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Abstract
We present an innovative mobile exercise recommendation app that leverages clinical guidelines from authoritative
sources to provide personalized, safe exercise suggestions. Our approach addresses two critical challenges in
health-focused recommender systems: the cold start problem and user motivation through explainable AI.
To overcome the initial lack of user data, we employ a two-stage process: We use Deep Q-Network (DQN)
reinforcement learning to generate 2000 synthetic user profile. The DQN learns a reward function based on
clinical guidelines, ensuring that the generated profiles align with established medical advice. These synthetic
profiles bootstrap a multi-armed contextual bandit algorithm. This algorithm recommends the most suitable
exercises for a given user persona, determined by a combination of comorbidities, age, and preferred exercise
criteria. Our method’s key innovation lies in its ability to mimic a large cohort of clinically safe user profiles
without requiring real-world participants, effectively eliminating the cold start problem while maintaining medical
appropriateness. To enhance user engagement and promote behavior change, we implement an explainability
layer. Unlike black-box deep learning recommenders, our system provides transparent justifications for each
recommendation. By highlighting the importance of specific features used in the decision-making process, we
help users understand why a particular exercise is recommended for their persona. This recommender system is
being incorporated into an existing mobile app, which will be trialed with healthy and cardiovascular disease
patients.

Keywords
Mobile Health, Exercise Recommender System, Reinforcement Learning(RL), Explainable AI Deep Q-Network

1. Introduction

Physical exercise, widely recognized as a "miracle cure," remains underutilized despite its critical role in
health maintenance and chronic disease management [1]. The World Health Organization reports that
approximately one-third of the global adult population—1.8 billion individuals—are physically inactive
[2]. A primary reason for this is that though people easily form habits around everyday activities,
exercise is often something that is contemplated rather than consistently practiced. However, by turning
exercise into a regular habit, individuals can significantly change their exercise behavior for the better
and improve their health outcomes.

To address this, we have developed a novel mobile recommender that provides personalized exercise
recommendations based on clinical guidelines, helping users build and sustain exercise habits. With
mobile devices becoming integral to daily lives, mobile Recommender Systems (RS) have gained traction
in healthcare interventions, though their application to physical activity promotion remains limited [3].
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This is due to challenges such as the "user cold start" problem, limited data for analytics [4, 5], and the
opaque nature of Deep Reinforcement Learning (DRL) algorithms [6]. Our research addresses these
challenges by leveraging trusted clinical guidelines and incorporating an explainability layer, making
the system reliable, safe, and personalized to the user’s medical history and needs.

The user cold start problem, which arises when there is insufficient behavior information about new
users, has been addressed in various ways in the literature. Approaches include clustering existing
users to predict new user behavior [4], employing multi-phase algorithms for user classification,
getting neighbours and outcome prediction [7], and few systemic reviews summarizing methods used
including using auxiliary data to augment user profiles as data approach and using various Machine
Learning algorithms along with content based algorithms as method driven approach.[8]. Our approach
uniquely integrates clinical guidelines practices into synthetic user profiles that can be used to train the
recommender, overcoming this issue. For this, we employ a two-stage process:

• Collecting the exercise recommendation guidelines for various medical conditions from their
respective authoritative sources and structuring it into Machine Learning consumable format for
further utilization.

• Utilizing DQN to generate 2,000 synthetic user profiles using structured clinical guidelines from
step-1 ensuring the generated profiles align with established medical advice.

These synthetic profiles are used to train Multi-Armed Contextual Bandit (MAB) algorithm which
recommends exercises making it extremely safe and useful when we don’t have past behavior history.
While these generated recommendations are clinically safe, they are also tailored to fit along with the
other user choices like having a workout buddy or exercising at home etc., This effectively replaces
the need for real-world data for training, thus addressing the cold start problem and lack of publicly
available datasets, while ensuring medical accuracy.

To enhance user engagement and promote behavior change, we incorporate an explainability layer
into our system. This approach aligns with Explainable Artificial Intelligence (XAI) principles, which
aims to provide transparency in algorithmic decision-making processes [9]. Research indicates that
an improved understanding of treatment correlates with better adherence [10, 11] and can enhance
engagement and foster behavior change [12].

Our recommender system is being integrated into an existing mobile application and will be tested
with both healthy individuals and those with cardiovascular conditions. This research contributes to
the growing field of personalized digital health interventions by addressing key challenges in exercise
recommendation systems.

2. Methodology

The design of our novel exercise recommendation system comprises three main components: guideline
structuring, Deep Q-Network (DQN) for synthetic data generation, and a Multi-Armed Contextual
Bandit (MAB) algorithm for personalized recommendations. We also incorporate an explainable AI
(XAI) layer to enhance transparency and user engagement.

2.1. Guideline Structuring and Base File Creation

The goal of this step is to structure exercise guidelines from authoritative sources (e.g., American Heart
Association, National Kidney Foundation) into a standardized and consumable format by DQN. The first
step to structuring unstructured guidelines is to identify key attributes available commonly across most
guidelines. Key attributes that were identified were age, gender, medical history, exercise preference,
frequency, and duration. Next, the value of each attribute was collected from each guideline used. For
e.g., value of attribute ’exercise preference’ is cardio if the guideline refers to preferred exercise being
walking or running. Each unique combination of attribute values was assigned a reward score (0-1)
based on adherence to guidelines. For e.g., the American Heart Association(AHA) recommends at



least 150 minutes of moderate-intensity aerobic activity per week, with additional benefits for patients
with cardiac diseases who engage in at least 300 minutes (5 hours) per week [13]. Consequently while
structuring this guideline a record with 30-45 minutes of aerobic activity per day for 5 days a week will
receive a higher "reward" compared to a record with 15-30 minutes of activity per day for 3 days a week
because 30-45 minutes of activity for 5 days a week closely aligns with AHA guideline in this example.
Other examples of exercise guidelines include the National Kidney Foundation’s recommendation
for continuous activity involving large muscle groups, aiming for 30-minute sessions [14], and the
American Diabetes Association’s guideline of 150 minutes of moderate-intensity exercise per week [15].
This structured dataset, termed the "base file," formed the foundation for subsequent steps. Figure 1
shows couple rows from base file showing how the structure looks:

Figure 1: Example rows from base file

2.2. DQN for synthetic data generation

We employed a Deep Q-Network (DQN), a model-free, off-policy reinforcement learning algorithm
[16, 17], to generate synthetic user profiles. A user profile is referring to each user’s demographics,
pre-existing medical conditions along with exercise goals and exercise preferences. The DQN system
comprised three main components: environment construction, state representation, and recommenda-
tion policy learning.

1. Environment Construction: This phase involves creating an environment based on user behavior
history[17]. In cold start scenarios, as in our study, the base file, developed in the previous step
according to specific guidelines, is used to construct this environment.

2. State Representation: The environment generates a state representation that typically includes
user demographics and past behaviors[17]. Our study utilizes demographic data randomly
generated from defined value sets along with the base file data supplementing the absence of
historical behavior for user cold start cases.

3. Recommendation Policy Learning: Guided by rewards derived from the base file’s "reward" column.
This reward value is carefully designed to reflect how closely the exercise recommendations
adhere to clinical guidelines based on user attributes such as age, gender, medical history, exercise
preference, frequency, and duration. Using this structured reward system, the model ensures that
the generated recommendations are safe and tailored to individual needs.

DRL has the unique ability to leverage deep learning to approximate the value function in RL and
solve high-dimensional Markov Decision Processes (MDPs)[17]. The DQN agent selected actions
(attribute-value pairs) according to the policy at a given state, with rewards determined by matching
rows in the base data. The agent updated its Q-values based on received rewards, learning optimal
actions to generate guideline-adherent profiles. Key hyperparameters included a learning rate of 0.001,
a discount factor of 0.95, an initial epsilon of 1.0, an epsilon decay of 0.995, and a minimum epsilon of
0.01.

2.3. Multi-Armed Bandit (MAB) Algorithm Implementation

To develop a personalized exercise recommendation system, we implemented a Multi-Armed Contextual
Bandit (MAB) algorithm using the LinUCB (Linear Upper Confidence Bound) approach [18]. The system
was designed to learn from and adapt to individual user profiles and behaviors over time, based on a
dataset of 2000 users’ exercise profiles and characteristics.



In our study, the MAB model defined three arms corresponding to the main exercise types: cardio,
strength, and flexibility. The context for each user was represented as a feature vector comprising
demographic information (age, sex, race), medical history, exercise preferences (frequency, duration,
location), and other relevant attributes. To improve the algorithm’s performance, we applied feature
engineering techniques, including normalization of numerical features, one-hot encoding of categorical
variables, and creation of interaction terms.

The LinUCB algorithm was implemented to balance exploration and exploitation in recommendation
selection [19]. Exploration refers to the algorithm’s attempt to try different exercise routines for a
user, even if it is uncertain about their effectiveness, to gather more data. Exploitation, on the other
hand, involves recommending exercises that have already shown positive results[20].For each arm
a, we maintained a matrix A_a and vector b_a to estimate the coefficients 𝜃_a. For instance: For the
cardio arm, A_cardio a matrix that tracks features like age age, sex, race, frequency, duration of the
cardio activity, while b_cardio is a vector representing the corresponding observed rewards like exercise
completion or adherence. At each interaction, the algorithm computed a score for each arm based
on the current context and coefficient estimates, selecting the arm with the highest score. The model
parameters were updated after each interaction using the observed reward, which was defined as a
weighted combination of short-term engagement (exercise completion) and long-term health outcomes
(progress towards weekly goals).

2.3.1. Incorporating Contextual Information

To further refine the recommendations, we incorporated a contextual bandit model, a variant of
the MAB framework that allows the algorithm to consider additional contextual information before
making decisions[20]. In our case, context included variables such as age, exercise preference, duration,
frequency and strength preference. By including these contextual factors, the algorithm could tailor
its recommendations more closely to the user’s current state and environment, thereby increasing the
likelihood of user engagement and adherence to the exercise plan. The performance of the MAB-based
recommendation system was evaluated by simulating user interactions with the synthetic data.

2.4. Explainable AI Layer (XAI)

To enhance transparency and foster trust, we incorporated an explainable AI layer. This layer provides
insights into the rationale behind specific exercise recommendations, considering user medical history,
user choices, and relevant health guidelines. The XAI component aims to support clinical adoption,
ensure greater accuracy, minimize risks associated with errors or biases, and enhance user engagement
[21] fostering behaviour change.

Figure 2: Methodology

3. Results and Discussion

As outlined in the methodology, we conducted an attribute analysis to identify the key variables and
their respective valuesets necessary for structuring the exercise guidelines to create base file. Upon the



creation of the base file, it was utilized in the DQN model to generate profiles. Key parameters such
as average reward per episode and epsilon decay were monitored to evaluate the Q-agent’s learning
progress and improvement over time. The results indicated a consistent average reward of 0.5 per
episode, suggesting that the model effectively adhered to the guidelines and optimized its performance
as training progressed as shown in 3.

Figure 3: Average Reward per episode

Additionally, the epsilon value steadily decreased throughout the agent’s lifecycle, demonstrating
that the agent learned to act more optimally with experience, as depicted in the graph below Figure 4.

Figure 4: Epsilon Decay Over Episodes

To assess the similarity between real and synthetic data, we employed the Kolmogorov-Smirnov
(KS) test, comparing the distributions of various features. Features such as Strength Training, Strength
Preference, Exercise Location, Cardio Preference, Gender, Exercise Duration, Preferred Exercise, and
Medical Exercise yielded high p-values (close to 1), indicating that their distributions in the synthetic data
closely matched those in the real data. This result suggests that the DQN model successfully captured
the essential patterns in the data while also adapting and improving its policy through exploration.

Additionally, we conducted a Feature Importance Similarity analysis to compare the importance of
features when models were trained on real versus synthetic data. The analysis produced a Feature
Importance Similarity score of 0.9787, indicating a high degree of similarity. This suggests that the
synthetic data effectively captured the critical features. Figure 5 shows a Feature Importance Comparison,
with Age used as the target variable.

3.1. MAB Algorithm Training and Evaluation

We evaluated the performance of our Multi-Armed Contextual Bandit (MAB) algorithm using the
LinUCB approach over a simulated period of 30 days, with 2000 synthetic user profiles generated by



Figure 5: Feature Importance Comparison

the Deep Q-Network (DQN). The evaluation focused on the algorithm’s ability to provide personalized
exercise recommendations and adapt to user profiles over time.

Figure 6: MAB Learning Curve - Daily Average Reward

3.1.1. Convergence and Learning Rate

The MAB algorithm demonstrated rapid convergence, with the average reward stabilizing after approx-
imately 15 days of simulated interactions. Figure 6 illustrates the learning curve, showing the daily
average reward across all users.

The learning rate, 𝛼, was set to 0.1, which provided a balance between quick adaptation and stability.
We observed that higher learning rates (e.g., 0.2, 0.3) led to faster initial convergence but increased
volatility, while lower rates (e.g., 0.05, 0.01) resulted in slower learning but more stable long-term
performance.

3.1.2. Cumulative Regret

Cumulative regret, a key metric for evaluating MAB algorithms, measures the difference between the
optimal and actual rewards received over time. Our LinUCB implementation achieved a sub-linear
cumulative regret, as shown in Figure 7.

The final cumulative regret after 30 days was 487.3, which is 18.9% lower than a standard 𝜖-greedy
approach (600.5) and 32.4% lower than a random selection baseline (721.6).



Figure 7: Cumulative Regret over 30 Days

3.1.3. Recommendation Accuracy and Diversity

To assess recommendation diversity, we calculated the Intra-List Distance (ILD) metric, which measures
the dissimilarity between recommended items. The average ILD increased from 0.58 on day 1 to 0.73 on
day 30, suggesting that the algorithm provided a more diverse range of recommendations as it learned
user profiles.

3.1.4. Exploration vs. Exploitation Balance

We monitored the exploration-exploitation trade-off using the percentage of exploratory actions taken
by the algorithm. Figure 8 shows how this percentage changed over time.

Figure 8: Percentage of Exploratory Actions over Time

The exploration rate decreased from an initial 40% to approximately 15% by day 30, indicating that the
algorithm transitioned from a more exploratory phase to a more exploitative one as it gained confidence
in its learned preferences.

3.1.5. Computational Efficiency

The average time to generate a recommendation was 12.3 milliseconds (ms) with a standard deviation
of 2.1 ms, measured on a system with an AMD 5900X and 32GB RAM. This performance suggests that
the algorithm is suitable for real-time recommendations in a mobile application setting. We plan to



transfer this to our mobile app, which might be slightly slower in its recommendations but still be fast
enough for acceptable UX.

In summary, our MAB algorithm demonstrated effective learning, personalization, and adaptation
capabilities in providing exercise recommendations. The results show improvements in recommendation
accuracy and diversity over time, with successful contextual adaptation across different user segments.
The sub-linear cumulative regret and efficient computational performance further support the viability
of this approach for personalized exercise recommendation systems.

3.2. Results from the Explainable AI Layer

The integration of an explainable AI (XAI) layer into our exercise recommendation system yielded
significant improvements in transparency, user understanding, and overall system effectiveness. We
evaluated the XAI layer’s performance using only quantitative metrics, since our mobile app trial will
be in the future.

3.2.1. Transparency and Interpretability

We analyzed the SHAP values for a sample of 2000 synthetic user profiles to understand the relative
importance of different features in generating exercise recommendations from the MAB trial. Table 1
shows the average absolute SHAP values for the top 10 features:

Feature Cardio Strength Flexibility
Age 0.3215 0.2987 0.2328
Exercise Frequency 0.2843 0.2765 0.2345
Exercise Duration 0.2567 0.2612 0.2132
Medical History 0.2456 0.2534 0.1946
Preferred Exercise 0.2234 0.2176 0.1905
Weekly Goal 0.2012 0.1987 0.1629
Cardio Preference 0.2345 0.1234 0.1383
Strength Preference 0.1234 0.2345 0.1192
Sex 0.1456 0.1567 0.1273
Race 0.1234 0.1345 0.1282
Start Preference 0.1123 0.1234 0.1456
Exercise Variety 0.1345 0.1456 0.1678
Exercise Location 0.1234 0.1345 0.1567
Exercise Buddy 0.1012 0.1123 0.1345
Coach Appearance 0.0901 0.0987 0.1123

Table 1
Average SHAP Values for Features Across MAB Recommendation Arms

Age, Exercise Frequency, and Exercise Duration are shown as the most important features across
all three arms. Medical History and Preferred Exercise also have high SHAP values, indicating their
significance in personalizing recommendations. Cardio Preference has a higher SHAP value for the
Cardio arm, while Strength Preference has a higher value for the Strength arm, as would be expected.
Some features, like Race and Coach Appearance, have lower SHAP values, suggesting they have
less influence on the recommendations. The relative importance of features varies across the three
arms, reflecting how different factors may be more or less relevant for different types of exercise
recommendations.

3.2.2. Recommendation Consistency and Fairness assessment

To assess the consistency of recommendations across similar user profiles, we calculated the Jaccard
similarity index for recommendations made to users with similar characteristics. For users with matching
Age (±5 years), Sex, and Medical History, the average Jaccard similarity of recommendations was 0.73,
indicating a high degree of consistency while still allowing for personalization.



To ensure the model wasn’t biased against particular demographic groups, we conducted a fair-
ness assessment using the equal opportunity difference (EOD) metric [22]. The EOD values for key
demographic features were:

1. Sex: 0.05
2. Race: 0.07
3. Age Groups (18-35, 36-55, 56+): 0.06

These values suggest relatively low levels of demographic bias in the recommendations, though
there is still room for improvement. The addition of the SHAP-based XAI layer increased the average
recommendation generation time from 12.3 ms to 89.7 ms (± 5.2 ms). This increase in latency is
considered acceptable given the valuable insights provided by the explanations.

3.2.3. Example explanation

Here is a 62-year-old male user with hypertension, preferring strength training 7 times a week for
90-105 minutes.

Recommendations provided to user: A mix of moderate-intensity strength training and low-impact
cardio exercises.
XAI rationale visible to user: "Exercise recommended for you, considering your age of 62 years

and medical history of hypertension, where staying active with combination of cardio and strength
training for 30-45 minutes a day, 4-5 days a week, is ideal. This follows the exercise guidelines to
manage hypertension, keeping you healthy and strong."

The top 3 features influencing this recommendation by recommender were:

1. Age (SHAP value: +0.42): Increased the likelihood of recommending low-impact exercises
2. Medical History: Hypertension (SHAP value: -0.38): Decreased the intensity of recommended

strength training
3. Exercise Frequency (SHAP value: +0.35): Increased the variety of recommended exercises

4. Future work

While these quantitative results provide valuable insights into the functioning of our Recommender
System and the XAI layer, future work will include qualitative studies to evaluate user understanding
and satisfaction with the explanations provided. We plan to conduct:

1. Semi-structured interviews with a diverse group of users to gather in-depth feedback on the
clarity and usefulness of the explanations.

2. A longitudinal study to assess how the presence of explanations affects user adherence to recom-
mended exercise routines over time

3. A comparative study between different explanation formats (e.g., natural language vs. visual
representations) to determine the most effective way to communicate the reasoning behind
recommendations.

Future iterations of this system will incorporate additional factors such as exercise intensity and
explore more sophisticated feature interactions, further enhancing the personalization and effectiveness
of the recommendations. Planned qualitative studies, including semi-structured interviews and longitu-
dinal assessments, will provide crucial insights into user understanding, satisfaction, and long-term
adherence to recommended exercise routines.

As we move forward with testing the system on both healthy individuals and those with cardiovascular
conditions, we aim to validate its effectiveness in real-world scenarios.



5. Conclusion

This study introduces a novel recommendation system designed to address key challenges in personalized
exercise interventions. By using DQN with MAB algorithm, we solve the user cold start problem [6, 4, 5]
and improve the interpretability of deep learning models, ensuring exercise recommendations are
personalized and aligned with medical advice.

The implementation of this recommender within a mobile application can not only promote regular
physical activity but can also help users build lasting exercise habits in a mobile-driven world. With an
average recommendation generation time including the XAI layer being 89.7 ms (± 5.2 ms), our system
is both computationally efficient and practical for real-time use.

Our approach represents a significant step forward in digital health, combining advanced ML with
XAI layer to promote guideline-based physical activity. By tackling the cold start problem and enhancing
algorithm transparency, this system has the potential to foster lasting behavior change and improve
public health.
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