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Abstract
Recurrent Neural Cascades (RNCs) are the recurrent neural networks with no cyclic dependencies among recurrent
neurons. This class of recurrent neural networks is successfully used in practice. Besides training methods
for a fixed architecture such as backpropagation, the cascade architecture naturally allows for constructive
learning methods, where recurrent nodes are added incrementally one at a time, often yielding smaller networks.
Furthermore, acyclicity amounts to a structural prior that even for the same number of neurons yields a more
favourable sample complexity compared to a fully-connected architecture. A central question is whether the
advantages of the cascade architecture come at the cost of a reduced expressivity. We provide new insights
into this question. We show that the regular languages captured by RNCs with sign and tanh activation with
positive recurrent weights are the star-free regular languages. In order to establish our results we develop a novel
framework where the capabilities of RNCs are assessed by analysing which semigroups and groups a single
neuron is able to implement. A notable implication of our framework is that RNCs can achieve the expressivity
of all regular languages by introducing neurons that can implement groups.
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1. Introduction

Recurrent Neural Cascades (RNCs) are the subclass of recurrent neural networks where recurrent
neurons are cascaded. Namely, they can be layed out into a sequence so that every neuron has access
to the state of the preceding neurons as well as to the external input; and, at the same time, it has no
dependency on the subsequent neurons. RNCs have been successfully applied in many different areas,
including information diffusion in social networks [1], geological hazard predictions [2], automated
image annotation [3], intention recognition [4], and optics [5].

RNCs offer several advantages over fully-connected recurrent networks. First, RNCs have a more
favourable sample complexity, or dually better generalisation capabilities. This comes for the reduced
number of weights, half the one of a fully-connected recurrent network, which implies a smaller VC
dimension [6]. Second, the acyclic structure of the cascade architecture naturally allows for so-called
constructive learning techniques [7, 8]. These techniques construct the network architecture dynamically
during the training, often yielding smaller networks, faster training and improved generalisation. One
such method is recurrent cascade correlation, which builds the architecture incrementally adding one
recurrent neuron at a time [7]. RNCs emerge naturally here from the fact that every node does not
depend on a node added later. RNCs also admit learning methods for fixed architectures, such as
backpropagation through time [9], where only the weights are learned. For these methods the advantage
of the cascade architecture comes from the reduced number of weights.
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𝐶2 RegularStar-free All

Figure 1: Relevant classes of languages. The label ‘Star-free’ denotes the star-free regular languages, the label
‘𝐶2’ denotes an extension of the star-free regular languages characterised by the group 𝐶2, the label ‘Regular’
denotes the regular languages, and the label ‘All’ denotes all formal languages.

A central question is whether the advantages of the cascade architecture come at the cost of a reduced
expressivity compared to the fully-connected architecture. The studies so far have shown that there
exist regular languages that are not captured by RNCs with monotone activation such as tanh [10].
However, an exact characterisation of their expressitivity is still missing. Furthermore, it is unclear
whether the inability to capture all regular languages is a limitation of the cascade architecture, or
rather of the considered activation functions. We continue this investigation and provide new insights
into the capabilities of RNCs to capture regular languages.

2. Main Contributions

Expressivity Results. We develop an analysis of the capabilities of RNCs establishing the expressivity
results described next, involving the classes of languages depicted in Figure 1.

1. RNCs with sign or tanh activations capture the star-free regular languages. The expressivity
result already holds when recurrent weights are restricted to be positive. In terms of Figure 1,
their expressivity includes the green area.

2. RNCs with sign or tanh activations and positive recurrent weights do not capture any regular
language that is not star-free. In terms of Figure 1, their expressivity does not include the red and
yellow areas.

3. Allowing for negative recurrent weights properly extends the expressivity of RNCs with sign and
tanh activations beyond the star-free regular languages. One witnessing language is the language
of all strings of even length, which is not star-free. In terms of Figure 1, the former language
belongs to the yellow area, characterised by the group 𝐶2, the cyclic group of order two.

4. We show that in principle the expressivity of RNCs can be extended gradually to all regular
languages in a controlled way. It suffices to identify appropriate recurrent neurons. In particular,
neurons that can implement finite simple groups. As a first step, we show that second-order
sign and tanh neurons can implement the computations described by the group 𝐶2, the cyclic
group of order two. In terms of Figure 1, second-order neurons allow for capturing the languages
corresponding to the yellow area. Thus, RNCs of first-order and second-order neurons capture
the green and yellow areas.

Points 1 and 2 establish an important connection between recurrent neural cascades and star-free regular
languages. Specifically, they establish the importance of the sign of recurrent weights, and hence they
isolate the subclass RNC+ of recurrent neural cascades with positive recurrent weights as a particularly
important class. In fact, as a corollary of Points 1 and 2, the regular languages recognised by RNC+ are
exactly the star-free regular languages.

A Novel Framework to study the expressivity of RNNs. As a result of our investigation we develop
a novel framework where recurrent neural networks are analysed through the lens of Semigroup and
Group Theory. The framework is of independent interest, as its potential goes beyond our current



results. The framework allows for establishing the expressivity of RNCs by analysing the capabilities
of a single neuron from the point of view of which semigroups and groups it can implement. If a
neuron can implement the so-called flip-flop monoid, then cascades of such neurons capture the star-free
regular languages. To go beyond that, it is sufficient to introduce neurons that implement groups. Our
framework can be readily used to analyse the expressivity of RNCs with neurons that have not been
considered in this work. In particular, we introduce abstract flip-flop and group neurons, which are the
neural counterpart of the flip-flop monoid and of any given group. To show expressivity results, it is
sufficient to instantiate our abstract neurons. Specifically in this work we show how to instantiate flip-
flop neurons with (first-order) sign and tanh, as well as a family of grouplike neurons with second-order
sign and tanh. In a similar way, other results can be obtained by instantiating the abstract neurons with
different activation functions.

3. Significance of the Results

Our expressivity results provide a more comprehensive understanding of the expressivity of recurrent
neural cascades. Our analysis is fine-grained, and it highlights the role of different aspects of the
architecture of a neural network such as the role of cyclicity and the sign of recurrent weights. Notably,
our results establish an important connection between the subclass RNC+ and the star-free regular
languages. This makes RNC+ a strong candidate for learning temporal patterns, since the star-free
regular languages are a central class that corresponds to the expressivity of many well-known formalisms.
Such formalisms include star-free regular expressions from where they take their name [11], monadic
first-order logic on finite linearly-ordered domains [12], past temporal logic [13], and linear temporal logic
on finite traces [14]. They are also the languages recognised by counter-free automata as well as group-
free automata [11]. On one hand, our result introduces an opportunity of employing RNC+ for learning
targets that one would describe in any of the above formalisms. For such targets, RNCs are sufficiently
expressive and, compared to fully-connected recurrent neural networks, offer a more favorable sample
complexity along with a wider range of learning algorithms. On the other hand, it places RNCs alongside
well-understood formalisms with the possibility of establishing further connections and leveraging
many existing fundamental results.

Our results establish a formal correspondence between continuous systems such as recurrent neural
networks and discrete abstract objects such as automata, groups, and semigroups. Effectively they
bridge recurrent neural networks with algebraic automata theory, cf. [11], two fields that developed
independently and so far have not been considered to have any interaction.

4. Relevance to Neuro-Symbolic AI

The paper is relevant for Neuro-Symbolic AI since it studies the expressivity of recurrent neural
networks in terms of formal languages, establishing connections between neural formalisms such as
Recurrent Neural Cascades and symbolic formalisms such as automata and linear temporal logic. From
a methodological point of view, the paper analyses neural networks using methods typical of symbolic
AI such as automata theory.

5. Related Work

In our work, the connection between RNNs and automata plays an important role. Interestingly, the
connection appears to exist from the beginning of automata theory [15]: “In 1956 the series Automata
Studies (Shannonon and McCarthy [1956]) was published, and automata theory emerged as a relatively
autononmous discipline. [...] much interest centered on finite-state sequential machines, which first arose
not in the abstract form [...], but in connection with the input-output behaviour of a McCulloch-Pitts
net [...]”. The relationship between automata and the networks by [16] is discussed both in [17] and
[18]. Specifically, an arbitrary automaton can be captured by a McCulloch-Pitts network. Our results



reinforce this result, extending it to sign and tanh activation. The extension to tanh is important because
of its differentiability, and it requires a different set of techniques since it is not binary, but rather
real-valued. Furthermore, our results extend theirs by showing a correspondence between RNCs and
group-free automata.

The Turing-completeness of RNNs as an offline model of computation are studied in [19, 20, 21, 22].
In this setting, an RNN is allowed to first read the entire input sequence, and then return the output
after an arbitrary number of iterations, triggered by blank inputs. This differs from our study, which
focuses on the capabilities of RNNs as online machines, which process the input sequence one element
at a time, outputting a value at every step. This is the way they are used in many practical applications
such as Reinforcement Learning, cf. [23, 24, 25, 26].

The expressivity of RNNs in terms of whether they capture all rational series or not has been analysed
in [27]. This is a class of functions that includes all regular functions. Thus, it is a coarse-grained
analysis compared to ours, which focuses on subclasses of the regular languages.

The problem of latching one bit of information has been studied in [28] and [29]. This problem is
related to star-free regular languages, as it amounts to asking whether there is an automaton recognising
a language of the form 𝑠𝑟* where 𝑠 is a set command and 𝑟 is a read command. This is a subset of the
functionalities implemented by a flip-flop semiautomaton. Their work established conditions under
which a tanh neuron can latch a bit. Here we establish conditions guaranteeing that a tanh neuron
homomorphically represents a flip-flop semiautomaton, implying that it can latch a bit. An architecture
that amounts to a restricted class of RNCs has been considered in [30].

Transformers are another class of neural networks for sequential data [31]. They are a non-uniform
model of computation, in the sense that inputs of different lengths are processed by different networks.
This differs from RNNs which are a uniform model of computation. The expressivity of transformers has
been studied in [32, 33, 34, 35, 36, 37].
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