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Abstract
As large language models continue to develop in the field of AI, text generation systems are susceptible to a worri-
some phenomenon known as hallucination. In this study, we summarize recent compelling insights into hallucina-
tions in LLMs. We present a novel taxonomy of hallucinations from various text generation tasks, thus provideing
theoretical insights, detection methods and improvement approaches. Based on this, future research directions are
proposed. Our contributions are threefold: (1) We provide a complete taxonomy for hallucinations appearing in
text generation tasks; (2) We provide theoretical analyses of hallucinations in LLMs and provide existing detection
and improvement methods; (3) We propose several research directions that can be developed in the future. Our
literature library is available at https://github.com/hongbinye/Cognitive-Mirage-Hallucinations-in-LLMs.

Keywords
Taxonomy of Hallucination, Large Language Models, Hallucination Detection, Hallucination Correction

1. Introduction

In the ever-evolving realm of large language models (LLMs), a constellation of innovative creations
has emerged, such as GPT-3 [1], InstructGPT [2], FLAN [3], PaLM [4], LLaMA [5] and other notable
contributors [6, 7, 8, 9]. These models implicitly encode global knowledge within their parameters during
the pre-training phase [10, 11], offering valuable insights as knowledge repositories for downstream
tasks [12, 13, 14]. Nevertheless, the generalization of knowledge can result in memory distortion,
an inherent limitation that may give rise to potential inaccuracies [15]. Moreover, their ability to
represent knowledge is constrained by model scale and faces challenges in addressing long-tailed
knowledge problems [16, 17]. While the privacy and timeliness of data in the real world [18, 19]
unfortunately exacerbate this problem, leaving models difficult to maintain a comprehensive and up-to-
date understanding of the facts. These challenges present a serious obstacle to the reliability of LLMs,
which we refer to as hallucination. [20]. A prominent example of this drawback is that models typically
generate statements that appear reasonable but are either cognitively irrelevant or factually incorrect.
In light of this observation, hallucinations remain a critical challenge in medical [21, 22], financial [23]
and other knowledge-intensive fields due to the exacting accuracy requirements. Particularly, the
applications for legal case drafting showcase plausible interpretation as an aggregation of diverse
subjective perspectives [24].

Definition of Hallucination. As depicted in Figure 1, hallucination refers to the generation of texts or
responses that exhibit grammatical correctness, fluency, and authenticity, but deviate from the provided
source inputs (faithfulness) or do not align with factual accuracy (factualness) [25]. In traditional
NLP tasks [26], hallucinations are often synonymous with faithfulness: conflicting information leads
to Intrinsic Hallucination, i.e., LMs conflict with the input information when generating a response;
Conversely, generating ambiguous supplementary information may lead to Extrinsic Hallucination,
i.e., LMs produce personal names, historical events, or technical documents that are challenging to
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In which sport did the Czech stars Daniel Vacek and Hana 
Mandlíková gain professional status?

Daniel Vacek and Hana Mandlíková both gained 
professional status in cricket.

◆Daniel Vacek (born 1 April 1971) is a former 
tennis player from Czechoslovakia and the Czech 
Republic who turned professional in 1990. 

◆Hana Mandlíková (born 19 February 1962) is a 
former professional tennis player from 
Czechoslovakia who later obtained Australian 
citizenship.

Daniel Vacek and Hana Mandlíková both gained 
professional status in tennis.

Figure 1: Illustration of Hallucination in LLMs. While the initial response appears fluent, it fails to align with
the world knowledge retrieved from the external knowledge base.

verify. LLMs-oriented hallucinations instead prioritize factualness, focusing on whether the result can be
evidenced or negated by reference to external facts in the real world. Uncritical trust in LLMs can give
rise to a phenomenon Cognitive Mirage, contributing to misguided decision-making and a cascade of
unintended consequences [27].

Present work To effectively control the risk of hallucinations, we summarize recent progress in hallu-
cination theories and solutions in this paper. We propose to organize relevant work by a comprehensive
survey (Figure 2):

• Theoretical insight and mechanism analysis. We provide in-depth theoretical and mechanism
analysis from three typical perspectives: data collection, knowledge gap and optimization process,
reviewing the recent and relevant theories related to hallucinations (§2).

• Taxonomy of hallucination in LLMs. We conduct a comprehensive review of hallucination in
LLMs together with a task axis. We review the task-specific benchmarks with a comprehensive
comparison and summary (§3).

• Wide coverage on emerging hallucination detection and correction methods. We propose
a comprehensive investigation into the proactive detection (§4) and mitigation of hallucinations
(§5) in the era of LLMs. This is critical to study the most popular techniques for inspiring future
research directions (§6).

Related work As this topic is relatively nascent, only a few surveys exist. Closest to our work, [25]
analyzes hallucinatory content in task-specific research progress, which focuses on early works in
natural language generation field. Currently there are significant efforts to address hallucination in
LLMs. [28] covers methods for effectively collecting high-quality instructions for LLM alignment,
including the use of NLP benchmarks, human annotations, and leveraging strong LLMs. [29] discusses
self-correcting methods where LLM itself is prompted or guided to correct the hallucinations from its
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Figure 2: The overview structure of this review. We firstly analyze three crucial factors that contribute to
hallucinations and refine the categorization of hallucinations across text generation tasks. Subsequently, we
dutifully report current methods for detecting and mitigating hallucinations. Finally, we propose several potential
research directions to address evolving problems of hallucinations.

own outputs. Despite some benchmarks [30, 31, 32] is constructed to evaluate whether LLMs are able
to generate factual responses, these works scattered among various tasks have not been systematically
reviewed and analyzed. Different from those surveys, in this paper, we conduct a literature review on
hallucinations in LLMs, hoping to systematically understand the methodologies, compare different
methods and inspire new ideas.

2. Mechanism Analysis

For the sake of clean exposition, this section provides theoretical insight into mechanism analysis for
hallucinations in LLMs. As a regular LLM, the generative objective is modeled by a parameterized
probabilistic model 𝑝𝑔𝑒𝑛, and sampled to predict the next token in the sentence, thus generating the
entire sentence:

𝑝𝑔𝑒𝑛(𝑦𝑖) = ℱ𝜃(ℐ,𝒟, 𝑥, 𝑦𝑖<) (1)

where 𝑦𝑖 represents probable tokens at each step that can be selected by beam search from vocabulary
𝒱 . Note that the instructions ℐ utilize a variety of predefined templates according to different tasks [33].
Multifarious and high-quality in-context demonstrations 𝒟 are aimed at providing analogy samples
to reduce the cost of adapting models to new tasks [34]. Parameters 𝜃 implicitly memorize corpus
knowledge through diverse architectural ℱ such as decoder-only, encoder-only, or encoder-decoder
LLMs. As LLM-based systems can exhibit a variety of hallucinations, we summarise three primary
mechanism types for theoretical analysis, and each mechanism is correlated with a distinct training
factor.

Data Collection The parameters are implicitly stored within the model as a priori knowledge acquired
during the pre-training process. Given the varying quality and range of knowledge within the pre-trained
corpus, the information incorporated into the LLMs may be incomplete or outdated. In cases where
pertinent memories are unavailable, the LLM’s performance may deteriorates, resorting to rudimentary
corpus-based heuristics that rely on term frequencies to render judgements [35]. Another bias stems
from the capacity for contextual learning [36] when a few demonstrations are introduced as input to the
prefix context. Previous research [37, 38] has demonstrated that the acquisition of knowledge through
model learning demonstrations depends on disparities in label categories and the order of demonstration
samples. Likewise, multilingual LLMs encounter challenges related to hallucinations, particularly in
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Inference Classifier FIB [62], ExHalder [64], HaluEval [31], GAVIE [67], Fact-checking [68], CoNLI [69]

Uncertainty Metric BARTScore [70], KoK [71], SLAG [72], KLD [73], POLAR [74], ASTSN [75]

Self-Evaluation
LM-know [76], SelfCheckGPT [77], Do-LLM-Know [78], EOH [41], Self-Checker [79], LM-vs-LM [80],
SelfCk [81], RV [82]

Evidence Retrieval FActScore [83], CCV [84], RSE [85], FacTool [86]

Figure 3: Taxonomy of Hallucination Detection.

handling language pairs with limited resources or non-English translations [39]. Furthermore, cutting-
edge Large Vision-Language Models (LVLMs) exhibit instances of hallucinating common objects within
visual instructional datasets and prone to objects that frequently co-occur in the same image [40, 41].

Knowledge Gap Knowledge gaps are typically attributed to differences in input format between
the pre-training and fine-tuning stages [42]. Even when considering the automatic updating of textual
knowledge bases, the output can deviate from the expected corrections [43]. For example, questions
often do not align effectively with stored knowledge, and the available information remains unknown
until the questions are presented. This knowledge gap poses thorny challenges in balancing memory
with retrieved evidence, which is construed as a passive defense mechanism against the misuse of
retrieval [44]. To delve into this issue, [45] and [46] propose that disregarding retrieved evidence
introduces biased model knowledge, while mis-covering and over-thinking disrupt model behavior.
Furthermore, in scenarios where a cache component is utilized to offer historical memory during
training [47], the model also experiences inconsistency between the present hidden state and the hidden
state stored in the cache.

Optimization Process The maximum likelihood estimation and teacher-forcing training have the
potential to result in a phenomenon known as stochastic parroting [48], wherein the model is prompted
to imitate the training data without comprehension [49]. Specifically, exposure bias between the training
and testing stages have been demonstrated to lead to hallucinations within LLMs, particularly when
generating lengthy responses [50]. Besides, sampling techniques characterized by high uncertainty [51],
such as top-p and top-k, exacerbate the issue of hallucination. Furthermore, [27] observes that LLMs
tend to produce snowballing hallucinations to maintain coherence with earlier hallucinations, and
even when directed with prompts as "Let’s think step by step", they still generate ineffectual chains of
reasoning [13].

3. Taxonomy of Hallucination

In this paper, we mainly consider representative hallucinations, which are widely observed in various
downstream tasks, i.e. Machine Translation, Question and Answer, Dialog System, Summarization System,
Knowledge graph with LLMs, and Visual Question Answer. As shown in Table 1, these hallucinations are
identified complex taxonomy in numerous mainstream tasks associated with LLMs. In the following
sections, we will introduce representative types of hallucinations to be resolved.
∙ Machine Translation. Since perturbations (e.g., spellings or capital errors) can induce hallucinations
reliably, traditional machine translation models tend to validate instances memorised by the model
when subjected to perturbations [87, 88]. It is worth noting that hallucinations generated by LLMs are
mainly translation off-target, over-generation, or failed translation attempts [39]. While in low-resource
language setting, most models exhibit subpar performance due to the lack of annotated data [54]. In
contrast, they are vulnerable to increased amount of pre-trained languages in multilingual setting [89].
Subsequently, familial LLMs trained on different scales of monolingual data are proved to be viscous [39],
as the source of oscillatory hallucination pathology.



Paper Task ArchitectureResources Hallucination Types Research Method

Raunak et al. [52] Machine Transla-
tion

Enc-Dec IWSLT-2014 Under perturbation, Natural hal-
lucination

Source perturbation

Guerreiro et al. [53] Machine Transla-
tion

Enc-Dec WMT2018 Oscillatory hallucination, Largely
fluent hallucination

Consider a natural sce-
nario

Dale et al. [54] Machine Transla-
tion

Enc-Dec FLORES-200, Jig-
saw, Wikipedia

Full hallucination, Partial halluci-
nation, Word-level hallucination

Introduce pathology
detection

Pfeiffer et al. [55] Multilingual
Seq2seq

Enc-Dec XQuAD, TyDi,
XNLI, XL-Sum,
MASSIVE

Source language hallucination Evaluate source lan-
guage hallucination

Lin et al. [30] Question and An-
swer

Enc-Dec,
Only-Dec

TruthfulQA Imitative falsehoods Cause imitative false-
hoods

Zheng et al. [42] Question and An-
swer

Only-Dec HotpotQA,
BoolQ

Comprehension, Factualness,
Specificity, Inference Hallucina-
tion

Manual analysis of re-
sponses

Adlakha et al. [56] Question and An-
swer

Enc-Dec,
Only-Dec

NQ, HotpotQA,
TopiOCQA

Semantic equivalence, Symbolic
equivalence, Intrinsic ambiguity,
Granularity discrepancies, Incom-
plete, Enumeration, Satisfactory
Subset

Evaluate retrieval aug-
mented QA

Umapathi et al. [22] Question and An-
swer

Only-Dec MEDMCQA,
Headqa, US-
MILE, Medqa,
Pubmed

Reasoning hallucination,
Memory-based hallucination

Medical benchmark
Med-HALT

Dziri et al. [57] Dialog System Enc-Dec,
Only-Dec

WoW, CMU-
DOG, Topi-
calChat

Hallucination, Partial hallucina-
tion, Generic, Uncooperative

Infer exclusively
from the knowledge-
snippet

Das et al. [58] Dialog System Only-Dec OpenDialKG Extrinsic-Soft/Hard/ Grouped,
Intrinsic-Soft/ Hard/Repetitive,
History Corrupted

Analyze entity-level
fact hallucination

Dziri et al. [59] Dialog System Enc-Dec,
Only-Dec

WoW Hallucination, Generic, Uncooper-
ativeness

Hallucination-free
benchmark FaithDial

Dziri et al. [60] Dialog System Enc-Dec,
Only-Enc,
Only-Dec

WoW, CMU-
DOG, Topi-
calChat

Fully attributable, Not at-
tributable, Generic

Knowledge-grounded
interaction bench-
mark Begin

Sun et al. [61] Dialog System Enc-Dec,
Only-Dec

WoW Intrinsic hallucination, Extrinsic
hallucination

Sample responses for
conversation

Tam et al. [62] Summarization
System

Enc-Dec,
Only-Dec

CNN/DM, XSum Factually inconsistent summaries Generate summaries
from given models

Cao et al. [63] Summarization
System

Enc-Dec,
Only-Dec

MENT Non-hallucinated, Factual halluci-
nation, Non-factual hallucination,
Intrinsic hallucination

Label factual entities
from summarizations

Shen et al. [64] Summarization
System

Enc-Dec,
Only-Enc

NHNet News headline hallucination Majority vote of jour-
nalism degree holders

Qiu et al. [65] Summarization
System

Multiple
ADapters

XL-Sum Intrinsic hallucination, Extrinsic
hallucination

In a cross-lingual
transfer setting

Yu et al. [66] Knowledge-based
text generation

Enc-Dec,
Only-Dec

Encyclopedic,
ETC

Knowledge hallucination Evaluate knowledge
creating ability given
known facts

Mihindukulasooriya
et al. [32]

Knowledge graph
generation

Only-Dec TekGen,
WebNLG

Subject hallucination, relation hal-
lucination, object hallucination

Ontology driven
KGC benchmark
Text2KGBench

Li et al. [41] Visual Question
Answer

Enc-Dec MSCOCO Object hallucination Caption hallucination
assessment

Table 1
List of Representative Hallucination

∙ Question and Answer. Imperfect responses suffer from flawed external knowledge, knowledge
recall cues and reasoning instruction [42]. For example, LLMs are mostly unable to avoid answering
when provided with no relevant information, instead provide incomplete and plausible answers [56]. In



additon to external knowledge, memorized information without accurate, reliable and accessible source
also contributes to different types of hallucinations [22]. Though scaling laws suggest that perplexity
on the training distribution is positively correlated with parameter size, [30] further discovers that
scaling up models should increase the rate of imitative falsehoods.
∙ Dialog System. Some studies view dialogue models as unobtrusive imitators, which simulates the
distributional properties of data instead of generating faithful output. For example, Uncooperativeness
responses [57] originating from discourse phenomena inclines to output an exact copy of the entire
evidence. [58] reports more nuanced hallucinations in KG-grounded dialogue systems as analyzed
through human feedback. Similarly, FaithDial [59], BEGIN [60], MixCL [61] all implement experi-
ments on the WoW dataset to conduct a meta-evaluation of the hallucination in knowledge grounded
dialogue.
∙ Summarization System. Automatically generated abstracts based on LLMs may be fluent, but
they still typically lack faithfulness to the source document. Compared to the human evaluation of
traditional summarization models [26], the summarizations generated by LLMs can be categorized
into two major types: intrinsic hallucinations that distort the information present in the document;
extrinsic hallucinations that provide additional information that cannot be directly attributed to the
document [65]. Note that extrinsic hallucination as a metrics of factually consistent continuation of
inputs in LLMs is given more attention in summarisation systems [62, 64]. Furthermore, [63] subdivides
extrinsic hallucinations into factual and non-factual hallucinations. The former provides additional
world knowledge, which may benefit comprehensive understanding.
∙ Knowledge Graph with LLMs. Despite the promising progress in knowledge-based text geneartion,
it encounters intrinsic hallucinations inherent to the process where the generated text not only covers
the input information but also incorporates redundant details derived from its internal memorized
knowledge [90]. To address this, [66] establish a distinction between correctly generated knowledge
and knowledge hallucinations in terms of knowledge creation. Notably, the Virtual Knowledge Extraction
[91] underscores the potential generalization capabilities of LLMs in the realms of constructing and
inferring from knowledge graphs. [32] further empower LLMs to produce interpretable fact-checks
through a neural symbolic approach. Based on their fidelity to the source, hallucinations are defined as
subject hallucination, relation hallucination, and object hallucination.
∙ Cross-modal System. Augmented by the superior language capabilities of LLMs, performance of
cross-modal tasks achieves promising progress [92, 40]. However, despite replacing the original language
encoder with LLMs, Large Visual Language Models (LVLMs) [93] still generate object descriptions that
not present in the target image, denoted as object hallucinations [41]. Especially, the various failure
cases could be typically found in Visual Question Answering [41, 67], Image Captioning [94, 95, 96],
Report Generation [68] etc.

4. Hallucination Detection

Conventional hallucination detection mainly depends on task-specific metrics, such as ROUGE and
BLEU to evaluate the information overlap between source and target texts in summarization tasks [97],
while knowledge F1 to estimate the knowledge-aware ability of response generation [98]. These metrics
focus on measuring faithfulness of references and fail to provide an assessment of factualness. Despite
some reference-free works are proposed, plugin-based methods [99] suffer from world knowledge
limitation. QA-based matching metrics [100] lack knowledge completeness of source information.
NLI-based methods [60] are unable to support finer-grained hallucination checking as they are sentence-
level, besides entailment and hallucination problems are not equivalent. As the paradigm shift in
hallucination detection arising from the rapid development of LLMs, we present a novel taxonomy in
Fig 3 and introduce each category in following sections.
∙ Inference Classifier. The most straightforward strategy involves adopting classifiers to assess the
likelihood of hallucinations. Concretely, given a question 𝒬 and an answer 𝒜, an inferential classifier
𝒞 can be asked to determine whether the answer contains hallucinatory content ℋ via computing



𝑝(ℋ) = ℱ𝒞(𝒬,𝒜). Therefore, [64] employs the state-of-the-art LLMs to do end-to-end text generation
of detection results. Some other studies [31] finds that adding chains of thought indiscriminately
may intervene in the final judgement, whereas retrieving the knowledge properly resulted in gains.
Furthering this concept, the hinted classifer and explainer [64], used to generate intermediate process
labels and high-quality natural language explanations, are demonstrated to enhance the final predicted
class from a variety of perspectives. Subsequently, [62] suggests adopting a different classifier model
to the generated model, contributing to easier judgement of factual consistency. For radiology report
generation, binary classifiers [68] can be leveraged to measure the reliability by combining image
and text embedding. Unlike previous work that employs complex human-crafted rules to evaluate
object hallucinations, GAVIE [67] scores responses towards image content based on both accuracy and
relevance criteria, which evaluates the LMMs output in an open-ended manner.
∙ Uncertainty Metric. It is important to examine the correlation between the hallucination metric and
the quality of output from a variety of perspectives. One intuitive approach is to employ the probabilistic
output of the model itself, as ASTSN [75] calculates the models’ uncertainty about the identified concepts
by utilising the logit output values. Similarly, BARTSCORE [70] employs a universal notion that models
trained to convert generated text to reference output or source text will score higher when the generated
text is superior. It is an unsupervised metric that supports the addition of appropriate prompts to
improve the measure design, without human judgement to train. Furthermore, KoK [71] based on the
work of [101] evaluates answer uncertainty from three categories, i.e., subjectivity, hedges and text
uncertainty. However, SLAG [72] measures consistent factual beliefs in terms of paraphrase, logic, and
entailment. In addition to this, KLD [73] combines information theory-based metrics (e.g., entropy and
KL-divergence) to capture knowledge uncertainty. Beside expert-stipulated programmatic supervision,
POLAR [74] introduces Pareto optimal learning assessed risk score for estimating the confidence level
of a response.
∙ Self-Evaluation. To self-evaluate is challenging since the model might be overconfident about its
generated samples being correct. The motivating idea of SelfCheckGPT [77] is to use the ability of
the LLMs themselves to sample multiple responses and identify fictitious statements by measuring
the consistency of information among responses. [76] further illustrates that both the increase in
size and the demonstration of assessment can improve self-assessment. Beyond repetitive multiple
direct queries, [78] uses open-ended indirect queries and compares their answers to each other for an
agreed-upon score outcome. SelfCk [81] imposes appropriate constraints on the same LLM to generate
pairs of sentences triggering self-contradictions, which prompt the detection. In contrast, Polling-based
querying [41] reduce the complexity of judgement by randomly sampling query objects. Besides,
Self-Checker [79] decomposes complex statements into multiple simple statements, fact-checking
them one by one. However, [80] introduces two LLMs to drive the complex fact-checking reasoning
process by crosscheck.
∙ Evidence Retrieval. Evidence retrieval accomplishes factual detection by retrieving supporting
evidence related to hallucinations. To this end, Designing a claim-centric pipeline allows for a question-
retrieve-summary chain to effectively collect original evidence [84, 85]. Consequently, FActScore [83]
calculates the percentage of atomic facts supported by the given knowledge source. Towards adapting
the tasks that users in interaction with generative models, FacTool [86] proposes to integrate a variety
of tools into a task-agnostic and domain-agnostic detection framework, in order to assemble evidence
about the authenticity of the generated content.

5. Hallucination Correction

In this section, we delve into the methods to correct hallucination in terms of different aspects. As shown
in Figure 4, these hallucination correction paradigms have demonstrated strong dominance in many
mainstream NLP tasks. Note that these methods are not entirely orthogonal but could complement
each other as required by the tasks in practical applications. In the following sections, we will introduce
each methods as shown in Figure 5.
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Factual-Nucleus [51], CLR [61], Edit-TA [102], EWR [103], PURR [104], mmT5 [55], HISTALIGN [47],
TYE [105], ALLM [106], TRAC [107], Inference-Time [108], EasyEdit [109], DoLa [110]

Post-hoc Attribution
and Edit Technology

NP-Hunter [111], CoT [14], ORCA [112], RR [113], TRAK [114], Data-Portraits [115], Self-Refine [116],
Reflexion [117], QUIP [118], Verify-and-Edit [119], CoVe [120], CoNLI [69]

Leverage External
Knowledge

RETRO [121], IRCoT [122], POPQA [17], LLM-AUGMENTER [123], In-Context RALM [62],
GeneGPT [124], cTBL [125], CoK [126], FLARE [127], Gorilla [128], RETA-LLM [129], KnowledGPT [130]

Assessment
Feedback

LSHF [131], TLM [132], BRIO [133], LM-know [76], Chain-of-Hindsight [134], ZEROFEC [43],
CRITIC [135], VIVID [96], LMH-Snowball [27], MixAlign [45], REFEED [15], PaD [136], ALCE [137],
Do-LLM-Know [78], CRL [138], SR [139]

Mindset Society HLMTM [39], Multiagent-Debate [140], MAD [141], FORD [142], LM-vs-LM [80], PRD [143], SPP [144]

Figure 5: Taxonomy of Hallucination Correction.

∙ Parameter Adaptation. Parameters in LLMs store biases learned in pre-training, are often unaligned
with user intent. A cutting-edge strategy is to guide effective knowledge through parameter conditioning,
editing, and optimisation. For example, CLR [61] optimises to reduce the generation probability of
negative samples at span level utilising contrastive learning parameters. While introducing contextual
knowledge background that contradicts the model’s intrinsic prior knowledge, TYE [105] effectively
reduces the weight of prior knowledge through context-aware decoding method. Besides, PURR [104]
corrupts noise into the text, fine-tune compact editors, and denoise by merging relevant evidence. To
introduce additional cache component, HISTALIGN [47] discovers that its hidden state is not aligned
with the current hidden state, and proposes sequence information contrastive learning to improve
the reliability of memory parameters. Consequently, Edit-TA [102] mitigates the biases learnt in
pre-training from a task algorithm perspective. An intuition behind it is that parameter variations learnt
through negative example tasks could be perceived through weight variances. However as this fails to
take the importance of different negative examples into account, therefore EWR [103] proposes Fisher
information matrices to measure the uncertainty of their estimation, which is applied for the dialogue
systems to execute a parameter interpolation and remove hallucination. EasyEdit [109] summarises



methods for parameter editing, while minimising the influence to irrelevant parameter.
An efficient alternative is to identify task-specific parameters and exploit them. For example,

ALLM [106] aligns the parameter module with task-specific knowledge, and then generates the relevant
knowledge as additional context in background augmented prompts. Similarly, mmT5 [55] utilises
language-specific modules during pre-training to separate language-specific information from language-
independent information, demonstrating that adding language-specific modules can alleviate the curse
of multilinguality. Instead, TRAC [107] combines conformal prediction and global testing to augment
retrieval-based QA. The conservative strategy formulation ensures that a semantically equivalent
answer to the truthful answer is included in the prediction set.

Another parameter adaptation idea focuses on flexible sampling consistent with user requirements.
For instance, [51] observes that the randomness of sampling is more detrimental to factuality when
generating the latter part of a sentence. The factual-nucleus sampling algorithm is introduced to keep the
faithfulness of the generation while ensuring the quality and diversity. Besides, Inference-Time [108]
firstly identifies a set of attentional heads with high linear probing accuracy, and then shifts activation
in the inference process along the direction associated with factual knowledge.
∙ Post-hoc Attribution and Edit Technology. A source of hallucination is that LLMs may leverage
the patterns observed in the pre-training data for inference in a novel form. Recently, ORCA [112] reveals
problematic patterns in the behaviour of models by probing supporting data evidences from pre-training
data. Similarly, TRAK [114] and Data-Portraits [115] analyse whether models plagiarise or reference
existing resources by means of data attribution. QUIP [118] further demonstrates that providing text
that has been observed in the pre-training phase can improve the ability of LLMs to generate more
factual information. Furthermore, motivated by the gap between LLMs and human modes of thinking,
one intuition is to align the two modes of reasoning. Thus CoT [14] elicits faithful reasoning via a kind
of Chain-of-Thought (CoT) [13] prompts. Similarly, RR [113] retrieves relevant external knowledge
based on decomposed reasoning steps obtained from a CoT prompt. Since LLMs do not produce the
best output on the first attempt, Self-Refine [116] implements self-refinement algorithms through
iterative feedback and improvement. Reflexion [117] also employs verbal reinforcement to generate
reflective feedback by learning about prior failings. Verify-and-Edit [119] proposes a CoT-prompted
verify-and-edit framework, which improves the fidelity of predictions by post-editing the inference
chain based on externally retrieved knowledge. CoVe [120] emphasises the importance of independent
self-verification to prevent being influenced by other responses. Another source of hallucinations is to
describe factual content with incorrect retrievals. To recify this, NP-Hunter [111] follows a generate-
then-refine strategy whereby a generated response is amended using the KG so that the dialogue system
is able to correct potential hallucinations by querying the KG.
∙ Leverage External Knowledge. As an attempt to extend the language model for halucination
mitigation, a suggestion is to retrieve relevant documents from large textual databases. RETRO [121]
splits the input sequence into chunks and retrieves similar documents, while In-Context RALM [62]
places the selected document before the input text to improve the prediction. Furthermore, IRCoT [122]
interweaves CoT generation and document retrieval steps to guide LLMs. LLM-AUGMENTER [123] also
bases the responses of LLMs on integrated external knowledge and automated feedback to improve
the truthfulness score of the answers. Another work, CoK [126] iteratively analyses future content of
upcoming sentences, and then applies them as a query to retrieve relevant documents for the purposes
of re-generating sentences when they contain low confidence tokens. Similarly, RETA-LLM [129] creates
a complete pipeline to assist users in building their own domain-based LLM retrieval systems. Note that
in addition to document retrieval, diverse external knowledge queries coule be assembled into retrieval-
augmented LLM systems. For example, FLARE [127] leverages structured knowledge bases to support
complex queries and provide more straightforward factual statements. Further, KnowledGPT [130]
adopts program of thoughts (PoT) prompting, which generates codes to interact with knowledge bases.
While cTBL [125] proposes to enhance LLMs with tabular data in conversation settings. Besides,
GeneGPT [124] demonstrates that expertise can be accessed more easily and accurately by detecting and
executing API calls through contextual learning and augmented decoding algorithms. To support po-
tentially millions of ever-changing APIs, Gorilla [128] explores self-instruct fine-tuning and retrieval



for efficient API exploitation.
∙ Assessment Feedback. As language models become more sophisticated, evaluation feedback can
significantly improve the quality of generated text, as well as reduce the appearance of hallucinations. To
realise this concept, LSHF [131],TLM [132] and Chain-of-Hindsight [134] predict human preferences
through reinforcement learning and employs this as the reward function. In addition to enabling the
model to learn directly from the feedback of factual metrics in a sample-efficient manner [138], it
is also important to build in a self-evaluation function of the model to filter candidate generated
texts. For example, BRIO [133] empowers summarization model assessment, estimating probability
distributions of candidate outputs to rate the quality of candidate summaries. While LM-know [76]
is devoted to investigating whether LLMs can evaluate the validity of their own claims by detecting
the probability that they know the answer to a question. Consequently, Do-LLM-Know [78] queries
exclusively with black-box LLMs, and the results of queries repeatedly generated multiple times are
compared with each other to pass consistency checks. As missing citation quality evaluation affects
the final performance, ALCE [137] employs a natural language reasoning model to measure citation
quality and extends the integrated retrieval system. Similarly, CRITIC [135] proposes to interact with
appropriate tools to assess certain aspects of the text, and then to modify the output based on the
feedback obtained during the verification process. Note that automated error checking can also utilise
LLMs to generate text that conforms to tool interfaces. PaD [136] distills the LLMs with a synthetic
inference procedure, and the synthesis program obtained can be automatically compiled and executed
by an explainer. Further, iterative refinement processes are validated to effectively identify appropriate
details [96, 45, 15], and can stop early invalid reasoning chains, beneficially reducing the phenomenon
of hallucination snowballing [27].
∙Mindset Society. Human intelligence thrives on the concept of cognitive synergy, where collaboration
between different cognitive processes produces better results than isolated individual cognitive processes.
"Society of minds" [145] is believed to have the potential to significantly improve the performance of
LLMs and pave the way for consistency in language production and comprehension. For the purpose
of addressing hallucinations in large-scale multilingual models across different translation scenarios,
HLMTM [39] proposes a hybrid setting in which other translation systems can be requested to act as a
back-up system when the original system is hallucinating. Consequently, Multiagent-Debate [140]
employs multiple LLMs in several rounds to propose and debate their individual responses and reasoning
processes to reach a consensus final answer. As a result of this process, the models are encouraged
to construct answers that are consistent with both internal criticisations and responses from other
agents. Before a final answer is presented, the resultant community of models can hold and maintain
multiple reasoning chains and possible answers simultaneously. Based on this idea, MAD [141] adds a
judge-managed debate process, demonstrating that adaptive interruptions of debate and controlled "tit-
for-tat" states help to complete factual debates. Furthermore, FORD [142] proposes roundtable debates
that include more than two LLMs and emphasises that competent judges are essential to dominate the
debate. LM-vs-LM [80] also proposes multi-round interactions between LM and another LM to check
the factualness of original statements. Besides, PRD [143] proposes a peer rank and discussionbased
evaluation framework to arrive at a well-recognised assessment result that all peers are in agreement
with. In an effort to maintain strong reasoning, SPP [144] utilises LLMs to assign several fine-grained
roles, which effectively stimulates knowledge acquisition and reduces hallucinations.

6. Future Directions

Though numerous technical solutions have been proposed in the survey for hallucinations in LLMs,
there exist some potential directions:
∙ Data Construction Management. As previously discussed, the style, and knowledge of LLMs is
basically learned during model pre-training. High quality data present promising opportunities for
facilitating the reduction of hallucinations in LLMs [146]. Inspired by the basic rule of machine learning
models "Garbage input, garbage output", [147] proposes that data quality and diversity outweigh



the importance of fine-tuning large-scale instructions [148, 3, 149] and RLHF [6, 2]. To perform
efficiently in knowledge-intensive verticals, we argue that construction of entity-centred fine-tuned
instructions [150, 151, 152] is a promising direction that it can enhance the factuality of generated
entity information. Another feasible proposal is to incorporate a self-curation phase [153] in the
instruction construction process to rate the quality of candidate pairs. During the iteration process,
quality evaluation [154] based on manual or automated rule constraints could provide self-correction
capacity.
∙ Reasoning Mechanism Exploitation. The emerging CoT technique [14] stimulates the emergent
reasoning ability of LLMs by imitating intrinsic stream of thought. Recently, A primary improvement
is ToT [155] introduces tree and into the thought process, and provides a novel backtrack function.
However, the actual thinking process creates a complex network of ideas, as an example, people could
explore a particular chain of reasoning, backtrack or start a new chain of reasoning. GoT [156] extends
the dependencies between thoughts by constructing vertices with multiple incoming edges to aggregate
arbitrary thoughts. Since previous methods have no storages for intermediate results, CR [156] uses
cumulative and iterative manners to simulate human thought processes, and decompose the task
into smaller components. In addition to self-heuristic methods, PAL [157] and PoT [158] introduce
programming logic into the language space [159], expanding the ability to invoke external explainers.
As a summary, research based on human cognition helps to provide brilliant insights into the analysis
of hallucinations, such as Dual Process Theory [160], Three layer mental model [161], Computational
Theory of Mind [162], and Connectionism [163].
∙ Multi-modal Hallucination Survey. It has become a community consensus to establish powerful
Multimodal Large Language Models (MLLMs) [164, 165, 166] by taking advantage of excellent compre-
hension and reasoning capabilities of LLMs. [41] confirms the severity of hallucinations in MLLM by
object detecting and polling-based querying. The results indicate that they are highly susceptible to
object hallucination, and the generated description does not match the target image. Besides, [167] that
MLLMs have limited multimodal reasoning ability as well as dependence on spurious cues. Though
current study [168] provides a broad overview of MLLMs, the causation of hallucinations has not been
comprehensively investigated. In the future, as more sophisticated multi-model applications emerge,
in-depth analyses of the biased distribution resulting from misalignment among modes is a promising
research direction, to provide faithful modal interactions.

7. Conclusion and Vision

In this paper, we provide an overview of hallucinations in LLMs with new taxonomy, theoretical
insight, detection methods, correction methods and several future research directions. Note that it is
crucial to utilize LLMs in a responsible and beneficial manner. Furthermore, with sophisticated and
efficient detection methods proposed for various aspects, LLMs will provide human reliable and secure
information in broad application scenarios.
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