .9132 .9486 .0630 .1031 .1119
Exclusivity .0941 .2074 .2888 .3185 .5142 .6142 .8165 .9128 .9502 .0482 .0586 .1548

Ontological Cosine .0849 .1954 .2805 .3073 .5126 .6207 .8114 .9163 .9509 .0906 .1248 .1569
Katz .0898 .2021 .2845 .3096 .5107 .6143 .8168 .9135 .9491 .0816 .1171 .1108
Exclusivity .0890 .2020 .2842 .3119 .5119 .6165 .8121 .9145 .9489 .0285 .0599 .0947

Factual Cosine .0868 .1989 .2806 .3073 .5112 .6185 .8163 .9166 .9471 .0362 .0851 .1222
Katz .0892 .2016 .2844 .3098 .5110 .6158 .8189 .9139 .9473 .0588 .0849 .1040
Exclusivity .0912 .2049 .2872 .3152 .5131 .6131 .8166 .9138 .9482 .0502 .0746 .0882

BandWagon No Attack .0817 .1319 .1881 .2640 .3834 .4694 .6000 .7656 .8435 .0100 .0105 .0061
Categorical Cosine .0763 .1234 .1752 .2641 .3801 .4632 .5918 .7661 .8429 .0107 .0077 .0074

Katz .0794 .1266 .1800 .2647 .3821 .4648 .5896 .7596 .8422 .0103 .0080 .0094
Exclusivity .0758 .1227 .1745 .2640 .3818 .4646 .5835 .7590 .8435 .0067 .0054 .0068

Ontological Cosine .0758 .1227 .1745 .2626 .3798 .4637 .5904 .7619 .8433 .0064 .0056 .0049
Katz .0792 .1257 .1779 .2636 .3802 .4637 .5820 .7642 .8447 .0051 .0027 .0077
Exclusivity .0776 .1249 .1770 .2633 .3815 .4643 .5979 .7611 .8413 .0057 .0047 .0052

Factual Cosine .0738 .1190 .1714 .2632 .3784 .4623 .6001 .7634 .8408 .0057 .0044 .0063
Katz .0776 .1239 .1771 .2641 .3801 .4630 .5833 .7602 .8415 .0026 .0083 .0036
Exclusivity .0792 .1272 .1796 .2638 .3813 .4642 .5948 .7590 .8405 .0051 .0054 .0227

We underline the results with a p-value greater than 0.05 using a paired-t-test statistical significance test.

RQ1: What is the impact of relatedness-based measures and publicly available semantic infor-
mation? Let us consider the experiments on LibraryThing. We can observe that the adoption
of graph-based relatedness generally leads to an attack efficacy improvement over the baseline,
which adopts the cosine similarity metric. For instance, the random attack largely benefits from
the topological information. The same happens for Yahoo!Movies too in Table 5. Indeed, HR
for < User-𝑘NN, Random, Categorical, Katz> is 10% better than the baseline, i.e., 0.3725 vs.
0.3512. Beyond random attacks, we can observe some general trends also for informed attacks.
In detail, Table 4 (LibraryThing), we note that categorical information improves both User-
𝑘NN and Item-𝑘NN. It is worth noticing that the same consideration does not hold for latent
factor-based models. MF and NeuMF suit better cosine vector similarity. This phenomenon is
probably due to the significant difference in how the two recommendation families exploit the
additional information.

Finally, we can focus on the BandWagon attack. In that case, the attack already exploits
the most influential knowledge source for collaborative filtering algorithms: popularity. It
follows that the integration with other knowledge sources, e.g., 𝒦𝒢𝑠, does not provide any
significant improvement. However, the influence of popularity is so high in this attack that
the final recommendation lists are subject to a strong popularity bias [88]. Indeed, adding
fake profiles with the maximum ratings, e.g., 5 in Yahoo!Movies and 10 in LibraryThing,



Table 5
Hit Ratio (𝐻𝑅) result values evaluated on top-10 recommendation lists for the Yahoo!Movies dataset.
The usage of Cosine similarity is the baseline approach proposed in SAShA.

User-𝑘NN Item-𝑘NN MF NeuMF
Attack Feature Type Similarity 1 2.5 5 1 2.5 5 1 2.5 5 1 2.5 5
Random No Attack .1927 .3624 .4461 .3260 .5099 .6011 .4108 .5857 .7043 .0247 .0221 .0700

Categorical Cosine .1869 .3512 .4277 .3163 .4980 .5886 .4084 .5720 .6648 .0018 .0127 .0464
Katz .1912 .3725 .4559 .3429 .5270 .6098 .4244 .6029 .7049 .0223 .0317 .0891
Exclusivity .1968 .3712 .4533 .3394 .5233 .6072 .4272 .6011 .7023 .0171 .0516 .0544

Ontological Cosine .1730 .3353 .4163 .2994 .4793 .5726 .3916 .5513 .6407 .0030 .0051 .0118
Katz .1766 .3547 .4337 .3224 .5046 .5904 .4029 .5698 .6638 .0106 .0191 .0386
Exclusivity .2101 .3898 .4706 .3532 .5442 .6243 .4450 .6328 .7376 .0242 .0567 .0515

Factual Cosine .1881 .3501 .4289 .3149 .4933 .5840 .4087 .5665 .6590 .0188 .0115 .0365
Katz .2094 .3869 .4703 .3545 .5398 .6213 .4442 .6272 .7371 .0368 .0507 .0269
Exclusivity .2055 .3799 .4632 .3479 .5317 .6178 .4361 .6142 .7187 .0176 .0402 .0430

Average No Attack .2293 .4117 .4918 .3758 .5759 .6564 .4900 .6824 .7849 .0033 .0044 .0236
Categorical Cosine .2581 .4296 .4972 .3955 .5953 .6689 .5326 .7255 .8076 .0017 .0383 .0029

Katz .2319 .4142 .4917 .3882 .5773 .6542 .4889 .6777 .7716 .0015 .0064 .0272
Exclusivity .2277 .4026 .4845 .3752 .5698 .6493 .4813 .6658 .7624 .0064 .0014 .0087

Ontological Cosine .2584 .4264 .4953 .4019 .5952 .6704 .5457 .7315 .8128 .0043 .0018 .0111
Katz .2406 .4209 .4964 .3940 .5877 .6615 .5131 .7093 .7950 .0040 .0022 .0098
Exclusivity .2196 .3965 .4771 .3623 .5531 .6337 .4552 .6401 .7347 .0099 .0348 .0205

Factual Cosine .2573 .4290 .4960 .3882 .5884 .6634 .5353 .7256 .8009 .0026 .0055 .0054
Katz .2293 .4101 .4910 .3736 .5608 .6414 .4746 .6559 .7511 .0073 .0047 .0231
Exclusivity .2311 .4075 .4894 .3706 .5661 .6467 .4809 .6661 .7602 .0042 .0070 .0194

BandWagon No Attack .0996 .2418 .3556 .2427 .3764 .4691 .2357 .3606 .4320 .0010 .0026 .0025
Categorical Cosine .1020 .2544 .3634 .2453 .3831 .4748 .2536 .3909 .4662 .0010 .0208 .0010

Katz .0981 .2412 .3495 .2383 .3676 .4546 .2300 .3540 .4248 .0017 .0022 .0077
Exclusivity .0926 .2357 .3476 .2378 .3670 .4562 .2248 .3472 .4150 .0009 .0094 .0026

Ontological Cosine .1039 .2632 .3606 .2460 .3853 .4786 .2726 .4080 .4798 .0045 .0060 .0009
Katz .0958 .2476 .3528 .2412 .3754 .4652 .2253 .3602 .4376 .0009 .0023 .0012
Exclusivity .0941 .2227 .3346 .2289 .3528 .4402 .2092 .3191 .3885 .0030 .0022 .0054

Factual Cosine .1050 .2562 .3614 .2476 .3814 .4734 .2506 .3890 .4625 .0133 .0043 .0004
Katz .0930 .2302 .3460 .2295 .3569 .4461 .2178 .3399 .4064 .0255 .0028 .0115
Exclusivity .0926 .2360 .3515 .2345 .3616 .4504 .2309 .3446 .4137 .0023 .0012 .0014

We underline the results with a p-value greater than 0.05 using a paired-t-test statistical significance test.

placed on the most popular/rated items that will form the ℐ𝑆 (see Table 1) will amplify, even
more, the probability that these items will be recommended in the highest positions of top-𝑁
recommendation lists making ineffective the adversaries’ pushing goal toward the target items.
As a consequence, it even prevents the attacked recommendation system from suggesting the
target item. All the experimental datasets and all the recommendation models clearly show this
effect.

Another aspect that we want to underline is that increasing the number of fake profiles
injected into the systems unleashes the potential of different semantic knowledge types. Let
us take as an example the <LibraryThing, Average, MF>. With 1% injected fake profiles,
we observe the best results with Factual knowledge and Katz centrality. With 2%, the best
results are with Factual knowledge and cosine similarity. Finally, with 5%, the best results come
with Ontological knowledge and cosine similarity. This behavior suggests that the graph-based
similarities have a big impact even in a very sparse scenario. In contrast, with the increase of fake
profiles, the cosine similarity starts leveraging interesting correlations. On the other dimension,
the factual information is massive by nature, and it is crucial in sparse scenarios. However,
when the number of fake profiles increases, the knowledge at a higher level of abstraction
(Categorical and Ontological) finds its way to improve the attack efficacy further.

RQ2: What is the most impactful type of semantic information? We start focusing on Cate-
gorical knowledge. The experiments on LibraryThing show that Exclusivity is probably the



relatedness that best suits this information type. However, the results are not that clear for the
Yahoo!Movies dataset. This behavior suggests that semantic information type and relatedness
are not the only members of the equation. Indeed, the extension and the quality of the item
descriptions seem to have a role. Afterward, we focus on Ontological information. Here, we
can draw a general consideration since, for both datasets, it is the cosine similarity metric that
leads to the best results. Lastly, Factual information respects all the general remarks we have
drawn before showing that relatedness is a better source of adversaries’ knowledge to perform
more effective attacks.

In detail, we found that with low-knowledge attacks, the best relatedness is Exclusivity for
LibraryThing and Katz for Yahoo!Movies. With informed attacks, the best relatedness met-
ric is the cosine similarity. However, for the sake of electing a similarity that better suits Factual
information, we can note that Exclusivity generally leads to better results with LibraryThing.

RQ3: What are the most vulnerable recommendation models> Since the neighborhood-based
models directly exploit a similarity to compute the recommendation lists, they are the privileged
victim models to effectively alter the recommendation performance. Slightly more robust are
latent factor models on which the new semantic attacks will still produce an improvement in
the attacker’s performance. Finally, the most robust model is NeuMF. This result is probably due
to the nonlinearity of NeuMF that helps the model avoid learning from the pretended profiles.
In detail, the neural network may learn more sophisticated correlations that the other models
do not capture. We believe that this ability deserves specific further investigation since it may
lead to developing a new line of research on Deep Learning-based semantics-aware attacks that
might exploit non-linear item-item similarities to build more impactful attack methods.

6. Conclusions

In this work, we verified how the adoption of stronger semantic similarity measures of structured
and freely accessible knowledge can further improve malicious agents’ ability to attack a recom-
mendation platform. Starting from the state-of-the-art semantics-aware shilling attacks (SAShA),
this work investigated the impact of graph-based metrics (Katz centrality and Exclusivity-based
relatedness) and semantic information type. As a result, we verified that: (1) the adoption of
structured knowledge generally improves by a large margin the attacker’s performance, (2) the
graph-based metrics can efficiently deal with very sparse scenarios capturing similarities that
are otherwise imperceptible, (3) the type of semantic information to feed the attacking system
with has a significant function in enhancing the adversaries’ effectiveness, (4) neural models are
the sole recommendation techniques to be more robust to semantic attacks. The latter finding
suggests that there is still room for improvements in the semantics-aware attacks investigating
Deep Learning-based semantic attacks.
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7. Appendices

7.1. Multiple hop v.s. single-hop attacks.

The subsequent analysis focuses on the impact of the 1-hop and 2-hops of the 𝒦𝒢 exploration.
Analogously to 1-hop definition insection 3.1, we built 2nd-hop features. By continuing the

exploration of 𝒦𝒢 we retrieve the triples 𝜔
𝜌′−→ 𝜔′, where 𝜔 is the object of a 1st-hop triple

and the subject of the next triple. The double-hop predicate is denoted by 𝜌′ and the object is
referred as (𝜔′). Therefore, the overall feature set is defined as 2-𝐻𝑂𝑃 -𝐹 = {⟨𝜌, 𝜔, 𝜌′, 𝜔′⟩ |
⟨𝑖, 𝜌, 𝜔, 𝜌′, 𝜔′⟩ ∈ 𝒦𝒢 with 𝑖 ∈ 𝐼}. Given the current definition, 2nd-hop features also contain
heterogeneous predicates (see the previous classification of different kinds of statements). To
make it possible to analyze the impact of the kind of semantic information, we consider a
2nd-hop feature as Factual if and only if both relations (𝜌, and 𝜌′) are Factual. The same holds
for the other types of encoded information. In the attacks employing double-hop (2H) features,
the strategies evolve as described below:

• Categorical-2H, we pick up the features with either dcterms:subject or
skos:broader properties;

• Ontological-2H, we select the features containing either rdf-schema:subClassOf or
owl:equivalentClass properties;

• Factual-2H, we use the features not selected in the previous two classes.

Note that we did not place any domain-specific categorical/ontological features in the respective
lists. To provide a domain-agnostic evaluation, we have treated them as factual features. Table 6
shows the average variation of attack efficacy passing from the adoption of single-hop extracted
features to the double-hop extraction for LibraryThing and Yahoo!Movies.

Analyzing the results of attacks on Yahoo!Movies in Table 6, the first and foremost con-
sideration we can draw is that graph-based relatedness measures seem to have no positive
impact when exploiting a double-hop exploration. However, it can be observed that those
relatedness metrics already achieved impressive results with the first-hop exploration. Hence,
further improving the performance is somehow challenging. Indeed, in most cases, we can
observe a minimal variation in the double-hop performance. However, in some cases, the
attacks witness a more significant decrease, probably due to the injection of some noisy and



Table 6
Variation of Hit Ratio (𝐻𝑅) when using the features extracted from the second hop concerning the first
hop for both the LibraryThing and Yahoo!Movies datasets.

LibraryThing Yahoo!Movies
Attack Feature Type Similarity U-𝑘NN I-𝑘NN MF NeuMF U-𝑘NN I-𝑘NN MF NeuMF
Random Categorical Cosine -1.28 -1.63 -0.70 -20.07 -0.03 -0.01 -0.01 1.57

Katz -0.77 2.05 -0.20 -6.05 -0.11 -0.10 -0.06 -0.47
Exclusivity -2.12 0.14 -0.26 -21.09 -0.05 -0.04 -0.02 0.08

Ontological Cosine 1.97 0.64 0.35 13.45 0.16 0.12 0.10 1.31
Katz -3.00 -0.24 0.10 -38.28 -0.07 -0.07 -0.04 -0.29
Exclusivity -4.57 -1.92 -0.47 -46.85 -0.13 -0.09 -0.07 -0.66

Factual Cosine -0.64 -0.62 -0.11 46.94 -0.01 0.02 0.01 -0.62
Katz 0.93 2.60 0.07 56.47 -0.12 -0.09 -0.07 -0.73
Exclusivity -0.33 0.25 -0.39 -29.80 -0.16 -0.11 -0.08 -0.21

Average Categorical Cosine -0.87 -0.86 -0.21 -17.66 -0.03 0.00 -0.01 0.67
Katz 0.07 2.13 0.02 36.36 0.03 -0.03 0.05 3.81
Exclusivity -1.82 -0.09 -0.22 52.37 0.02 -0.02 0.03 -0.69

Ontological Cosine 0.47 -0.05 0.22 -8.44 -0.14 -0.12 -0.17 -0.19
Katz -3.92 -0.82 -0.52 -70.51 0.07 0.00 0.06 2.94
Exclusivity -4.49 -2.26 0.32 152.52 0.07 0.02 0.06 -0.77

Factual Cosine -0.19 0.29 0.06 123.56 -0.04 0.00 -0.04 0.22
Katz 0.64 1.73 -0.28 13.12 0.01 -0.02 0.04 -0.75
Exclusivity 0.53 0.87 -0.33 -2.11 0.06 0.03 0.09 -0.17

BandWagon Categorical Cosine -0.02 -0.55 -0.42 -51.24 -0.03 0.00 0.02 -0.01
Katz -1.93 -1.01 -0.04 -68.96 -0.06 0.02 0.00 8.87
Exclusivity 3.25 -0.32 0.07 36.58 0.02 -0.02 0.05 0.07

Ontological Cosine -1.37 -0.10 0.16 49.05 -0.14 -0.08 -0.20 -0.62
Katz -5.69 -0.18 2.05 -9.28 0.01 -0.01 0.10 0.78
Exclusivity -2.37 -0.45 -0.55 -35.24 -0.02 0.02 0.10 0.61

Factual Cosine 1.80 -0.14 -0.32 5.18 -0.07 -0.02 -0.02 -0.91
Katz 1.57 -0.45 1.00 190.44 0.02 0.05 0.07 -0.90
Exclusivity -1.57 -0.61 -1.52 140.00 0.07 0.03 0.08 -0.17

loosely related second-hop features. In general, given the high performance achieved with
a single-hop exploration, it seems that it is not worth exploring the second-hop, and thus
increasing the computational complexity and introducing the new challenge of loosely-related
second-hop features. Beyond graph-based relatedness, we observe that cosine vector similarity
almost always shows an improvement when considering second-hop features (particularly with
Ontological and Factual information). Finally, we have to observe that, even here, the NeuMF
model does not benefit from this new information.

Table 6 also shows the average attack efficacy variation for LibraryThing. Here, some of
the previously described behaviors are even more evident. In detail, we note that the cosine
similarity takes advantage of the second-hop information. In this case, we can also observe
Katz’s improvement, suggesting that this metric did not have unleashed its full potential with
only the first-hop features. Finally, in some cases, the second-hop information also improves
informed attacks (reaching a peak of 53% improvement for <Average, Factual, Exclusivity>),
confirming a less evident trend we found with Yahoo!Movies.
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