
Standard-Oriented Ontology Export of Domain Catalogues
from Data Dictionaries
Sebastian Schilling1,*, Christian Clemen1

1Dresden University of Applied Sciences, Faculty of Spatial Information, Friedrich-List-Platz 1, Dresden, 01069, Germany

Abstract
The use of standardised data dictionaries is becoming increasingly important in the construction industry.
Property servers such as the buildingSMART Data Dictionary (bSDD), the freeBIM property server or the BIM
Portal Germany have therefore been developed for the uniform provision of data dictionaries. These are used
in the Building Information Modelling (BIM) process to describe objects with predefined properties. At the
same time, data dictionaries are being linked across domain boundaries. This may be achieved with the help of
Semantic Web technologies. The data dictionaries must also be made available as ontologies, as it has already
been done with the ifcOWL ontology for the Industry Foundation Classes (IFC), for example. The aim must be for
property servers to be able to export the uniform, and in future also cross-domain, data dictionaries as ontologies
in the Web Ontology Language (OWL). Initial approaches for the bSDD have already been developed. Our paper
presents an approach for an OWL export based on the ISO 12006-3 meta standard. The metamodel described
therein is used to organise information about construction works. It is implemented in our self-developed open
source property server editor datacat. The export is explained with the 2016 version of the ISO 12006-3 standard,
while the implementation of the new 2022 version is currently in progress. The two versions of the standard will
be compared and their changes presented.

Keywords
Data dictionary, Property server, Ontology export, ISO 12006-3, BIM, GIS

1. Introduction

While the Geographic Information System (GIS) industry has established, common standards for data
dictionaries for many years, the development of common dictionaries in the construction industry has
only just begun. To date, each discipline involved in construction has its own, inconsistently structured
data dictionaries for describing construction objects. As a result, even though they mean the same thing,
different terms are often used in planning or to describe objects that actually exist on the construction
site. Another problem is that the data dictionaries are usually not centralised and freely accessible,
which can also lead to inconsistencies due to different versions within a data dictionary. With the
spread of Building Information Modelling (BIM), uniformly structured data dictionaries are becoming
increasingly important. The data dictionaries should be made freely available on the web and uniformly
searchable so that BIM software can use them. This has led to the development of property servers, the
first of such servers are already in use. Examples include the buildingSMART Data Dictionary (bSDD),
the Austrian freeBIM property server and the property module of the German BIM Portal.

At the same time, the linking of data dictionaries is becoming increasingly important in the context of
Linked Data and the Semantic Web, as it makes it easier to find and display relationships. The creation
of ontologies from data dictionaries and their export must therefore also be a goal in the development of
property servers. At present, approaches for exporting dictionary content in the Resource Description
Framework (RDF) as a semantic graph are only available for bSDD. We want to explore how dictionaries
can be exported as ontologies and present our standard-oriented approach.

The construction industry has established the ISO 12006-3 [1] standard, which provides a metamodel
for the organisation of information about construction objects. This standard is also used as the basis

LDAC 2024: 12th Linked Data in Architecture and Construction Workshop, June 13–14, 2024, Bochum, Germany
*Corresponding author.
$ sebastian.schilling@htw-dresden.de (S. Schilling); christian.clemen@htw-dresden.de (C. Clemen)
� 0000-0003-3718-4598 (S. Schilling); 000-0002-5807-7698 (C. Clemen)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

10

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:sebastian.schilling@htw-dresden.de
mailto:christian.clemen@htw-dresden.de
https://orcid.org/0000-0003-3718-4598
https://orcid.org/000-0002-5807-7698
https://creativecommons.org/licenses/by/4.0

for property servers, such as the bSDD. Our research aims to define an ontology export based on this
standard, so that the ontologies of different domains may later be linked more easily. In addition, the
standardised Dublin Core1 metadata schema will be used to describe the exported ontology concepts.
We restrict the ontology so that we stay within the domain of the concepts described and enable data
exchange in BIM. This also helps with the automated creation of ontologies from the property server.
The modelling decisions in each domain have already been made by the experts when creating the data
dictionary in the property server, so that classes, properties and values are available in a standardised
schema. The advantage of this is that users of the property server do not need any knowledge of formal
ontologies. We have implemented this approach in our open source property server called datacat. As a
new version of the standard ISO 12006-3:2016 with a changed metamodel has been published in 2022,
we also show the differences between the versions and give an outlook on how to update the property
server and migrate the existing data dictionaries.

In the following Section 2 we first explain existing approaches (Section 2.1) before introducing our
datacat property server (Section 2.2). In the Section 3 we explain our approach to ontology export and
its implementation in datacat. The changes in the new metamodel of the ISO 12006-3 standard are
described in Section 4. Finally, the results and limitations are discussed in Section 5, before a summary
and outlook are given in Section 6.

2. Related Work

The use of standardised data dictionaries as ontologies is not a new concept and is already used in
the health sector, for example, to link health data2. However, ontologies are not yet widely used in
BIM and GIS. In BIM, this is also due to the fact that data dictionaries have not yet been used in a
standardised, cross-domain and centralised way. In the construction industry, there is no technical
standard schema against which all data dictionaries are defined. In the GIS domain, however, there are
the widely used standards of the ISO 19000 series, in particular ISO 19101-1 [2] and ISO 19110 [3], which
define the structure of feature catalogues. The feature catalogues are used to describe the characteristics
of geographic data sets. They therefore have a very similar function to data dictionaries in BIM. The
property servers are a tool intended to solve the problem of inconsistent data dictionary descriptions
in the construction industry. According to [4], a property server can be defined as follows: "Running
in the background for the user, a property server provides harmonised, unique and machine-readable
properties and offers a standard for the parameterised description of digital construction components."
The major innovation of property servers in the construction industry is that data dictionaries are
made available and updated centrally. This makes them much easier to use in a consistent way than
decentralised distribution via files that quickly become outdated and circulate in different versions.

2.1. Existing Ontology Export Approaches

Exporting entire data dictionaries, individual classes and/or properties or property sets from property
servers as resources or as ontologies in RDF has already been investigated with several approaches.

A dynamic OWL OpenAPI, an interface for querying the properties of IFC elements, which returns
the properties and property sets in the Web Ontology Language (OWL) is implemented in [5]. This
is done by querying the properties of the IFC element via the bSDD API, mapping the query result to
a small ontology and finally outputting it via an OpenAPI. Property sets are defined as OWL object
properties whose domain is the IFC class. The individual properties of the property set are defined as
OWL datatype properties. In principle, this approach is not only applicable to the IFC classification, but
can also be generalised to other classifications of bSDD with adaptations. This approach focuses on
standardising the output as OpenAPI. The ontology used for mapping is not specified and does not
appear to be standardised. In addition, the approach has only been tested on IFC classifications.

1https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
2https://bioportal.bioontology.org/ontologies/SNOMEDCT

11

Another approach [6] mentions that bSDD concepts have been transformed into OWL resources,
firstly to standardise the concepts and secondly to be able to use the multilingual description of the
concepts. How the transformation is done is not described. However, this paper shows how the data
dictionaries exported from property servers can be used as an ontology. The concepts exported from
the bSDD are linked to the IFC ontology and other ontologies for exchange requirements, and are used
to create and check rules to semantically validate IFC models.

There is no standard way to generate RDF graphs using the bSDD API is described in [7]. They give
an example of what an RDF graph of a concept might look like. They also describe a ’conceptType’
property, which can take the concept types from the ISO 12006-3:2016 [1] standard as values. We will
use this typing in a similar way in our approach. [7] also note that the properties from bSDD can be
used in the ontology as object and datatype properties, which is how we will define them.

An approach for creating product descriptions using the ISO 12006-3:2006 meta standard is presented
in [8]. They propose a hierarchical metamodel with four layers. Layer M0 is the kernel layer and
contains the ISO 12006-3:2006 meta concepts. Building on this, domain-specific concepts are created as
instances of the meta concepts in Concept Library Layer M1. The Product Kernel Layer M2 defines
additional concepts that help to convert abstract concepts from layer M1 into instances. In the Product
Instantiation Layer M3, products are instantiated using layers M1 and M2. The advantage of this
approach is that the abstract concepts can be kept strictly separate from the product instances. Layers
M0 and M1 are similar to the structure of property servers, where the ISO 12006-3 metamodel is used to
define concepts in data dictionaries. We follow a similar approach to export the data dictionaries as
ontologies from the property server.

The export from the property server can also be done first in another format, e.g., JSON, and then
translated into the Web Ontology Language (OWL) using a converter, as described in [9].

Alternatively, there is no export and a link is only created from the ontology to the property server
via the GUIDs of the concepts. In their approach, [10] do not export features from the bSDD. Instead,
they add a feature to the classes of their Building Product Ontology (BPO) in which the corresponding
globally unique identifier from the bSDD can be entered to create a link to the non-RDF data. However,
this makes the semantic interpretation of the bSDD information with tools difficult.

The bSDD has a preview feature for its API3 to return API requests as RDF in RDF/XML and TURTLE
syntax. However, this only applies to the ’/api/Class/v1’ endpoint. It returns the requested class with its
metadata in RDF. All associated properties and subclasses can also be returned via query attributes.

The presented approaches differ, among other things, in what is to be exported. On the one hand,
there are approaches for exporting an entire data dictionary or a sub-catalogue as an ontology, and
on the other hand, there are approaches for exporting individual feature sets for specific classes. Both
variants make sense depending on the use case and should therefore be implemented in our software.
Table 1 summarises the presented approaches with their similarities and differences.

Table 1
Overview of existing research in property server export

Paper Export Level Source Method Exported Concepts

[5] OWL bSDD OpenAPI IFC property sets + properties
[6] OWL bSDD unknown concepts
[7] OWL bSDD unknown unknown
[10] no export bSDD reference property with bSDD GUID nothing
[?] RDF bSDD OpenAPI classes + properties

A description of how features from the construction industry can be represented in the Semantic Web
is given in [11]. Among other things, they describe how simple and complex features can be created in
graphs and defined using different approaches. The approach we want to use is to define properties as
instances of the OWL concepts owl:ObjectProperty and owl:DatatypeProperty. Unlike other approaches,

3https://app.swaggerhub.com/apis/buildingSMART/Dictionaries/v1#/

12

such as using rdf:Property or owl:AnnotationProperty, this approach also allows the modelling of OWL
class restrictions, which we need for our research.

2.2. datacat Editor for Managing and Publishing Data Dictionaries

The well-known property servers such as the bSDD, the freeBIM property server and the BIM Portal
Germany are hosted by an organisation through which other organisations can make their data dic-
tionaries freely available with read-only access. The creation and editing of data dictionaries tends
to take a backseat. For this reason, as described in [12], we have developed a property server with
an editor to serve these work processes. Our property server can also be hosted by anyone and used
locally on a computer. Our datacat4 is an open source software consisting of the property server in the
backend and a web frontend for editing and creating data dictionary entries. Like bSDD, the property
server is based on the ISO 12006-3:2016 [1] standard. This standard provides a metamodel for describing
concepts in the construction industry. In addition, the ISO 23387 [13] standard is used for data templates.
Figure 1 describes the datacat layers and how they are linked. The concepts are stored in a Neo4j graph
database and organised using the meta standard. On top of this is the business logic that processes
the information according to the user’s input. The backend provides its functionalities via a GraphQL
interface and accesses the graph database internally.

The datacat editor is a browser-based interface that communicates with the backend via the GraphQL
interface. The interface has been tailored to the needs of users who have already used data dictionary
creation during development. Thanks to the open source approach, the editor can be adapted for other
disciplines or a completely different editor can be developed for the backend. In order to have read
access to the concepts, the implemented interface requires users to register once in the datacat editor.
An administrator of the data dictionary must grant the user write access to add, edit and delete concepts.
The user can view the concepts separately by type or as a simplified tree structure and follow the
links between the concepts. Concepts are added in two steps. First, the concepts are created, then the
relationships between the concepts are created. The data dictionaries can currently be exported in three
ways:

1. The concepts and their relationships are exported as a CSV file.
2. Individual concepts are queried as JSON via the GraphQL interface.
3. The data dictionary or parts of it are exported as an ontology in TURTLE syntax.

The third approach will be presented in the following section.

 Neo4j Database Business Logic GraphQL API

Cypher Queries

JSON ResponseSerialise Response

Resolve Queries

datacat

datacat editor
JSON Response

GraphQL Queries
 GUI

Insert / Update / Delete Concepts
Manage Catalogues
Import / Export Catalogues

Figure 1: The datacat layers and their interconnections

4https://github.com/dd-bim/datacat

13

3. Standard-oriented Ontology Export of Domain Catalogues

The concepts created by the expert groups in datacat should be usable in BIM projects across disciplines,
i.e. in different domains and software systems, for the classification and attribution of objects. We
need the concepts as an ontology so that we can link the domains in a Semantic Web context. The
structured storage of the concepts in the property server is already graph-based and based on the
ISO 12006-3:2016 meta standard, so the step to an ontology is not far away. In our approach, we
want to implement the meta standard as a meta schema in order to be able to export all concepts in
a standardised, standard-oriented way as an ontology. This will have the advantage that we can link
ontologies from different domains easily because the concepts have the same structure. Figure 2 shows
an example of the different levels from the metamodel to the classified object instance. The figure is
based on the M0 to M3 layer structure from [8]. The meta concept layer contains the ISO 12006-3:2016
metamodel. The metamodel is instantiated in concept dictionary layer when domain experts provide
their expertise as concepts in the property server. In the ontology layer, the concepts are translated into
OWL to make the information available in the Semantic Web technology stack. In the instance layer,
the resulting ontology can be used to describe instances in RDF.

Meta Concept
Layer

xtdSubject

xtdProperty

xtdMeasureWithUnit

xtdValue

relatingObject

relatedProperties

xtdRelAssignsProperties

relatingProperty

relatedMeasures

xtdRelAssignsMeasures

relatingMeasure

relatedValues

xtdRelAssignValues

Concept
Dictionary Layer

"Lighting"

"LightingType"

"LightingTypeList"

"Lantern"

relatingObject

relatedProperties

"relation_1"

relatingProperty

relatedMeasures

"relation_2"

relatingMeasure

relatedValues

"relation_3"

Ontology Layer

:LightingType
a owl:ObjectProperty

:Lighting
a owl:Class

:hasValue
a owl:ObjectProperty

:LightingTypeList
a owl:Class

:Value
a owl:Class

Instance Layer

:LightingType

ex:StreetLighting_1

:hasValue

ex:LightingTypeList_4

:Lantern

rdf:typerepresents concept in ontologyinstanceOf

Figure 2: Process layers from the meta concept to the object instance (based on [8])

The GraphQL interface of the property server is used for the ontology export to query the concepts.
The interface already has predefined queries for the datacat editor for all concept types and relationships,
which can also be used by our exporter.

As a result of our research and implementation, the full data dictionary can be exported from the
property server as an ontology, or a concept of type xtdSubject with its associated features, predefined
value lists and units can be exported by specifying the name.

14

Figure 3 shows the four main steps that are performed in our programme. First, a query is formulated
to the GraphQL interface. Its response in JSON format is interpreted and then transformed into OWL
concepts according to the concept type of the metamodel. Finally, the Turtle syntax is used to output
the ontology. The process is described in detail in the following.

owl:Named
Individual

owl:Class

owl:Object
Property

xtdSubject

xtdProperty

xtdMeasureWithUnit

xtdValue

Transform Meta
Model to Ontology

:Lighting rdf:type owl:Class ;
 rdfs:label "Lighting"@en .
 rdfs:subClassOf [
 rdf:type owl:Restriction ;
 owl:onProperty :LightingType ;
 owl:allValuesFrom :ListOfLightingTypes
] .

:LightingType rdf:type owl:ObjectProperty ;
 rdfs:label "Lighting Type"@en ;
 rdfs:range :ListofLightingTypes .

:ListOfLightingTypes rdf:type owl:Class ;
 rdfs:label "List of Lighting Types"@en .
 rdfs:subClassOf [
 rdf:type owl:Restriction ;
 owl:onProperty :hasValue ;
 owl:allValuesFrom owl:unionOf (
 :Lantern
 :GroundLight)
] .

Ontology in
Turtle Syntax

"findSubjects": {
 "nodes": [{
 "name": "Lighting",
 "properties": [{
 "name": "Lighting Type",
 "assignedMeasures": {
 "nodes": [{
 "relatedMeasures": [{
 "name": "List of Lighting Types",
 "assignedValues": {
 "nodes": [{
 "relatedValues": [{
 "name": "Lantern"},{
 "name": "Ground Light"
}]}]}}]}]}}]}]}

GraphQL
JSON Response

findSubjects(input: {query: "Lighting"}) {
 nodes {
 name
 properties {
 name
 assignedMeasures {
 nodes {
 relatedMeasures {
 name
 assignedValues {
 nodes {
 relatedValues {
 name
}}}}}}}}}

GraphQL
Query

Figure 3: Data processing sequence for ontology export from the property server

If a specific concept shall be exported, first a GraphQL query findSubjects is sent to the property
server with the name as an input parameter. As GraphQL queries can be nested at will, the various
concepts linked by relationships can be output in the same query, along with the simple attributes. The
returned data in JSON format is mainly mapped to standardised ontology elements and added to the
result graph as a triple. If xtdProperty concepts are found, they are linked to the xtdSubject concept as
owl:ObjectProperty. Finally, the result graph is output to a file in Turtle syntax. We want to explain our
design choices here.

The concepts are stored in the property server as instances of the classes of the ISO 12006-3:2016
metamodel. All concepts may also contain metadata. This includes, for example, the creation date, the
creator, a globally unique identifier (GUID) and a description of the concept. We use the Dublin Core
standard to store and use the metadata in the ontology. We have chosen this standard because it is
also a globally recognised ontology and therefore well suited for comparing and linking ontologies. In
order to maintain the reference to ISO 12006-3:2016, the attribute dcterms:type is used to append the
concept type of the standard to each exported concept. This also contributes to a better comparability
of the ontologies. Table 2 gives an overview of the metadata attributes used. Other metadata, such as
VersionID and VersionDate, must be defined as attributes themselves, as no standardised ontology has
been found for them.

15

By attaching the GUID from the property server as metadata to the ontology elements, the dictionary
entry can be uniquely referenced.

Table 2
Standard-based metadata properties from other ontologies

Metadata from datacat Used ontology property

name rdfs:label
creator dcterms:creator
created dcterms:created
modified dcterms:modified
description dcterms:description
id dcterms:identifier
ISO 12006-3 concept type dcterms:type

Prefixes rdfs: http://www.w3.org/2000/01/rdf-schema#
dcterms: http://purl.org/dc/terms/

The name of the concept can be stored in the property server in multiple languages by appending
the appropriate language tag to the string as it is entered. We use the name as an identifier to make
the ontology easier to read. Using the GUID for URIs (Uniform Resource Identifiers) would be better
because of its uniqueness, but it has been found that the identifiers of concepts imported into datacat
are not always suitable for URIs because they contain forbidden characters. In addition, the uniqueness
of names is already taken into account in datacat. We currently use the German name because not all
concepts in the property server have an English name. However, when exporting, you can choose to
use either the German or the English name. There are no conventions for naming concepts in datacat.
To ensure that URIs are valid and easy to read, the names must be adapted to the standard naming
conventions during the ontology export process. This means removing spaces and special characters,
stringing together words with camel case and replacing German umlauts.

To ensure that the true name is retained in the ontology and that the names of other languages can
be used, they are attached to the concept as rdfs:label with a language tag. This means that the concept
can later be searched in different languages in the ontology and can be used internationally.

The exact implementation of each concept type of the metamodel in OWL is not definite due to the
many possibilities of specification. Design decisions must therefore be made here. We have decided to
start with xtdSubject as owl:Class and gradually integrate the related concepts. The xtdProperty concepts
are modelled as owl:ObjectProperty. The approach of modelling properties in OWL as owl:ObjectProperty
has been adopted from [11]. The properties are associated with xtdMeasureWithUnit concepts, which
are modelled as owl:Class. The xtdValue and xtdUnit concepts are linked to these as instances of an
owl:Class :Value respectively :Unit with the self-defined owl:ObjectProperty hasValue and hasUnit. The
concrete values and units can each be a list from where a concept can be selected. We have initially
defined owl:ObjectProperty ourselves here, as we still need to standardise it on the datacat property
server side. Until now, domain experts have defined their own xtdUnit concepts for units each time
they create a dictionary, which leads to redundant work and leaves room for errors. As units are usually
standardised, there are collections of units such as the Ontology of Units of Measure5 (OM) that can be
used to provide predefined units. When implemented in datacat, the hasValue and hasUnit properties
from the OM ontology can be used to further standardise ontology export.

Restrictions need to be applied so that only the relationships that are actually allowed in the data
dictionary are mapped in the ontology. In OWL, this is achieved by using axioms. The owl:ObjectProperty
gets the attributes rdfs:domain and rdfs:range, which restricts their use to the resprective classes. The
owl:Class concepts receive a restriction via rdfs:subClassOf, which regulates the linking of one or more
other concepts via a owl:ObjectProperty. Multiple linkable concepts are defined as owl:unionOf via the
attribute owl:allValuesFrom as a range for the property. The example in Listing 1 shows the class axiom

5https://bioportal.bioontology.org/ontologies/OM

16

of a class :Facilities. Instances of this class can only be linked to instances of the classes :Lighting, :Pole
and :Sign using the object property :collects.

:Facilities rdf:type owl:Class ;
dcterms:type "xtdBag" ;
rdfs:label "Facilities"@en;
rdfs:subClassOf [

rdf:type owl:Restriction ;
owl:onProperty :collects ;
owl:allValuesFrom owl:unionOf (:Lighting :Pole :Sign)

] .

Listing 1: Class axiom for the restriction of the relationship between two classes in Turtle syntax

In the context of describing classes with properties and values, as is done in datacat, the class axioms
can be used to specify that only certain values can be assigned to an instance of a class via a property.

When creating data dictionaries in the property server, the concepts can also be grouped, which is
defined in the ISO 12006-3:2016 metamodel with the abstract concept xtdCollection and its subclasses
xtdBag and xtdNest. The collections can be nested arbitrarily. For example, in our datacat user interface,
concepts from xtdSubject can be grouped under a concept xtdBag. These in turn can be grouped under
another xtdBag to form a domain model. xtdProperty concepts can be grouped into property groups
under xtdNest. In addition, all concepts can be assigned a xtdExternalDocument as an external reference.
With these definitions we can map a hierarchy often used in data dictionaries. Restrictions also help
here to map the structures in the ontology.

If the entire data dictionary is to be exported as an ontology, the collection concepts are defined
as owl:Class and have a restricted owl:ObjectProperty :collects for the grouping, as shown in Listing
1. The definition of xtdExternalDocument concepts is done in the same way, only with :documents as
owl:ObjectProperty for linking the described concepts.

4. Update datacat to the new version of ISO 12006-3:2022

A revised version of ISO 12006-3 [14] was published in 2022. [8] have already recognised that the
standard leaves too much room for interpretation in the structuring and use of the concepts and their
instances. The new version makes the application of the standard clearer.

As the older standard ISO 12006-3:2016 provides the metamodel for our property server datacat, we
analysed the changes resulting from the new version. Two major changes have a significant impact
on the use of the metamodel for creating concepts. These concern the grouping of concepts and the
relationships between concepts. There are also many smaller changes that do not have a major impact
on the metamodel.

Previously, the concepts xtdCollection and its sub-concepts xtdNest and xtdBag were used for grouping
concepts. These concepts do not exist in the new version. Groupings of objects of the same concept
type (xtdNest) can be used as objects of the concepts xtdSubject or xtdProperty with the attributes
ConnectedSubjects or ConnectedProperties and relationships to the objects in the group. Figure 4 shows
an example of the grouping of features in both metamodels. The grouping of objects of different types
(xtdBag) can no longer be displayed and must be resolved differently when mapping data dictionaries.

The concept of relationships has been completely revised. Instead of the abstract concept xtdRela-
tionship with its many specialised relationship classes like xtdRelCollects, xtdRelAssignsValues and
xtdRelSpecializes, there are now only two generic objectified relationships xtdRelationshipToSubject and
xtdRelationshipToProperty (Figure 5). In particular, this allows the xtdRelCollects relationships to be
replaced. Relationships previously used as objects such as xtdRelAssignsValues are replaced by simple
properties such as Values.

In addition to these two significant changes for us, the sub-concepts xtdActor, xtdActivity and
xtdMeasureWithUnit of xtdObject have also been removed. Instead, the new version has, for example,

17

xtdProperty

TargetProperties
1..*

xtdRelationshipToProperty

ConnectedProperties
0..*

2022

xtdNest

xtdProperty

RelatingCollection
1..1

RelatedThings
1..*

xtdRelCollects

2016

Figure 4: Collection of properties in the versions of ISO 12006-3:2016 and ISO 12006-3:2022

xtdRelationshipToSubject

xtdRelationshipToProperty

2022

xtdRelationship

2016

xtdRelAssignsProperties

xtdRelAssignsCollections

...

xtdRelCollects

xtdRelAssignsMeasures

Values
1..*

xtdValueList

xtdOrderedValue

Figure 5: Relationships in the versions of ISO 12006-3:2016 and ISO 12006-3:2022

the concepts xtdConcept and xtdCountry. The inheritance hierarchy between concepts has also been
changed. The abstract concept xtdObject is inherited by other concepts under xtdRoot, including the
abstract concept xtdConcept. Most of the concepts that are important to us inherit from this concept.
Not only the hierarchy, but also the attributes of the existing concepts have been changed and many
new attributes have been added, such as DataFormat, DataType and BoundaryValues for xtdProperty.

The result of the analysis is that a large part of the metamodel in the existing software needs to be
adapted and a migration of existing technical concepts and data dictionaries needs to be carried out.
The changes are currently being implemented both in the backend of our property server datacat and in
the OWL export. In addition, migration processes are being developed for existing data dictionaries at
the Neo4j graph database level so that they can continue to be used. The migration will be implemented
using Cypher queries, which will be used to create new links, delete redundant relationship classes, and
add concepts and attributes.

However, migration from ISO 12006-3:2016 to ISO 12006-3:2022 is not fully possible for all existing
concepts. For example, grouping of different concept types is no longer possible. In addition, values can
no longer be attached to other concepts with a descriptive property via the xtdRelAssignsPropertyWith-
Values relationship. Properties can only be attached to xtdSubject concepts. Values must be part of a
value list attached to the property. In these cases, design decisions must be made to preserve as much
information as possible during migration.

5. Results and Limitations

The approaches developed so far for exporting data dictionaries and concepts from property servers
with semantic meaning have shown that Semantic Web technologies can be used in a variety of ways.
Since the meta concept standard ISO 12006-3 does not provide a schema nor implementation rules,

18

there is no single solution for creating ontologies and describing data in RDF. We have decided to use
existing, established standards wherever possible to create a structured, standardised ontology export.
Our aim is to make ontologies comparable and to find possible ways of linking them. The ontologies of
neighbouring domains can be searched for the same or similar terms for linking. However, it is not
automatically the case that these terms are used in the same way. But, using the ISO 12006-3 metamodel,
the ontologies contain a conceptual schema that indicates the level of meaning at which each term is
used. For example, if the term Lantern is described conceptually as XtdSubject in both ontologies, it
can be assumed that it is used very similarly or identically in both domains and is therefore suitable
for linking. However, if the term is described once as XtdSubject and once as XtdValue, the usage is
different and maybe should not be used for linking. With this approach, we are creating a technical and
methodological basis for our research into the shared and cross-domain use of data dictionaries in BIM
and GIS. Using our existing property server datacat as a starting point, we were able to successfully
demonstrate an ontology export. Entire data dictionaries or individual concepts can be output as
ontologies in valid Turtle syntax. The reference to the data dictionary as well as the concepts and
the relationships between them are retained, although the relationships are simplified. However, the
presented export is only a proof of concept to test the methodology. The ontologies can be published
via persistent URIs once the modelling of the data dictionary in the property server has been completed.
The tested ontology has not yet been published, as the content of the property server is still being
developed by the expert group and the licensing conditions have not yet been clarified.

There are still some limitations to our approach. The biggest limitation is the use of the old ISO
12006-3 standard from 2016. Now that we have familiarised ourselves with the new version of the ISO
12006-3:2022 standard, we want to implement it in our datacat software and subsequently also in the
ontology export. A comparison of the 2016 and 2022 versions has shown that there are some significant
changes in the described metamodel. In our view, the new 2022 version provides a more clearly defined,
more generic metamodel that can be used to better describe data dictionaries. The ontology export
needs to be adapted at a technical level and the handling of values and units needs to be reconsidered.

Figure 6 shows how the concepts in the layers change compared to Figure 2 when the new metamodel
is implemented. Changes in the implementation due to the new metamodel are underlined. In Concept
Dictionary Layer, fewer instances need to be created for relationships because attributes are used for
a direct relationship between concepts. The link between value list and value needs to be ordered in
the new metamodel. Therefore, a new class OrderedValue is added in the new Ontology Layer, which
receives an attribute orderNumber. This allows the value to be reused in other lists with a different order
number. The owl:ObjectProperty hasOrderedValue and hasValue are used to create the relationships. It
is important to us that value lists and possible values are also included in the ontology, as this means
that there is no need to refer to external lists that restrict the value range of the characteristics. In some
cases, the order of the values is also important, so we follow the standard definition here.

During the update process, it is important to be aware of the limitations of the lack of standardisation
of units and values in datacat. As the new ISO 12006-3:2022 standard is not clear on the use of units, it
is necessary to use collections with predefined units that allow the use of standardised units to ensure
clarity. This means that users will make fewer mistakes and always refer to units in the same way,
which will also improve the quality of the data dictionaries and ontologies.

6. Conclusion and Outlook

With our approach, we have shown that the ontology export of data dictionaries or concepts from a
property server based on the ISO 12006-3 standard can be implemented very closely to standards with
existing ontologies. The Dublin Core ensures that the metadata from the property server is not lost
when the ontologies are exported. In addition, the metadata can be used to draw clear conclusions about
the concepts of the data dictionary from the ontology elements. The ISO 12006-3 metamodel is present
in the ontology without the users of the ontology having to know and understand it, thus ensuring a
standardised structure when comparing ontologies that have been created. The ontology receives all

19

Meta Concept
Layer

xtdSubject

xtdProperty

xtdValueList

xtdValue

Properties

PossibleValues

Values

OrderedValue

xtdOrderedValue

Concept
Dictionary Layer

"Lighting"

"LightingType"

"LightingTypeList"

"Lantern"

Properties

PossibleValues

Values

OrderedValue

"OrderedValue_1"

Ontology Layer

:LightingType
a owl:ObjectProperty

:Lighting
a owl:Class

:hasValue
a owl:ObjectProperty

:hasOrderedValue
a owl:ObjectProperty

:LightingTypeList
a owl:Class

:Value
a owl:Class

OrderedValue
a owl:Class

Instance Layer

:LightingType

ex:StreetLighting_1

:hasOrderedValue

ex:LightingTypeList_4

:Lantern

:hasValue

OrderedValue_1

rdf:typerepresents concept in ontologyinstanceOf

Figure 6: Concepts after updating the Meta Concept Layer (based on [8]). The underlined parts have changed.

information from the property server, although some relationships are simplified so that the ontology
does not become unnecessarily complex. Unlike the bSDD, our property server datacat can output all
dictionary elements, whereas the bSDD only outputs instances in RDF, while we write an ontology.
As with the other approaches presented, our method is not entirely free of design choices. The open
approach of Semantic Web technologies allows for many variants. The advantage of our variant is that
the ontology is closely linked to standards, while the disadvantage is that we had to introduce our own
concepts for linking concepts during the ontology export.

However, in order to further reduce the disadvantages and limitations, the work has also provided
new ideas for the further development of the approach. Initially, the focus will be on updating the
metamodel in the backend of datacat and adapting the frontend to the new requirements. The next step
is to integrate the exported ontologies in other software for the practical usage.

Ontologies are not used much in daily practice, neither in BIM nor in GIS. Our research aims to
develop common data dictionaries and ontologies and link existing ones to improve the integration of
BIM and GIS data and to make the data dictionaries usable across domains. We suppose, that ontologies
from different domains, and thus the data dictionaries behind them, can be more easily linked if they
are structured according to the same standardised meta schema. The research approaches presented in
this paper are intended to provide the technical basis for this.

Acknowledgments

This work is co-funded by the European Union and the Free State of Saxony as part of the ESF Plus
programme (Funding Number: 100670485).

20

References

[1] International Organization for Standardization, Building construction - Organization of informa-
tion about construction works: Part 3: Framework for object-oriented information, Technical
Report 12006-3, 2016. URL: https://www.iso.org/standard/38706.html.

[2] International Organization for Standardization, Geographic information – Reference model: Part
1: Fundamentals, Technical Report 19101-1, 2014. URL: https://www.iso.org/standard/59164.html.

[3] International Organization for Standardization, Geographic information – Methodology for feature
cataloguing, Technical Report 19110, 2016. URL: https://www.beuth.de/de/norm/din-en-iso-19110/
267630806.

[4] G. Fröch, W. Gächter, A. Tautschnig, G. Specht, Merkmalserver im open–bim–prozess, Bautechnik
96 (2019) pp. 338–347. doi:10.1002/bate.201800092.

[5] J. Oraskari, Live web ontology for buildingsmart data dictionary, 2021. URL: https:
//www.researchgate.net/publication/355425683_Live_Web_Ontology_for_buildingSMART_
Data_Dictionary#fullTextFileContent.

[6] C. Zhang, J. Beetz, B. de Vries, An ontological approach for semantic validation of ifc
models, in: Proceedings of the 21st International Workshop on Intelligent Computing
in Engineering, Cardiff, United Kingdom, Curran Associates, Inc., Red Hook, 2014, pp. 1–
8. URL: https://www.researchgate.net/publication/266326240_An_Ontological_Approach_for_
Semantic_Validation_of_IFC_Models.

[7] P. Pauwels, T. Krijnen, J. Beetz, Making sense of building data and building product data,
2016. URL: http://babelnet.org/lux/files/4.%20pauwels%20et%20al.%20-%20making%20sense%20of%
20building%20data%20and%20building%20product%20data.pdf.

[8] J. Beetz, B. de Vries, Building product catalogues on the semantic web, in: A. Dikbas, E. ergen,
H. Giritli (Eds.), Proceedings of the 26th International Conference on IT in Construction & 1st
International Conference on Managing Construction for Tomorow, Istanbul, Turkey, CRC Press and
Balkema, Leiden, 2009, pp. 221–226. URL: https://www.researchgate.net/publication/260707450_
Building_product_catalogues_on_the_semantic_web.

[9] Y. Yao, R. Wu, H. Liu, Jtowl: A json to owl converto, in: Y. Zeng, S. Kotoulas, Z. Huang (Eds.),
Proceedings of the 5th International Workshop on Web-scale Knowledge Representation Retrieval
& Reasoning, Shanghai, China, ACM, New York, NY, USA, 2014, pp. 13–14. doi:10.1145/2663792.
2663801.

[10] A. Wagner, U. Rüppel, Bpo: The building product ontology for assembled products, in: Proceedings
of the 7th Linked Data in Architecture and Construction Workshop - LDAC2019, Lisbon, Portugal,
2019, pp. 106–119. URL: http://tubiblio.ulb.tu-darmstadt.de/115951/.

[11] M. Bonduel, P. Pauwels, R. Klein, Property modelling in the aeco industry, in: P. Pauwels,
K. McGlinn (Eds.), Buildings and Semantics, CRC Press, London, 2022, pp. 25–50. doi:10.1201/
9781003204381-3.

[12] C. Clemen, B. Thurm, S. Schilling, Managing and publishing standardized data catalogues
to support bim processes, in: Proceedings of the 38th International Conference of CIB W78,
Luxembourg, 2021. URL: https://www.researchgate.net/publication/355486637_Managing_and_
publishing_standardized_data_catalogues_to_support_BIM_processes.

[13] International Organization for Standardization, Building information modelling (BIM) Data tem-
plates for construction objects used in the life cycle of built assets: Concepts and principles,

21

https://www.iso.org/standard/38706.html
https://www.iso.org/standard/59164.html
https://www.beuth.de/de/norm/din-en-iso-19110/267630806
https://www.beuth.de/de/norm/din-en-iso-19110/267630806
http://dx.doi.org/10.1002/bate.201800092
https://www.researchgate.net/publication/355425683_Live_Web_Ontology_for_buildingSMART_Data_Dictionary#fullTextFileContent
https://www.researchgate.net/publication/355425683_Live_Web_Ontology_for_buildingSMART_Data_Dictionary#fullTextFileContent
https://www.researchgate.net/publication/355425683_Live_Web_Ontology_for_buildingSMART_Data_Dictionary#fullTextFileContent
https://www.researchgate.net/publication/266326240_An_Ontological_Approach_for_Semantic_Validation_of_IFC_Models
https://www.researchgate.net/publication/266326240_An_Ontological_Approach_for_Semantic_Validation_of_IFC_Models
http://babelnet.org/lux/files/4.%20pauwels%20et%20al.%20-%20making%20sense%20of%20building%20data%20and%20building%20product%20data.pdf
http://babelnet.org/lux/files/4.%20pauwels%20et%20al.%20-%20making%20sense%20of%20building%20data%20and%20building%20product%20data.pdf
https://www.researchgate.net/publication/260707450_Building_product_catalogues_on_the_semantic_web
https://www.researchgate.net/publication/260707450_Building_product_catalogues_on_the_semantic_web
http://dx.doi.org/10.1145/2663792.2663801
http://dx.doi.org/10.1145/2663792.2663801
http://tubiblio.ulb.tu-darmstadt.de/115951/
http://dx.doi.org/10.1201/9781003204381-3
http://dx.doi.org/10.1201/9781003204381-3
https://www.researchgate.net/publication/355486637_Managing_and_publishing_standardized_data_catalogues_to_support_BIM_processes
https://www.researchgate.net/publication/355486637_Managing_and_publishing_standardized_data_catalogues_to_support_BIM_processes

Technical Report 23387, 2020. URL: https://www.iso.org/standard/75403.html.
[14] International Organization for Standardization, Building construction - Organization of informa-

tion about construction works: Part 3: Framework for object-oriented information, Technical
Report 12006-3, 2022. URL: https://www.iso.org/standard/74932.html.

22

https://www.iso.org/standard/75403.html
https://www.iso.org/standard/74932.html

	1 Introduction
	2 Related Work
	2.1 Existing Ontology Export Approaches
	2.2 datacat Editor for Managing and Publishing Data Dictionaries

	3 Standard-oriented Ontology Export of Domain Catalogues
	4 Update datacat to the new version of ISO 12006-3:2022
	5 Results and Limitations
	6 Conclusion and Outlook

