
Aligning openCDE APIs with Linked Building Data
through Constrained Containers in Common Data
Environments
Oliver Schulz1,*, Jakob Beetz1

1Design Computation, Department of Architecture, RWTH Aachen University, Aachen, Germany

Abstract
Common Data Environments (CDEs) serve as container-based web platforms, facilitating shared data
storage for all project stakeholders and simplifying communication between them. Building on the
DIN SPEC 91391 and ISO 19650 standards, the openCDE APIs are developed by buildingSMART to
provide a unified interface across the various providers of CDEs. This research aims to investigate
integrating the container-based CDE approach and the openCDE APIs with the concepts of Linked
Building Data to establish deeper connections between the buildings’ datasets. In particular, this paper
examines how data can be stored in a Linked Data-based container environment to remain interoperable
with existing schemas and APIs. The Linked Data Platform (LDP) specification, in conjunction with
the Shapes Constraint Language (SHACL), is examined to tailor containers for specific use cases and
schemas in the CDE ecosystem. This work should demonstrate how constraints can enforce specialised
containers on the LDP. The process is illustrated using a subset of openCDE APIs - the BIM Collaboration
Format (BCF) API - as an example. Our findings highlight that the LDP specification offers the necessary
functionalities to specialise containers to the respective needs, but the specification does not explain
how this mechanism shall be enforced. Consequently, this work is a step toward aligning the industry’s
approaches with the openCDE APIs and the current scientific concepts of Linked Building Data.

Keywords
SHACL, Common Data Environments, Linked Data Platform, Linked Building Data, openCDE APIs

1. Introduction

Common Data Environments (CDEs) are used in the industry and are investigated in research
as platforms that provide project stakeholders with a single source of information [1]. They
bring structure to construction projects and make communicating between stakeholders easier
[2]. Considerable effort is made to define and regulate these concepts of CDEs in the standards
of ISO 19650 [3] and the DIN SPEC 91391 [1]. To avoid isolated solutions, these standards aim
to make these platforms accessible to other applications and developers so that data gathered
throughout the life cycle of the buildings can be leveraged.

From a technical point of view, buildingSMART International is offering a collection of
application programming interfaces (APIs) - called openCDE APIs [4] - that cover some of the
functionalities of these CDEs and make them accessible. The currently available APIs enjoy

LDAC 2024: 12th Linked Data in Architecture and Construction Workshop, June 13–14, 2024, Bochum, Germany
*Corresponding author.
$ schulz@dc.rwth-aachen.de (O. Schulz); beetz@dc.rwth-aachen.de (J. Beetz)
� 0000-0002-4722-4621 (O. Schulz); 0000-0002-9975-9206 (J. Beetz)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

105

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:schulz@dc.rwth-aachen.de
mailto:beetz@dc.rwth-aachen.de
https://orcid.org/0000-0002-4722-4621
https://orcid.org/0000-0002-9975-9206
https://creativecommons.org/licenses/by/4.0


great popularity and are widely used throughout the industry. From a research perspective,
we can also see a rising increase in interconnecting data and breaking the data silos of single
applications and providers. This applies to the realm of CDEs and, generally, the linking of
building-related data. For example, the Linked Building Data (LBD) community has set itself
the task of investigating and defining Linked Data appliances for building life cycles1.

While Linked Data and its underlying technology are promising approaches to solving
interconnectivity issues, front-end developers are often unfamiliar with them [5], making it
difficult for them to integrate them into a production environment. More so, domain experts in
the built environment and building owners who are the end users of CDEs cannot be expected
to master the complexity behind Linked Data and utilise it appropriately.

While other research focuses on the manifestation of the concepts of CDEs (ISO 19650 and
DIN SPEC 91391) and their containerisation, this paper investigates how to connect the widely
adopted technology of buildingSMART’s openCDE APIs with the concepts of Linked Data
and its underlying container concepts. As covering all CDE functionalities in this paper is out
of scope, we will illustrate our approach using the Issue Management process as a primary
use case. Issue Management is commonly used in the construction industry to identify and
communicate Issues - such as clashes of or missing properties in building elements - during, but
not exclusively, the design phase of a building. While there are several vendor-specific options
for conducting Issue Management, the BIM Collaboration Format (BCF) API is one of the most
developed and prominent processes covered by the openCDE APIs.

This research builds on the author’s previous work, which dealt specifically with the topics
of BCF and CDEs and their application with Linked Data [6, 7]. This work is limited to
verifying incoming data for storage in a web container for compatibility with buildingSMARTs
specifications. However, it does not address how the client communicates the data to the final
destination in a container. Therefore, this should lead the way to connecting the advances from
both industry and research without disrupting achievements in one or the other.

The paper is structured as follows. The subsequent section (Section 2) provides background
information on related work and research in the Architecture Engineering and Construction
(AEC) industry. Section 3 then examines how constraints can be imposed on containers, applies
this approach to the general framework of CDEs, and further specifies this approach using the
CDE subset Issue Management. The following section (Section 4) discusses how this approach
can be technically implemented in the communication between the server and the client. The
work is concluded in Section 5, and future work is outlined.

@PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@PREFIX ldp: <http://www.w3.org/ns/ldp#> .
@PREFIX bcfOWL: <http://lbd.arch.rwth-aachen.de/bcfOWL#> .
@PREFIX sh: <http://www.w3.org/ns/shacl#> .

Listing 1: Prefixes used throughout this paper.

1Linked Building Data Community Group, W3C: https://www.w3.org/community/lbd/ accessed 17.04.2024

106

https://www.w3.org/community/lbd/


2. Related Work

2.1. Information Container

Information container is a term in the AEC industry that describes how files reside in a web
environment or a file system. Although several definitions of this term exist, they generally all
describe the same concept. DIN SPEC 91301 describes them as "[...] the smallest unit for a file
or a model and logical construct for file or model management within a CDE" [1]. According to
the standard, these can be nested and also contain multi-models. ISO 19650 describes them as
"[...] named persistent set of information retrievable from within a file, system or application
storage hierarchy" [3]. The following two subsections present two technical implementations
that can be considered information containers.

2.1.1. Information Container for Linked Document Delivery

The Information Container for Linked Document Delivery (ICDD) is an ISO-standardised (ZIP)
Container for exchanging heterogeneous files between different stakeholders while allowing for
establishing and communicating links between the documents or elements inside the documents
[8, 9]. It was originally designed with the use cases of information requests and deliveries in the
AEC industry in mind. ICDD containers are files themselves and are exchanged between the
different project stakeholders. ICDD is based on the Resource Description Framework (RDF)
and has two base ontologies, one for container2 and one for linksets3. It requires the following
structure:

• Index Document: Contains general information about the container and its contents.
• Ontology Container: This contains all ontologies necessary to interpret the RDF data in

the ICDD. Dereferenceable ontologies from the web do not necessarily need to be stored
in the folder.

• Payload Container: Contains all documents in a folder structure.
• Payload Triples Container: Contains the links for the documents to internal and external

resources

In AEC, researchers investigate, for example, how to link RDF with non-RDF data for docu-
ment delivery [10] or how to publish ICDD container on CDEs based on the DIN SPECs 91391
openCDE API [11, 12].

2.1.2. Linked Data Platform

The Linked Data Platform (LDP) is a World Wide Web Consortium (W3C) recommendation
that provides a structure to serve (Linked Data) resources via the Hypertext Transfer Protocol
(HTTP) on the web [13]. The platform specification is published in various documents, including
examples, best practices and recommendations [14, 15, 13]. An ontology for the specification

2Container Ontology: https://standards.iso.org/iso/21597/-1/ed-1/en/Container.rdf accessed 07.02.2024
3Linkset Ontology: https://standards.iso.org/iso/21597/-1/ed-1/en/Linkset.rdf accessed 07.02.2024

107

https://standards.iso.org/iso/21597/-1/ed-1/en/Container.rdf
https://standards.iso.org/iso/21597/-1/ed-1/en/Linkset.rdf


is published on the web4. LDPs are based on URLs, meaning that a dereferenceable URI shall
name every entity, and entities can point to other dereferenceable URIs. Therefore, following
links to traverse through the platforms using LDP is possible. The core structure of LDP comes
down to two main concepts:

• Resources (ldp:Resource) represent entities on the web
• Containers are specialised resources that shall contain other resources.

On the LDP, RDF is used to describe the metadata of the Containers and Resources, even
though the specific contents of a resource may be in RDF (ldp:RDFsource) or a native format
(ldp:NonRDFsource). Besides this, LDP is not enforcing any rigid structure on where to store the
data. Oversimplified, it is comparable to a file explorer, whereas the containers are similar to
folders and the resources to files. Several implementations of LDP exist, while one of the most
current ones - Solid [16] - is loosely based on it.

LDP is used in AEC-related research, for example, to federate CDEs [17, 18, 6], by using the
LDP implementation of Solid, or by combining the DIN SPECs 91391 openCDE API and ICDD
with the LDP in [11].

2.2. Linked Data Validation

Utilising Linked Data, it is important to have a mechanism that can validate incoming data that
shall be added to a graph. A validation process can ensure that the data conforms to specific
standards and project requirements. While it is theoretically possible to incorporate restrictions
into the ontologies with the Web Ontology Language (OWL), these are not necessarily usable
in validation because of the open-world assumption5. Although SPARQL could validate the
data, this leads to complex and impractical queries[19]. Therefore, the Shapes and Constraint
Language (SHACL) [20] - a W3C recommendation - was developed to validate RDF. The restric-
tions are defined in a concept called Shapes, which themselves are also serialised in RDF and -
like ontologies - can be published on the web. For a more in-depth discussion of validation, the
reader is referred to [21]. SHACL is frequently used in the AEC industry and academia. For
example, SHACL is used in [22] to check building legislation and in [23] to define scheduling
constraints. Furthermore, Hagedorn et al. discuss how to validate containers in ICDD with
SHACL [24]. Finally, [25] suggests a way to define SHACL shapes via Visual Programming,
which should improve usability and enable the approaches to non-linked data experts.

2.3. Open CDE APIs

The openCDE APIs are an initiative of buildingSMART to provide standardised APIs to commu-
nicate with CDE providers. They are not to be confused with the openCDE API described in
the DIN SPEC 91391 [26]. The current collection of APIs contains:

4The W3C Linked Data Platform (LDP) Vocabulary, W3C: https://www.w3.org/ns/ldp accessed 12.02.2024
5Web Ontology Language (OWL) Guide, W3C: https://www.w3.org/TR/2004/REC-owl-guide-20040210/ accessed
17.04.2024

108

https://www.w3.org/ns/ldp
https://www.w3.org/TR/2004/REC-owl-guide-20040210/


• The Foundation API as a common ground for the different APIs to cover authentication
and users6.

• The BCF API for communicating issues occurring in the (digital) building between different
stakeholders and applications7.

• The Documents API for uploading and downloading files that reside on a CDE8.

Furthermore, buildingSMART plans to develop additional APIs for CDEs, like an interface for
"[...] data-driven object exchange [...]" [4]. The topic of the BCF API already has connections
with the area of Linked Data. In [27] and [7], an ontology is proposed that maps the schema of
BCF to Linked Data, and in [18] and [6] a framework for federated CDEs is proposed on the
example of BCF.

3. Constraining the Container

For this paper, the Linked Data Platform was chosen to store and constrain the data. The
platform’s architecture is already tailored towards the web and is, therefore, a suitable candidate
for Common Data Environments. In a basic setup of a container in LDP (ldp:Container), it
simply lists all its containing resources (Listing 2),

<.../ldp/Container_1> a ldp:Container;
ldp:contains <Resource1>, <Resource2>, <Resource3> .

<Resource1> a ldp:Resource .

Listing 2: A default Container listing its Resources.

but LDP also comes with the property of ldp:hasMemberRelation, which can be used to point
out the class of the resources a container contains (Listing 3) when using the concept of a
specialised ldp:DirectContainer. This, e.g., is a filter mechanism when discovering data on the
platform. If containers are equipped with this property, it can be determined immediately when
discovering the platform whether a container contains the requested data or not. Even though
this is already narrowing down what should be expected from the resources when looking at
the container, it is not enforcing that the resources stick to a specific schema or structure.

<.../ldp/Container_1> a ldp:DirectContainer;
ldp:hasMemberRelation ex:hasExampleClass ;
ldp:contains <Resource1>, <Resource2>, <Resource3> .

<.../ldp/container_1/#it> a rdfs:Resource;
ex:hasExampleClass <Resource1> .

<Resource1> a ldp:Resource, ex:ExampleClass .

Listing 3: A container that specified what kind of Resources reside in it.

6buildingSMART Foundation API: https://github.com/BuildingSMART/foundation-API/tree/v1.0 accessed: 13.02.2024
7buildingSMART BCF API: https://github.com/buildingSMART/BCF-API accessed: 13.02.2024
8buildingSMART Documents API: https://github.com/buildingSMART/documents-API accessed 13.02.2024

109

https://github.com/BuildingSMART/foundation-API/tree/v1.0
https://github.com/buildingSMART/BCF-API
https://github.com/buildingSMART/documents-API


This indicates that the property is mainly used for exploring data on a platform rather than
creating new data that must adhere to the specialisation of the corresponding ldp:Container.
To enforce more specific schemas for ldp:Container, ldp:constrainedBy can be employed, as
shown in (Listing 4). In LDP, it is defined that this property can point to any rdfs:Resource. It is,
therefore, not limited to what a constraint mechanism can be used for it. For this paper, it was
decided to use SHACL since this is - as LDP - a W3C recommendation.

<.../ldp/Container_1> a ldp:Container;
ldp:constrainedBy ex:ExampleClassShape ;
ldp:contains <Resource1>, <Resource2>, <Resource3> .

<Resource1> a ldp:Resource, ex:ExampleClass .
<.../ldp/Constraints/SimpleConstraint> a sh:NodeShape ;

sh:targetClass ex:ExampleClass ;
sh:property [
...
] .

Listing 4: An extension of the container with specific constraints and a basic SHACL shape.

Nevertheless, since LDP just describes an architecture for a platform based on Linked Data
on the web [13], it does not describe how this constraint shall be enforced by the platform.
The functionality has to be either integrated into an application that uses the LDP architec-
ture or could be used by a middleware that checks for these constraints before it posts to an
ldp:Container.

3.1. Application with CDEs

In the previous section, we covered a basic architecture on applying SHACL shapes on the LDP
to constrain what ldp:Resource can be added to an ldp:Container. In this section, the approach is
taken one step further and applied to the concept of a CDE to check data that is uploaded to the
CDE for conformity to either project internal or external constraints.

An internal constraint can be, for example, an agreement between the different project
stakeholders on specific naming conventions or labels that shall be used when creating new
issues in the process of clash detection. These individual requirements and conventions in
AEC projects are often defined in the Exchange Information Requirements (EIR) and the BIM
Execution Plan (BEP) and vary from project to project. Although it is beyond the scope of
this work, a machine-readable and directly translatable conversion of these documents into
constraints - e.g. by functionalities as suggested in [25] - seems desirable.

External constraints, on the other hand, such as industry-wide standards like BCF, can
define specific formatting that the data must adhere to in order to be considered compliant or
compatible with them. Contrary to the internal constraints, these are consistent throughout the
projects. New versions of the standards are exceptions, however, and should be made available
under a new URL.

Therefore, the constraints of a CDE based on LDP should be established in two ways. On
the one hand, the stakeholders define their own project’s internal constraints. On the other

110



Linked Data Platform

SHACL Shape

Project Contraints
Container

Information
Container

Resource 1 Resource 2

SHACL Shape

External Web Location

ldp:contains

ldp:constrainedBy

Figure 1: Conceptual representation of where the various constraints are located.

hand, there must be publicly available external constraints - preferably compatible with the
FAIR principles [28] - that guarantee uniformity across projects and applications (Figure 1).
An ldp:Container in the CDE context can, therefore, be used with both internal and external
constraints at the same time, resulting in containers with multiple constraints (Listing 5).

3.2. Applied to Issue Management

In this section, we apply the approach to the subset of CDEs with the field of Issue Management
in the form of buildingSMART’s BCF.

<.../cde/project_1/BCF/TopicsContainer/> a ldp:Container;
ldp:constrainedBy externalShapes:TopicShape projectShapes:TopicShape;
ldp:contains <Topic1> .

<Topic1> a bcfOWL:Topic ;
bcfOWL:hasTopicStatus "Active" ;
bcfOWL:hasTitle "A generic topic title" ;
bcfOWL:hasLabel project:Architecture .

Listing 5: Example BCF Topic Container with shortened content.

The Topic container itself is constrained by an external and an internal shape (Listing 5).
The external shape (Listing 6) is a universally applicable BCF shape that ensures compatibility
with buildingSMART’s specifications. It is not responsible for checking the specific values of
the bcfOWL:Topic but ensures that the structure is correct. For a BCF Topic, the minimum
requirement is that it contains at least a title. Other properties such as bcfOWL:hasTopicStatus
can either not be present in a Topic or only occur once.

111



<...external-url/TopicShape> a sh:NodeShape;
sh:targetClass bcfOWL:Topic ;
sh:property [

sh:path bcfOWL:hasTitle ;
sh:minCount 1;
sh:maxCount 1;

];
sh:property [

sh:path bcfOWL:hasTopicStatus;
sh:maxCount 1;

] .

Listing 6: External shape requiring a title for each Topic and allowing only one Status.

The internal shapes are based on the project agreements. There, it can, for example, specify
what terms should be used for defining if a Topic’s status is still open or what values are
acceptable for bcfOWL:hasLabel. This can be checked with shapes as seen in Listing 7. While
APIs often work with datatypes like strings, dates and numbers, we can leverage more advanced
properties in Linked Data and allow meta descriptions of objects. Therefore, our example shows
the potential uses on the one hand with a string for the Status and on the other hand with an
object consisting of a URI for the Labels. How this is implemented in the end depends on the
project, but it should generally be ensured that the values specified as URIs are dereferenceable.

<.../cde/project_1/constraints/TopicShape> a sh:NodeShape ;
sh:targetClass bcfOWL:Topic ;
sh:property [

sh:path bcfOWL:hasTopicStatus ;
sh:in ("Resolved" "Active" "Closed") ;

] ;
sh:property [

sh:path bcfOWL:hasLabel ;
sh:in (project:Architecure project:MEP project:Documentation) ;

] .

Listing 7: Internal SHACL shape used to constrain the Status and the Labels.

Another example is the Comment, which is not constrained by any project-specific values in
BCF. But it is constrained because it needs to have a link to a specific Topic and either a link to
a bcfOWL:Viewpoint, a textual comment, or both. This can be expressed in SHACL, as seen in
Listing 8 and would be defined in an external universal shape.

112



<...external-url/CommentShape> a sh:NodeShape ;
sh:targetClass bcfOWL:Comment ;
sh:or (
[

sh:path bcfOWL:hasCommentText ;
sh:minCount 1 ;

]
[

sh:path bcfOWL:hasViewpoint ;
sh:minCount 1 ;

]
) .

Listing 8: Example for a shape for BCF Comments.

4. Conceptual Implementation

This section describes the theoretical scenario in which a client wants to create a new Topic with
the status "Active". The data should be validated against the shapes from the previous section.
Therefore, we envision an infrastructure consisting of the clients sending the Topic (POST), the
LDP for storing the Issue Management data, and a middleware that acts as an intermediary
for negotiating the communication between these agents. The middleware is responsible for
checking the Topic requests against the constraints specified in the LDP container. Suppose the
client wants to POST Topic data to the LDP. In that case, the middleware checks the container
at the location of the route for the predicate ldp:constrainedBy, and if such a constraint exists,
the middleware fetches the constraints - in our case, the SHACL shapes from Listing 6 and 7 -
and checks the data against them. The constraints may reside either on the LDP itself and are
based on project agreements or on more general standards that, e.g. check for conformity with
a specific format like BCF.

In our scenario, the constraints are violated because the string "Active" is not allowed as a
status in this project and "Open" shall be used. Therefore, the middleware rejects the POST
with an HTTP 400 and an error message. The client should now exchange "Active" with "Open"
and send the request again. The server and the middleware should now respond with an HTTP
201 and the content of the newly created Topic. The process is depicted in Figure 2.

5. Conclusion

This paper explores how information containers can host CDE-specific data following buildingS-
MART’s openCDE APIs. First, different container approaches were investigated, and the W3C
recommendation LDP was decided on since it reflects the structure of the web and describes
resources as dereferenceable, which allows data accessibility. Subsequently, it was demon-
strated through the example of Issue Management in the form of BCF. As CDEs are meant

113



POST topic

check container
constraints

return constraints
locations

GET constraint

return constraint

GET constraint

return constraint

check topic

POST topic

return HTTP 201

return HTTP 400

Client LDP External
Resource

return HTTP 201

Middleware

Figure 2: Sequence Diagram, describing the communication process of sending a Topic from the client
to the LDP.

for web-based collaboration, LDP also supports that behaviour. Using the provided predicates,
ldp:hasMemberRelation and ldp:constrainedBy, the specification can constrain the incoming
data by using SHACL shapes as constraints without any extension of the standard. Due to
the decentralised structure of Linked Data and LDP, the constraints do not necessarily reside
in the exact location of the resources. Still, they can be split into project-specific and general
applicable requirements, reflecting the nature of the AEC industry. In addition, it also allows
the reuse of these requirements, preventing the need to set them up repeatedly. While the LDP
can define that a container is constrained, it is simply a specification and not a framework

114



that can be used to host containers and resources. An official approach to implementing and
enforcing these constraints still needs to be agreed on. Therefore, adding these constraints to
an ldp:Container will only achieve the desired behaviour with an additional setup. Potential
solutions for this problem are implementing a checking mechanism directly into an LDP or
using a middleware that checks for these constraints. The latter approach was described in
this paper by using a middleware that checks incoming data and decides to store or reject the
data, depending on its conformance to the constraints. In subsequent steps, the conceptual
implementation presented here will undergo further evaluation and will be tested in a prototype.
In doing so, not only will the validation of constraints be examined, but also, how to create
these requirements user-friendly without overwhelming users with Linked Data.

While this paper has explained how incoming data can be examined for conformity, future
work will investigate how the data can be sent to the LDP. Serialising the data into RDF seems
disadvantageous and would pose a significant disruption to current workflows. Therefore, the
aim is to explore how the concepts of openCDE API communication can be combined with
Linked Data approaches. Furthermore, research will be conducted on how approaches beyond
specific APIs in CDEs can be used in conjunction with Linked Data. The AEC industry is based
on many universal and project-specific requirements that are documented, for example, in the
EIR and BEP as text. Combining these in a machine-readable format with the principle of LDP
is a promising next step.

Acknowledgements

This research is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – Project number 501812634

References

[1] DIN, DIN SPEC 91391-1:2019-04 Common Data Environments (CDE) for BIM projects -
Function sets and open data exchange between platforms of different vendors - Part 1:
Components and function sets of a CDE; with digital attachment, https://dx.doi.org/10.
31030/3044838, 2019.

[2] C. Preidel, A. Borrmann, H. Mattern, M. König, S.-E. Schapke, Common Data En-
vironment, in: A. Borrmann, M. König, C. Koch, J. Beetz (Eds.), Building Informa-
tion Modeling: Technology Foundations and Industry Practice, Springer International
Publishing, Cham, 2018, pp. 279–291. doi:10.1007/978-3-319-92862-3_15, https:
//doi.org/10.1007/978-3-319-92862-3_15.

[3] ISO, ISO 19650-1:2018 Organization and digitization of information about buildings and civil
engineering works, including building information modelling (BIM) - Information manage-
ment using building information modelling - Part 1: Concepts and principles, https://www.
iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/80/68078.html, 2018.

[4] Y. Kulbak, K. Linhard, G. Dangl, P. Pasi, Activity Proposal: Open, Standardized Ap-
plication Programming Interfaces (APIs) for Common Data Environments (CDEs) to
Lower Threshold of Data Exchange and Sharing on BIM-based Projects AKA “Open CDE

115

https://dx.doi.org/10.31030/3044838
https://dx.doi.org/10.31030/3044838
http://dx.doi.org/10.1007/978-3-319-92862-3_15
https://doi.org/10.1007/978-3-319-92862-3_15
https://doi.org/10.1007/978-3-319-92862-3_15
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/80/68078.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/80/68078.html


APIs”, https://github.com/buildingSMART/OpenCDE-API/blob/master/Documentation/
AP-OpenCDEAPIs-20200428-v1_0.pdf, 2020.

[5] R. Verborgh, R. Taelman, LDflex: A Read/Write Linked Data Abstraction for Front-End Web
Developers, in: The Semantic Web – ISWC 2020, volume 12507, Springer International
Publishing, Cham, 2020, pp. 193–211. doi:10.1007/978-3-030-62466-8_13, https:
//link.springer.com/10.1007/978-3-030-62466-8_13.

[6] J. Werbrouck, O. Schulz, J. Oraskari, E. Mannens, P. Pauwels, J. Beetz, A generic framework
for federated CDEs applied to Issue Management, Advanced Engineering Informatics
58 (2023) 102136. doi:10.1016/j.aei.2023.102136, https://www.sciencedirect.com/
science/article/pii/S1474034623002641.

[7] O. Schulz, J. Oraskari, J. Beetz, Lessons Learned from Designing and Using bcfOWL, in:
Proceedings of the 11th Linked Data in Architecture and Construction Workshop, Matera,
Italy, 2023. https://ceur-ws.org/Vol-3633/paper2.pdf.

[8] DIN Standards Committee Building and Civil Engineering, Information container for
linked document delivery Exchange specificaton Part 1: Container (ISO 21597-1:2020);
German version EN ISO 21597-1:2020, https://www.beuth.de/de/-/-/318930068, 2021.
doi:10.31030/3137795.

[9] DIN Standards Committee Building and Civil Engineering, Information container for
linked document delivery Exchange specification Part 2: Link types (ISO 21597-2:2020);
German version EN ISO 21597-2:2020, https://www.beuth.de/de/-/-/328268142, 2021.
doi:10.31030/3192763.

[10] P. Hagedorn, M. Senthilvel, H. Schevers, L. B. Verhelst, Towards usable ICDD containers
for ontology-driven data linking and link validation, in: Proceedings of the 11th Linked
Data in Architecture and Construction Workshop, Matera, Italy, 2023. https://ceur-ws.org/
Vol-3633/paper3.pdf.

[11] M. Senthilvel, J. Beetz, Conceptualizing Decentralized Information Containers for Common
Data Environments using Linked Data, in: Proceedings of the Conference CIB W78 2021,
Luxembourg, 2021. https://itc.scix.net/paper/w78-2021-paper-059.

[12] M. Senthilvel, J. Oraskari, J. Beetz, Common Data Environments for the Information
Container for linked Document Delivery, in: Proceedings of the 8th Linked Data in
Architecture and Construction Workshop, Dublin, Ireland (virtually hosted), 2020. https:
//ceur-ws.org/Vol-2636/10paper.pdf.

[13] S. Speicher, J. Arwe, A. Malhotra, Linked Data Platform 1.0, https://www.w3.org/TR/ldp/,
2015.

[14] N. Mihindukulasooriya, R. Menday, Linked Data Platform 1.0 Primer, https://www.w3.org/
TR/ldp-primer/, 2015.

[15] C. Burleson, M. Esteban Gutiérrez, N. Mihindukulasooriya, Linked Data Platform Best
Practices and Guidelines, https://www.w3.org/TR/ldp-bp/, 2014.

[16] A. V. Sambra, E. Mansour, S. Hawke, M. Zereba, N. Greco, A. Ghanem, D. Zagidulin,
A. Aboulnaga, T. Berners-Lee, Solid: A Platform for Decentralized Social Applications
Based on Linked Data (2016) 16. http://emansour.com/research/lusail/solid_protocols.pdf.

[17] J. Werbrouck, P. Pauwels, J. Beetz, R. Verborgh, E. Mannens, ConSolid: A fed-
erated ecosystem for heterogeneous multi-stakeholder projects, Semantic Web
(2023) 1–32. doi:10.3233/SW-233396, https://www.semantic-web-journal.net/content/

116

https://github.com/buildingSMART/OpenCDE-API/blob/master/Documentation/AP-OpenCDEAPIs-20200428-v1_0.pdf
https://github.com/buildingSMART/OpenCDE-API/blob/master/Documentation/AP-OpenCDEAPIs-20200428-v1_0.pdf
http://dx.doi.org/10.1007/978-3-030-62466-8_13
https://link.springer.com/10.1007/978-3-030-62466-8_13
https://link.springer.com/10.1007/978-3-030-62466-8_13
http://dx.doi.org/10.1016/j.aei.2023.102136
https://www.sciencedirect.com/science/article/pii/S1474034623002641
https://www.sciencedirect.com/science/article/pii/S1474034623002641
https://ceur-ws.org/Vol-3633/paper2.pdf
https://www.beuth.de/de/-/-/318930068
http://dx.doi.org/10.31030/3137795
https://www.beuth.de/de/-/-/328268142
http://dx.doi.org/10.31030/3192763
https://ceur-ws.org/Vol-3633/paper3.pdf
https://ceur-ws.org/Vol-3633/paper3.pdf
https://itc.scix.net/paper/w78-2021-paper-059
https://ceur-ws.org/Vol-2636/10paper.pdf
https://ceur-ws.org/Vol-2636/10paper.pdf
https://www.w3.org/TR/ldp/
https://www.w3.org/TR/ldp-primer/
https://www.w3.org/TR/ldp-primer/
https://www.w3.org/TR/ldp-bp/
http://emansour.com/research/lusail/solid_protocols.pdf
http://dx.doi.org/10.3233/SW-233396
https://www.semantic-web-journal.net/content/consolid-federated-ecosystem-heterogeneous-multi-stakeholder-projects-0
https://www.semantic-web-journal.net/content/consolid-federated-ecosystem-heterogeneous-multi-stakeholder-projects-0


consolid-federated-ecosystem-heterogeneous-multi-stakeholder-projects-0.
[18] J. Oraskari, O. Schulz, J. Werbrouck, J. Beetz, Enabling Federated Interoperable Issue

Management in a Building and Construction Sector, in: Proceedings of the 29th EG-ICE
International Workshop on Intelligent Computing in Engineering, EG-ICE, 2022, pp. 92–101.
doi:10.7146/aul.455.c200, https://ebooks.au.dk/aul/catalog/view/455/312/1848-2.

[19] J. Labra Gayo, E. Prud’hommeaux, S. Staworko, H. Solbrig, Towards an RDF validation
language based on regular expression derivatives, in: Proceedings of the Workshops of
the EDBT/ICDT 2015 Joint Conference (EDBT/ICDT), volume 1330, 2015, pp. 197–204.
https://ceur-ws.org/Vol-1330/paper-32.pdf.

[20] H. Knublauch, D. Kontokostas, Shapes Constraint Language (SHACL), https://www.w3.
org/TR/shacl/, 2017.

[21] J. E. L. Gayo, E. Prud’hommeaux, I. Boneva, D. Kontokostas, Validating RDF Data, Synthesis
Lectures on Data, Semantics, and Knowledge, Springer International Publishing, Cham,
2018. doi:10.1007/978-3-031-79478-0.

[22] E. Nuyts, J. Werbrouck, R. Verstraeten, L. Deprez, Validation of building models against
legislation using SHACL, in: Proceedings of the 11th Linked Data in Architecture and
Construction Workshop, Matera, Italy, 2023. https://ceur-ws.org/Vol-3633/paper13.pdf.

[23] R. K. Soman, M. Molina-Solana, J. K. Whyte, Linked-Data based Constraint-Checking
(LDCC) to support look-ahead planning in construction, Automation in Construction 120
(2020) 103369. doi:10.1016/j.autcon.2020.103369.

[24] P. Hagedorn, P. Pauwels, M. König, Semantic rule checking of cross-domain building data in
information containers for linked document delivery using the shapes constraint language,
Automation in Construction 156 (2023) 105106. doi:10.1016/j.autcon.2023.105106,
https://linkinghub.elsevier.com/retrieve/pii/S0926580523003667.

[25] M. Senthilvel, J. Beetz, A Visual Programming Approach for Validating Linked Building
Data, in: EG-ICE 2020 Workshop on Intelligent Computing in Engineering, 2020, p. 9.
https://depositonce.tu-berlin.de/items/a3f8b447-3925-40c9-ba9c-bfd1b9a9834e.

[26] DIN, DIN SPEC 91391-2: Common Data Environments (CDE) for BIM projects Function
sets and open data exchange between platforms of different vendors Part 2: Open data
exchange with Common Data Environments, https://www.beuth.de/de/technische-regel/
din-spec-91391-2/302483177, 2019.

[27] O. Schulz, J. Oraskari, J. Beetz, bcfOWL: A BIM collaboration ontology, in: Proceedings of
the 9th Linked Data in Architecture and Construction Workshop, Luxembourg, 2021, pp.
1–12. https://linkedbuildingdata.net/ldac2021/files/papers/CIB_W78_2021_paper_122.pdf.

[28] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak,
N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, J. Bouwman, A. J. Brookes,
T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers, A. Gonzalez-
Beltran, A. J. G. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. C. ’t Hoen, R. Hooft,
T. Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E. Martone, A. Mons, A. L. Packer, B. Persson,
P. Rocca-Serra, M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater,
G. Strawn, M. A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop,
A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, B. Mons, The FAIR Guiding
Principles for scientific data management and stewardship, Sci Data 3 (2016) 160018.
doi:10.1038/sdata.2016.18, https://www.nature.com/articles/sdata201618.

117

https://www.semantic-web-journal.net/content/consolid-federated-ecosystem-heterogeneous-multi-stakeholder-projects-0
https://www.semantic-web-journal.net/content/consolid-federated-ecosystem-heterogeneous-multi-stakeholder-projects-0
http://dx.doi.org/10.7146/aul.455.c200
https://ebooks.au.dk/aul/catalog/view/455/312/1848-2
https://ceur-ws.org/Vol-1330/paper-32.pdf
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
http://dx.doi.org/10.1007/978-3-031-79478-0
https://ceur-ws.org/Vol-3633/paper13.pdf
http://dx.doi.org/10.1016/j.autcon.2020.103369
http://dx.doi.org/10.1016/j.autcon.2023.105106
https://linkinghub.elsevier.com/retrieve/pii/S0926580523003667
https://depositonce.tu-berlin.de/items/a3f8b447-3925-40c9-ba9c-bfd1b9a9834e
https://www.beuth.de/de/technische-regel/din-spec-91391-2/302483177
https://www.beuth.de/de/technische-regel/din-spec-91391-2/302483177
https://linkedbuildingdata.net/ldac2021/files/papers/CIB_W78_2021_paper_122.pdf
http://dx.doi.org/10.1038/sdata.2016.18
https://www.nature.com/articles/sdata201618

	1 Introduction
	2 Related Work
	2.1 Information Container
	2.1.1 Information Container for Linked Document Delivery
	2.1.2 Linked Data Platform

	2.2 Linked Data Validation
	2.3 Open CDE APIs

	3 Constraining the Container
	3.1 Application with CDEs
	3.2 Applied to Issue Management

	4 Conceptual Implementation
	5 Conclusion

