
Event-driven business process modeling and a quick
guide to application modernization

Pavel Hruby, Christian Vibe Scheller

REA Technology, http://reatechnology.com

Abstract
This paper presents an event-driven business process model (EDBPM), which is easy to understand
by non-technical experts and at the same time is precise enough to be used as a specification for
software design. In contrast to traditional process modeling approaches that emphasize the sequential
flow of activities, event-driven process modeling focuses on events and responses to the events. The
paper describes how the event-driven model is constructed, and then, at a high level, illustrates how
it can be transformed into a software design.

Keywords 1
Event-driven, business process modeling, problem domain, problem space

1. Introduction

Business processes are typically described by various diagramming techniques, such as BPMN
[5], VDML [6], and flowcharts [9]. An apparent problem with these descriptions is that the non-
technical experts must understand the notation and its precisely defined semantics. When
presenting a business process to people who do not fully understand what arrows, boxes, and
other symbols on a diagram exactly mean, they will get a false impression that the process
correctly describes what they think, even if it does not. They easily miss subtle details, cannot
assess all the consequences to which the process leads, and their feedback to the process
modeler is limited because they do not know how to express their thoughts on a diagram.

A solution to this problem could be an event-driven business process model: identify all
external events relevant to the organization, and describe in plain English how various
applications and system components respond to these events. The events are grouped to form
business processes, and usually, there are several business processes for each economic resource
controlled by the organization.

This paper is structured as follows: The first three sections deal with the problem domain
(also called problem space in domain-driven design [11]), and outline how to create an as-is and
to-be event-driven business process model. Sections 5 and 6 deal with the solution domain –
how to create an information architecture and integrations between applications so that the
software application fulfills the requirements of the business process model.

Proceedings of the 17th International Workshop on Value Modelling and Business Ontologies (VMBO 2024), February
26–27, 2024, 'sHertogenbosch, The Netherlands

 phruby@acm.org (P. Hruby); cvs@reatechnology.com (C. V. Scheller)
0000-0002-8278-283X (P. Hruby)

 © 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:phruby@acm.org
mailto:cvs@reatechnology.com
https://orcid.org/0000-0002-8278-283X

2. Motivation

Figure 1 illustrates a simple onboarding process for newly hired employees. After candidates
sign the contract, their data is collected and onboarding workflow is started, which
encompasses creating a user account and email address, assigning the software licenses, and
other tasks using the ITSM tool.

This BPMN diagram was created at the workshop with non-technical subject matter experts,
after which all participants agreed that this diagram represents the current onboarding process.
However, after several days, when this diagram was discussed again, many workshop
participants came up with their version of the onboarding process, and they all believed that
their specific version was illustrated in this diagram.

Figure 1: People say they understand this drawing, but they often don’t.

In BMPN it is too easy to create a syntactically correct model, although it is semantically
incorrect. A similar problem exists with other methods, too. Qingyu Wang evaluated five
business process modeling methods EPC, IDEF0, IDEF3, UML activity diagrams, and EDPM, and
concluded that “most of them are either ontologically incomplete or unclear” [10].

If this diagram was presented to the developers, it would lead to an IT solution that does not
meet the requirements and expectations of the subject matter experts, because the subject
matter experts and developers interpret it differently. The strange thing is that everyone thinks
they understand it perfectly.

A solution to this problem could be as follows. Instead of creating diagrams focusing on
sequences of activities, the focus is on understanding how organizational units and software
applications respond to the events that occur outside of the organization. The responses are

Ap
pl

ic
an

t
HR

IT

Lo
ca

l I
T

Signed
contract

Onboard
candidate

Personal data

Submit
onboarding

form into ITSM
tool

Create account
and email
address

Personal data

Fulfill tasks in
the ITSM tool

Assing licenses

Onboarding form Status set
to ‘hired’

Fulfill tasks in
the ITSM tool

Onboarding
workflow

Onboarding
workflow

Onboarding
workflow

described in plain English, eliminating the problem of interpreting the diagramming notation.
The English description also includes the exceptions and compensating activities. We will show
that this description is understandable to the subject matter experts and at the same time precise
enough for software architects to design the system.

3. Event-Driven Business Process Model

Creating the event-driven business process encompasses several steps briefly described below.
By event, we mean an external event that occurs in the real world. This is the main difference
between the event-driven business process model and Domain-Driven Design [11] and event-
driven software architectures, which focus on the events generated by applications because
their main goal is not business process description but software design and implementation.

 The modeling process starts by identifying all economic resources that users of an
enterprise would like to plan, monitor, and control, such as labor, hardware, software, material,
services, money, etc. A typical modernization project has only some economic resources in its
scope.

For each economic resource, we identify all events that occur in the real world and affect the
resource, i.e. change its state. For each event, we describe how various software applications
and organizational units respond to this event, see Table 1.

Table 1 shows two processes of economic resource labor; the joiner and leaver process. Note,
that this is a simplified example to illustrate the idea; the real-world complexity is discussed
later in this paper.

Table 1
Event-driven business process model for the labor economic resource

Process Event HR
System

User account
management

ITSM tool Local IT
support

Joiner
Process

Position
opened

register ignore ignore ignore

 Contract
signed

register -create a
UserID
-create an
email address

-create user
-run
onboarding
workflow

reserve
equipment

 One week
before start
date

ignore activate
account

ignore ignore

 Start date ignore ignore ignore issue
equipment

Leaver
process

Letter of
termination
received

register ignore run leaver
workflow

expect
equipment
return

 End date revoke
access
rights

deactivate
account

deactivate
account

receive
equipment

The core part of Table 1 is the second column labeled Event, containing all events changing
the state of the economic resource labor, thus representing the labor lifecycle. The Joiner and
Leaver processes in the first column are convenient groups of events. Processes are useful for
communication, but conceptually they are secondary modeling artifacts compared to the events.

The remaining columns represent the applications and organizational units that may
respond to the events. The HR (Human Resource) system, such as Workday and SAP Success
Factors, stores and manages employee data and supports the administrative activities of human
resource personnel. The User Account Management application is, for example, a bundle of
Microsoft Active Directory and Microsoft Exchange; these applications are tightly coupled and
in Table 1 are considered a single system. The ITSM tool (IT Service Management tool) is, for
example, ServiceNow, often used as an automation platform. The Local IT support is a physical
service desk, where technicians help employees with various IT issues.

The first event is a management decision of a Position opened, registered by the HR system,
and does not affect other applications. The Contract signed event is registered in the HR system,
and consequently, the User Account Management app creates a user ID and email address; the
user is also created in the ITSM tool, which runs the onboarding workflow, where the hiring
manager decides about the IT equipment for the new employee. Consequently, the Local IT
reserves the equipment. One week before the start date the User Account Management app
activates the already created user account. At the Start date event, the Local IT issues the
equipment to the new employee.

There is typically only one application that registers each external event and then notifies
other applications. This response is indicated in bold font in Table 1. Note that allowing several
applications to register the same external event could lead to race conditions during system
execution, as discussed in [3], page 11.

Responses to some events can be complex. For example, the Run Onboarding Workflow of
the ITSM tool may be an algorithm encompassing interactions and information exchange with
other applications and organizational units. This complexity is out of the scope of the event-
driven business process model and is handled in the following steps described later.

The result is a precise and accurate business process model, yet described in plain English,
so it is easy to understand by non-technical subject matter experts. The event-driven business
process model determines the software architecture supporting the described business
processes, as shown in sections 5 and 6.

3.1. Is the model complete?

The main goal of the event-driven business process model is wholeness [1]. The model should
describe the complete lifecycle of each economic resource, from its creation to consumption.
How to verify that the model contains all events affecting the economic resource?

One way is to examine the data stored in existing applications dealing with the given
economic resource. For example, the Person table in SAP Success Factors has 52 attributes,
though a typical HR organization uses only about half of them. For each attribute that HR uses,
there must exist at least one external event that sets this attribute, an event that reads this
attribute, and optionally an event that updates this attribute.

Another way is to create an economic model of the enterprise using, for example, the REA
[8] or POA [4] ontologies, and verify that all events specified by these ontologies are part of the
model. For example, for each process, there should be one or more events representing a plan

or intention, corresponding to the commitment in the REA ontology, and one or more events
representing the execution of the plan, corresponding to the economic event in the REA
ontology. Likewise, for each economic resource, there should be a process (a collection of
events) describing how the economic resource gets under the control of the enterprise and a
process describing how it leaves the enterprise’s control. For example, the economic resource
labor has the Joiner and Leaver processes, and for the economic resource material, there can be
the Purchase and Disposal processes or the Production and Consumption processes.

 A precise representation of the lifecycle is a state diagram, which can be created for each
economic resource. The state diagram will identify not only the events affecting the resource
but also the actions performed upon state change.

4. Describe the future state and roadmap

In this step, the subject matter experts identify the pain points and responses to real-world
events that need attention, and decide, which of them should be fully or partially automated, or
can run manually because they are very rare.

This is also an opportunity to rethink the business processes from scratch, such as whether
a response to a real-world event can be moved from one to another system.

Table 2 illustrates the future state event-driven process model. Two events were added: No-
show on the start date, and Leave confirmed. Notifications were added to some responses. By
notification here we mean that some info should be propagated from one application to another.
This can in practice be implemented as application-generated events; this is an implementation
decision belonging to the solution domain. The most important decision in this step is which
processes will be automated, indicated by the * symbol in Table 2. For example, on the Start date
event, HR responds manually by the action change status to active, and this status change of the
worker is automatically propagated to other systems, therefore, the action change status to
active is automatic in User Account Management and ITSM tool.

An example of decisions taken in this step is whether the run onboarding workflow should
be performed by the ITSM tool or the HR system. Likewise, can the creation of a User ID and
email address be automated by the User Account Management system from the data already
existing in the HR system? We also need to determine the exceptions and issue handling at the
business process level. What happens if the onboarding workflow gets stalled and does not
finish at a date before the start date, for example, should the hiring manager be notified? The
unhappy scenarios should be described in the table with happy path responses.

Table 2
Event-driven business process model - future state. The * symbols indicate automated responses
to the events.

Process Event HR System User account
management

ITSM tool Local IT
support

Joiner
Process

Position
opened

register ignore ignore ignore

 Contract
signed

register *create a
UserID*
*create an
email address*

create user
*run onboarding
workflow*
on failure:

reserve
equipment

create incident
notify initiator
on success:
*notify hiring
manager*

 One week
before start
date

ignore *activate
account*

*check workflow
completion*
notify HR

ignore

 No show on
the start date

*run no-
show
workflow*

*deactivate
account*

*run leaver
workflow *

ignore

 Start date change
status to
‘active’

*change status
to ‘active’*

*change status
to ‘active’*

issue
equipment

Leaver
process

Letter of
termination
received

register ignore ignore ignore

 Leave
confirmed

register ignore *start leaver
request*

expect
equipment
return

 End date run leave
controls

*deactivate
account*

*notify
supervisor*
notify HR

receive
equipment

The result is an updated model created in the previous step, determining the future state and

roadmap, aligned with user needs and the strategic vision.

4.1. Business rules

Specifying business rules is currently not part of the event-driven business process model.
However, specifying the decisions and logic triggering notifications is an important part of the
problem domain. The OMG standard Decision Model and Notation (DMN) [7], could be a useful
complement to the process model, for specifying the business rules.

5. Determine the information architecture and application
algorithms

As noted in section 3, there is typically a single application that registers an external event and
notifies other applications and organizational units about that event, i.e. the information about
the real-world events must be propagated through the application ecosystem. Table 1 and Table
2 purposely do not specify how this info is shared, because it is part of the solution domain.

The decision on how to propagate the information about the event through the system
belongs to the solution domain. These considerations are illustrated in Figure 2 and Figure 3.
Note that there are many other possibilities to design the information architecture, for example,
using an event broker that encapsulates the communication mechanism between the
applications.

In Figure 2 the HR System registers the Contract Signed event and propagates this
information to the User account Management, ITSM Tool, and the Local Support. In other

words, the HR System is the orchestrator in this interaction. This design will require
integrations between the HR System and User Account Management, and between the HR
System and the ITSM tool, and the HR system will need to implement the notification
mechanism to Local IT Support.

Figure 2: Response to the Contract Signed event – HR System orchestrates the flow

Figure 3 shows an alternative solution, where the HR System registers the Contract Signed
event and propagates it to the ITSM Tool. The ITSM Tool propagates it to User Account
Management and Local IT Support. In other words, the ITSM Tool is the orchestrator in this
interaction. This design does not require integration between the HR System and User Account
Management, though it requires integrations between the ITSM Tool and User Account
Management, and between the HR System and the ITSM Tool. The ITSM Tool must implement
the notification mechanism to Local IT Support.

Figure 3: Response to the Contract Signed event – ITSM Tool orchestrates the flow

Which solution to choose? As with any other architectural decision, information
architecture is a series of trade-offs.

HR System

User Account
Management ITSM Tool

Local IT Support

1 Contract Signed

1.3 Create User

1.4 Run Onboarding
Workflow

1.1 Create user ID

1.5 Reserve equipment

1.2 Create email address

HR System

User Account
Management ITSM Tool

Local IT Support

1 Contract Signed

1.1 Create User

1.2 Run Onboarding
Workflow1.3 Create user ID

1.5 Reserve equipment

1.4 Create email address

One aspect to consider is Conway’s law. Conway’s law observes that ”Organizations, which
design systems are constrained to produce designs which are copies of the communication
structures of these organizations” [2]. It appears that Conway’s law also works in the reverse
order. If the organization has a dominant department, then this department's preferred
application is a candidate for orchestrating the information propagation, not because of
technical reasons, but rather due to organizational dynamics. For example, if a service
management department is more dominant than the HR department, then the ITSM tool would
be a better choice to orchestrate the flows rather than the HR system.

At this step, we also design the application algorithms (fully or partially automated), such as
running the onboarding workflow. It requires a decision of the hiring manager to select
appropriate IT equipment for the employee, such as laptop model, application licenses, access
to production systems which will trigger additional workflow tasks, etc. Part of the design is
error handling, such as what to do if some tasks are not completed on time.

6. Implement the integrations and application algorithms

This step requires decisions about the actual data transfer mechanisms between applications,
such as REST, gRPC, file transfer using batch jobs, etc. Existing applications usually set
constraints on what transfer mechanisms are available.

To respond to the events and to run the application algorithms, each application and
organizational unit typically needs additional data. This determines the additional data flows
between the applications. For optimizing these data connections in a digital solution, we can
use several patterns for distributed computing, such as orchestration, usually suitable for
smaller systems, event broker typically used with microservices, or data mesh determining data
ownership.

Figure 4 illustrates two variants of the joiner process, corresponding to the information flows
in Figure 2 and Figure 3. At this phase, all data must be specified, e.g. the content of employee
data flow is specified including the data types at both providing and receiving ends, and
appropriate conversions whenever required. As the HR system has to store the account info
generated by the User Account Management system, such as user ID and email address, the
required integrations have been added.

As with any distributed computing system, the data are eventually consistent. That is,
different applications may, for some time, contain different versions of the data. It cannot be
completely avoided due to the CAP theorem, but fortunately, there are several ways to deal
with this problem. For example, we can design the information architecture in section 5 such
there is only a single way to propagate the truth; there are also other solutions, so the eventual
consistency does not become a business issue. We should also consider possible race conditions,
commutativity, idempotence, conflicting updates, single-sign-on, consolidated logging, etc.
outlined in [3].

Figure 4: Two variants of the joiner process integrations

7. Future work

We first of all welcome feedback, experience, and suggestions on future improvements to the
method. Based on our current experience with this method, the following areas should be
explored in more detail:

• Business rules. Business rules are not specified in the event table, though they belong
to the problem domain. A possible approach would be using the OMG standard for
Decision Model and Notation, DMM [7]. DMM provides a mechanism to model decision-
making associated with tasks and is designed to work together with business modeling
methods such as BPMN.

• Event ordering. While well-designed software applications must accept events
occurring in any order, in business process modeling there is often a natural ordering
of the events or assumptions that certain events can occur only if other events have
already occurred. For example, the event First Day at Work can occur only if the event
Contract Signed has already occurred. These logical dependencies between events are
currently not depicted in the model. We would like to further investigate a suitable way
to represent the event ordering. A possibility to specify event ordering precisely is
creating a state diagram for each economic resource.

• Ontological completeness. As the event-driven business process modeling has simple,
yet clear semantics, mapping its semantics to a higher-level ontology can evaluate the
expressiveness and ontological clarity of this method.

8. Discussion and conclusion

The event-driven business process model is a novel approach that provides the following
benefits:

• Completeness. The event-driven business process model is a top-down approach, that
encompasses all economic resources that the organization wants to plan, monitor, and

HR System

User Account
Management

ITSM Tool

Local IT Support

batch job
REST

email

employee data
employee data

equipment
reservation

HR System

User Account
Management

ITSM Tool

Local IT Support

batch
job

REST

email

employee data

employee data

equiment
reservation

account
info

REST

REST

account info

REST

account
info

Design A
HR system orchestrates the flow

Design B
ITSM tool orchestrates the flow

control, ensuring nothing important has been forgotten. It could otherwise easily
happen when more complex information models are created only using the expertise
and intuition of the modeler.

• Understandability and clear communication. Although it is a precise model, it is
expressed in plain English and is easily understandable to non-technical subject matter
experts. Anecdotal evidence, also discussed in the motivation section, is when a process
has been presented as a BPMN diagram to the HR personnel, their response was “looks
good”. However, presenting the same process to the same audience as an event-driven
business process model started a discussion and constructive feedback – some
application responses were not accurately described, some responses needed additional
clarification and some pain points of the current implementation were identified.

• Consistency. The event-driven business process model makes it visible how each event
is affecting various applications of the enterprise.

• Business process automation. The event-driven business process model enables the
subject matter experts to make a qualified decision on whether a response to an event
should be automated.

• Clear distinction between the problem and solution domain. Keeping this distinction is
extremely important in software design, in communicating with vendors of software
solutions, etc. The event-driven business process model specifies the actions of
applications and organizational units but does not specify how the information is shared
between them. This is part of the solution domain, i.e. software architecture and design.

We can conclude by emphasizing that an event-driven business process model is a declarative
representation of a business process. Traditional process modeling approaches focus on
sequential flows of activities. This is useful for explaining the happy path, but if all variants and
exceptions should also be included, the description becomes overly complex. The event-driven
business process model describes a process invariant, often much simpler, which makes it easier
for software architects to design solutions implementing the process.

Acknowledgements

Thanks to the participants of the Value Modeling and Business Ontologies (VMBO) 2024
workshop and the anonymous reviewers for their valuable comments and suggestions. Also,
thanks to insights of Fritz Henglein and Boris Düdder of the University of Copenhagen about
Conway’s law applicable in the reverse order, i.e. an IT system, that does not follow the
organizational communication structure, will encounter resistance. Last but not least, we thank
Graham Gal of Isenberg School of Management, University of Massachusetts Amherst, who
during discussions at VMBO 2023 recommended using the application data model to discover
additional events to make the event-driven business model complete.

References

[1] Christopher Alexander The Nature of Order: An Essay on the Art of Building and the
Nature of the Universe, Center for Environmental Structure, 2002.

[2] Melvin Conway, ”How Do Committees Invent?” Datamation: 14 (5): 28–31, 1968.
http://www.melconway.com/Home/pdf/committees.pdf

[3] Pavel Hruby, Christian Vibe Scheller, ”Microservice Architecture Patterns for Enterprise
Applications Supporting Business Agility”, PLoP '22: Proceedings of the 29th Conference
on Pattern Languages of Programs, October 2022, Article No.: 21, Pages 1–21, URL:
https://dl.acm.org/doi/abs/10.5555/3631672.3631698

[4] Christian Vibe Scheller, Pavel Hruby, ”Business Process and Value Delivery Modeling
Using Possession, Ownership, and Availability (POA) in Enterprises and Business
Networks”. Journal of Information Systems, summer 2016, Vol. 30, No. 2, pp. 5-47. URL:
https://www.researchgate.net/publication/287454859_Business_Process_and_Value_Deliv
ery_Modeling_Using_Possession_Ownership_and_Availability_POA_in_Enterprises_and
_Business_Networks

[5] OMG, Business Process Model and Notation (BPMN), 2011, URL: https://www.bpmn.org/
[6] OMG, Value Delivery Metamodel (VDML), 2018, URL: https://www.omg.org/spec/VDML/
[7] OMG, Decision Model and Notation (DMN), 2023, URL: https://www.omg.org/dmn/
[8] Guido Geerts, Wiliam E. McCarthy, The Ontological Foundations of REA Enterprise

Information Systems. Annual Meeting of the American Accounting Association,
Philadelphia, PA, 2000, URL: https://msu.edu/user/mccarth4/Alabama.doc

[9] ISO 5807, Information processing, Documentation symbols and conventions for data,
program and system flowcharts, program network charts, and system resources charts,
1985, URL: https://www.iso.org/standard/11955.html

[10] Qingyu Wang: A Proposal for a Process Modeling Methodology, MSc Thesis, The
University of British Columbia, Faculty of Commerce and Business Administration, 2002
URL: https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/831/items/1.0090921

[11] Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software,
Pearson International, 2003

https://dl.acm.org/doi/abs/10.5555/3631672.3631698
https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/831/items/1.0090921

