
How Much OWL Do You Need to Know to Make Sense of
Building Ontologies?
María Poveda-Villalón1,*, Sergio Carulli-Pérez1 and Raúl García-Castro1

1Universidad Politécnica de Madrid, Madrid, Spain

Abstract
The fact that ontologies are considered shareable and reusable components has always been claimed as one
of their main advantages. While reusing ontologies is promised to reduce time and resources invested during
ontology development, the experience shows that reusing ontologies also involves a costly effort. In this work,
we first analyse how ontologies representing the building domain currently reuse each other. Finally, we detect
existing Web Ontology Language (OWL) modelling patterns in the ontologies analysed and generate a graphical
pattern library to facilitate reuse of the observed patterns.

Keywords
Ontology, Ontology reuse, Ontology design pattern

1. Introduction

The reusable characteristic of ontological resources, such as ontologies or ontology design patterns,
has been claimed to be one of the main benefits of using and developing ontologies. Ontology reuse is
usually done by hard reuse, that is, by means of using the owl:imports statement, or by soft reuse,
that is, by referencing the reused ontology element Uniform Resource Identifiers (URIs) [1].

However, the ontology reuse activity is costly and can be hampered by several factors such as lack of
licence, failures in ontology availability, lack of good quality documentation, etc. as reported by [1].

Previous studies have analysed how ontologies are reused independently of the domain [2] and also
focus on particular domains such as biology [3]. In this work, our aim is not only to observe how
ontologies are reusing each other, but also to extract common patterns repeated along ontologies. More
precisely, in this work we aim to answer the following questions:

• How and to what extent are ontologies being reused in the building domain?
• What are the ontology design patterns used within the ontologies in the building domain?

To do so, we analysed 18 available ontologies about buildings following the process described in
Section 3 and observed that there is a low rate of reuse between ontologies (Section 4).

One of the main difficulties to reuse ontologies is the effort needed to understand them, and when
reusing submodules there is an additional effort to prune the model. In this sense, it has been claimed that
having ontology design patterns commonly used in domain ontologies could alleviate the ontology reuse
activity [4]. For this reason, our second question focuses on the specific patterns (those implemented
using exact URIs in different ontologies) that appear in the building ontologies. In principle, once these
patterns are identified, they can be coded and shared with the community. Such patterns could be
shared as OWL building blocks, as, for example, in the Ontology Design Patterns (ODP) Portal1, or by
diagram libraries that can be converted into OWL code to facilitate reuse in a graphical way, as in the
case of the Chowlk notation libraries [5].

LDAC 2024: 12th Linked Data in Architecture and Construction Workshop, June 13–14, 2024, Bochum, Germany
*Corresponding author.
$ m.poveda@upm.es (M. Poveda-Villalón); sergiomario.carulli.perez@upm.es (S. Carulli-Pérez); r.garcia@upm.es
(R. García-Castro)
� 0000-0003-3587-0367 (M. Poveda-Villalón); 0000-0002-0421-452X (R. García-Castro)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1http://ontologydesignpatterns.org/wiki/Main_Page

162

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:m.poveda@upm.es
mailto:sergiomario.carulli.perez@upm.es
mailto:r.garcia@upm.es
https://orcid.org/0000-0003-3587-0367
https://orcid.org/0000-0002-0421-452X
https://creativecommons.org/licenses/by/4.0
http://ontologydesignpatterns.org/wiki/Main_Page

During this study, no specific patterns have been found; however, common OWL patterns are detected
and a graphical library containing the generalised ontology design patterns has been created. This
library compiles the OWL constructs combination that appears in the building domain ontologies.

In conclusion, this study is quite strict in the sense of pattern definition, as the matching is done at
the URI level instead of at the concept level, for example by examining the attached labels to an URI.
Although the current work has been useful to provide a library of generalised patterns, it could be
extended by incorporating ontology alignment techniques to find specific patterns (Section 5).

2. Related work

Some studies have analysed how ontologies are reused in general ontologies [6] and in particular
domains such as biology [3]. In this work, we focus on the available ontologies related to the buildings
domain.

Regarding the construction domain, Schenider [7] presented in 2019 an approach to compare align-
ments between ontologies generated manually with automatic ones to test how reliable are ontology
matching algorithms for this domain. Schenider’s work could be considered complementary to this
study as it focus on subsumption and equivalences between names entities, either classes or properties,
while our patterns focus on anonymous classes representing axioms.

Previous works have analysed the use of OWL construct in the Semantic Web [8] [9], however they did
not consider the combination of constructs to identified repeated patterns. A recent study [10] focuses
on the extraction of “Conceptual Components” that are implemented in different ways by different
ontologies. This approach differs from ours in the sense that the Conceptual Components represent a
cluster of several implementations (called “Observed Ontology Design Patterns”, however, this notion
of patterns does not imply repetition of the implementation, therefore it can also be considered sub-
modules in some cases) in particular ontologies. In this sense, the Conceptual Components do not
provide the corresponding code, but link to the code to the ‘Observed Ontology Design Patterns”.

3. Methodology

To carry out this study, the workflow followed in Figure 1 has been followed. As can be observed, the
first step is to collect the ontologies to be analysed. In this case, we have compiled ontologies about
buildings from Linked Open Vocabularies [11] and the Linked Building Data Community Group GitHub
repository about ontologies2. After removing duplicates and discarding unavailable ontologies, the list
of 18 ontologies considered is presented in Table 1.

Once the ontologies have been selected and downloaded, several processing steps have been carried
out. First, in order to know how building ontologies reuse each other, it has been observed in which
ontologies hard reuse is present, by means of using owl:imports, and which ontologies implement
soft reuse by referencing other ontology elements URIs (note that metadata references are ignored).
Second, all ontologies are inspected to identify repeating patterns. Prior to pattern detection, the
system identifies structures in the ontologies code stemming from the classes’ rdfs:subClassOf,
owl:equivalentClass and owl:disjointWith statements in which the object is a restriction, that
is, the object is not a named class. These structures can be specific, considering the exact URIs for the
ontology elements (see Figure 2(a) or general structures defined by generalising the particular URIs to
the OWL or RDF(S) type of elements (see Figure 2(b)).

To identify patterns, our system counts how many times the exact structure appears in all the
ontologies. This is done for the specific and general structures to identify specific and general patterns,
respectively.

Finally, taking as input the general patterns identified, a Chowlk library has been created to ease the

2https://github.com/w3c-lbd-cg/ontologies

163

https://github.com/w3c-lbd-cg/ontologies

35 generic
patterns in 5
ontologies

Detect specific
structures

Detect specific
patterns

Detect generic
patterns

0 Specific patterns
in 5 ontologies

LOV LBD
GitHub

Remove duplicated
and unavailable

ontologies

Identify hard and
soft reuse

Hard and soft
reuse matrix

18
ontologies

Generate
template library

OWL patterns
library

Legend workflow line

input/output
 line

Step
Document /

result
Data

source

Detect
structures

Figure 1: Workflow followed.

Table 1
Ontologies analyzed (alphabetical order)

Prefix Ontology Title Ontology URI
bcom Building Concrete Monitoring Ontology https://w3id.org/bcom
beo Building Element Ontology https://pi.pauwel.be/voc/buildingelement
bimerr-op Occupancy Profile ontology http://bimerr.iot.linkeddata.es/def/occupancy-profile#
bpo Building Product Ontology https://w3id.org/bpo
bot Building Topology Ontology https://w3id.org/bot#
brick Brick https://brickschema.org/schema/Brick#
fog File Ontology for Geometry formats https://w3id.org/fog
ifc ifcOWL ontology (IFC4_ADD1) https://w3id.org/ifc/IFC4_ADD1
IFC4 list of properties extracted from IFC4 psets https://w3id.org/product/props/
jup Ontology of Building Accessibility http://w3id.org/charta77/jup
mep Distribution Element Ontology https://pi.pauwel.be/voc/distributionelement
omg Ontology for Managing Geometry https://w3id.org/omg#
rami Reference Architecture Model http://iais.fraunhofer.de/vocabs/rami#
rec RealEstateCore https://w3id.org/rec
rooms Buildings and Rooms Vocabulary http://vocab.deri.ie/rooms
s4bldg SAREF extension for building https://saref.etsi.org/saref4bldg/
sbeo Smart Building Evacuation Ontology https://w3id.org/sbeo
seasbo The SEAS Building Ontology https://w3id.org/seas/BuildingOntology

use of common OWL structures in ontologies.3 It should be noted that the generation of this library
has been done semi-automatically.

4. Results

Regarding the hard and soft reuse observed in the analysed ontologies, it can be observed that the
analyzed ontologies do not reuse much each other and the most common reuse technique is soft reuse.

3Exception: pattern 32 is not included in the library as it is more expressive than the Chowlk notation at the time of writing
this paper.

164

(a) Example of an specific structure (b) Example of a general structure

Figure 2: Structure examples

The following list shows for each analysed ontology which ontologies it imports (hard reuse) and
which ontologies are referenced (soft reuse). In the case of soft reuse, the number of ontology elements
referenced are included between “()”. The ontologies analyzed in this study are identified by their prefix
while ontologies not included in the analysis are identified by their namespaces.

With regard to the identified patterns, we can observe that no specific patterns are repeated. This
means that the specific structures identified in the ontologies are not repeated in any other ontology.
This result was expected after analysing the soft reuse, as this study seeks the repeated appearance
of same URIs in equal structures. For this reason, that exact URIs are matched, we cannot claim that
similar concepts are not defined in more than one ontology in a similar way.

Looking now at the general patterns extracted4 we can see that 35 patterns are identified among 5
ontologies. These patterns are only present in 5 ontologies because the rest of ontologies did not include
class descriptions using OWL restrictions, boolean combinations or cardinalities. That is, there was
no classes’ rdfs:subClassOf, owl:equivalentClass and owl:disjointWith statements whose
object was a restriction or a blank node instead of a named class in 13 ontologies.

The identified general patterns are depicted in Figure 3, Figure 4 and Figure 5 following the Chowlk
notation. In such figures there are three numbers on the left of each pattern; the top number represents
the pattern identifier, according to the numeration in the supplementary material; the middle number
indicates in how many ontologies appears the pattern; and the bottom number indicates how many
repetitions of the pattern have been observed considering all ontologies.

4The data resulting from the study is available at https://doi.org/10.5281/zenodo.10997320.

165

https://doi.org/10.5281/zenodo.10997320

Table 2
Ontologies reused

Ontology Reuse Reused Ontologies Ontology Reuse Reused Ontologies

mep Hard - beo Hard -
Soft - Soft -

bimerr-op Hard - bpo Hard -

Soft

http://www.w3.org/2004/02/skos/core# (6)
https://w3id.org/def/saref4building# (6)
https://w3id.org/saref#(4)
http://bimerr.iot.linkeddata.es/def/building# (2)
http://www.w3.org/2006/time# (6)
http://xmlns.com/foaf/0.1# (1)

Soft

http://xmlns.com/foaf/0.1/ (2)
http://schema.org/ (8)
http://qudt.org/schema/qudt# (1)
https://w3id.org/seas/ (2)
http://purl.org/goodrelations/v1# (1)

brick Hard - bto Hard -

Soft

http://qudt.org/schema/qudt/ (9)
http://www.w3.org/2004/02/skos/core# (5)
http://schema.org/ (2)
http://data.ashrae.org/bacnet/2020# (25)
http://data.ashrae.org/standard223# (2)
http://www.w3.org/ns/sosa/ (2)
http://www.w3.org/2006/vcard/ns# (2)

Soft
https://schema.org/ (1)
http://purl.org/vocommons/voaf# (1)
http://www.w3.org/2006/vcard/ns# (1)

fog Hard - ifc Hard https://w3id.org/express

Soft
omg (3)
http://xmlns.com/foaf/0.1/ (1)
http://www.opengis.net/ont/geosparql# (2)

Soft https://w3id.org/list# (5)

IFC4 Hard - sbeo Hard -

Soft

http://xmlns.com/foaf/0.1/ (1)
https://w3id.org/product/Actuator# (3)
https://w3id.org/product/Controller# (5)
https://w3id.org/product/CableCarrierSegment# (4)
https://w3id.org/product/Damper# (4)
https://w3id.org/product/BuildingElementProxy# (1)
https://w3id.org/product/AudioVisualAppliance# (8)
https://w3id.org/product/Annotation# (3)
https://w3id.org/product/CableSegment# (1)
https://w3id.org/product/Boiler# (2)
https://w3id.org/product/Covering# (2)
https://w3id.org/product/CooledBeam# (2)

Soft

seasbo (35)
http://www.w3.org/ns/sosa/ (8)
https://w3id.org/seas/ (36)
http://purl.org/ontology/olo/core# (10)
http://xmlns.com/foaf/0.1/ (5)

bcom Hard - omg Hard -

Soft
http://www.w3.org/2006/vcard/ns# (2)
http://xmlns.com/foaf/0.1/ (2) Soft

https://w3id.org/seas/# (1)
https://w3id.org/opm# (2)
http://www.w3.org/ns/prov# (1)
https://w3id.org/seas/ (1)
http://xmlns.com/foaf/0.1/ (1)

rami Hard - rec Hard
http://datashapes.org/dash
https://brickschema.org/schema/1.3/Brick
https://w3id.org/rec/brickpatches

Soft

http://purl.oclc.org/NET/ssnx/ssn# (2)
http://www.wurvoc.org/vocabularies/om-1.8/ (2)
http://www.w3.org/ns/prov# (1)
http://xmlns.com/foaf/spec/ (1)

Soft -

s4bldg Hard - rooms Hard -

Soft
ifc (5)
https://saref.etsi.org/core/ (11)
http://www.w3.org/2003/01/geo/wgs84_pos# (1)

Soft
http://www.w3.org/ns/adms# (3)
http://xmlns.com/foaf/0.1/ (7)

jup Hard - seasbo Hard -

Soft

http://www.w3.org/2004/02/skos/core# (5)
http://www.w3.org/ns/org# (4)
http://purl.org/dc/terms/ (4)
http://xmlns.com/foaf/0.1/ (5)
http://schema.org/ (3)
http://www.w3.org/ns/regorg# (1)
http://dbpedia.org/ontology/ (1)
http://rdfs.org/sioc/ns# (1)
http://www.w3.org/ns/adms (1)

Soft
http://xmlns.com/foaf/0.1/ (2)
http://purl.org/vocommons/voaf# (1)

Figure 3 shows the patterns stemming from a rdfs:subClassOf declaration followed by univer-
sal (denoted with “(all)”) or existential (denoted with “(some)”) restrictions for object and datatype
properties. For example, pattern 4 represents a rdfs:subClassOf restriction involving a existential
constraint over a given object property. These patterns can involve property characteristics such
as owl:FunctionalProperty (denoted with “(F)”) or owl:TransitivelProperty (denoted with
“(T)”), as for example patterns 6, 9, 14 or 26 for object properties and 1 and 7 for datatype properties.
Finally, we can observe that some patterns, 2 and 26, combine the restrictions with a union of classes
instead of named classes.

Figure 4 depicts the patterns stemming from a rdfs:subClassOf declaration followed by non-
qualified cardinality (denoted with “(X..Y)”) or qualified cardinality (denoted with “[X..Y]”) restrictions
for object and datatype properties. For example, pattern 10 represents a rdfs:subClassOf restriction
involving a minimum non-qualified cardinality constraint over a given object property and pattern 27
represents a rdfs:subClassOf restriction involving an exact qualified cardinality constraint over a
given object property. Equally to the previous case, these patterns can involve property characteristics,

166

ns:Class1

(some) (F) na:DatatypeProperty1 : xsd:Datatype

ns:Class1 (some) ns:ObjectProperty1 ⨆

ns:Class2

ns:Class3

ns:Class1 ns:Class2(all) ns:ObjectProperty1ns:Class1 ns:Class2(some) ns:ObjectProperty1

ns:Class1

(some) ns:DatatypeProperty1 : xsd:Datatype

ns:Class1 ns:Class2(some) (F) ns:ObjectProperty1

ns:Class1

(all) (F) ns:DatatypeProperty1 : xsd:Datatype

ns:Class1

(all) ns:DatatypeProperty1 : xsd:Datatype

ns:Class1 ns:Class2(all) (F) ns:ObjectProperty1

ns:Class1 ns:Class2(all) (T) ns:ObjectProperty1

ns:Class1 (all) (T) ns:ObjectProperty1 ⨆

ns:Class2

ns:Class3

4
2

6
2

2
2

3
5

9
3

14
2

26
1

5
1

1
1

8
3

7
3

58

17

8

368

1556

5

87

9120

2

Figure 3: rdfs:subClassOf patterns observed involving existential and universal restrictions.

as, for example, pattern 31 that represents an exact non-qualified cardinality over a given datatype
property.

ns:Class1 owl:Thing(N1..N1) ns:ObjectProperty1

ns:Class1 ns:Class2(N1..N) ns:ObjectProperty1

ns:Class1 ns:Class2[0..N2] (F) ns:ObjectProperty1

ns:Class1 ns:Class2[N1..N1] (F) ns:ObjectProperty1

ns:Class1 ns:Class2[N1..N] ns:ObjectProperty1

ns:Class1 ns:Class2[N1..N1] ns:ObjectProperty1

ns:Class1

[N1..N1] (F) ns:DatatypeProperty1 : xsd:Datatype

ns:Class1

[0..N2] (F) ns:DatatypeProperty1 : xsd:Datatype

ns:Class1 ns:Class2(N1..N1) (F) ns:ObjectProperty1

ns:Class1

(N1..N1) (F) ns:DatatypeProperty1

ns:Class1

(0..N2) (F) ns:DatatypeProperty1

ns:Class1

(N1..N1) ns:DatatypeProperty1

ns:Class1 ns:Class2(0..N2) (F) ns:ObjectProperty1

ns:Class1 ns:Class2[0..N2] ns:ObjectProperty1

10
2

11
2

30
1

35
1

16
2

27
2

13
2

24
1

12
1

34
1

31
1

33
1

28
1

29
1

2 56

8 4

11 618

3

2 825

2

10

5

2

2

Figure 4: rdfs:subClassOf patterns observed involving cardinalities.

Figure 5 depicts the patterns stemming from a rdfs:subClassOf declaration followed by nested
universal or existential restrictions for object properties. In all the cases the properties involved in the
restrictions are functional properties and it can be observed that for patterns 19 and 21 the last nested

167

restriction involves exact qualified cardinalities instead of existential axioms. These patterns appear
only in ifc.

Figure 5 also shows two patterns, 15 and 25 that represent a subclass made of the union of classes
(owl:unionOf) and an equivalent class defined by listing the potential individual ((owl:oneOf))
respectively.

ns:Class1 ns:Class2(some) (F) ns:ObjectProperty2(all) (F) ns:ObjectProperty1

ns:Class1 ns:Class2(some) (F) ns:ObjectProperty3(some) (F) ns:ObjectProperty2(some) (F) ns:ObjectProperty1

ns:Class1 ns:Class2[N1..N1] (F) ns:ObjectProperty3(all) (F) ns:ObjectProperty2(all) (F) ns:ObjectProperty1

ns:Class1 ns:Class2(some) (F) ns:ObjectProperty3(some) (F) ns:ObjectProperty2(all) (F) ns:ObjectProperty1

ns:Class1 ns:Class2[N1..N1] (F) ns:ObjectProperty4(all) (F) ns:ObjectProperty3(all) (F) ns:ObjectProperty2(all) (F) ns:ObjectProperty1

ns:Class1 ns:Class2(some) (F) ns:ObjectProperty2(some) (F) ns:ObjectProperty1

ns:Class1 ns:Class2(some) (F) ns:ObjectProperty4(some) (F) ns:ObjectProperty3(some) (F) ns:ObjectProperty2(all) (F) ns:ObjectProperty1

ns:Class1 ⨆

ns:Class2

ns:Class3

ns:Class1 <<owl:equivalentClass>>

ns:Individual1

ns:Individual2

ns:Individual3

<<owl:oneOf>>
15
1

25
2

22
1

18
1

17
1

20
1

23
1

19
1

21
1

2

2

73

22

3

6

7

123 7

Figure 5: rdfs:subClassOf patterns observed involving nested existential and universal restrictions and other
patterns.

5. Conclusions and future work

This work has shown the degree of reuse between ontologies in the building domain, which is quite
low; however, the reasons for this are not explored in detail. In addition, regarding the observed reuse,
it should be analysed whether it corresponds to references to other domains.

On the one hand, and in line with the low level of soft reuse between ontologies, we have observed
that there are no specific domain patterns between the ontologies. However, this conclusion could be
due to the fact that this study compares URIs rather than labels of concepts. In this sense, future lines
of work include reproducing the study considering labels and annotations or even running ontology
matching algorithms before searching for patterns.

On the other hand, we have extracted 35 general patterns that answer, in a graphical way, how much
OWL knowledge is needed to understand the analysed ontologies. In addition, a patterns library for
Chowlk has been developed to facilitate the reuse of such patterns.

During this process two valuable lessons have been learnt about pattern generation using the Chowlk
notation. First, we have detected one case of an OWL structure (pattern 32) that is currently not
supported by the notation, which implies an impact in the notation that should be extended. Second,
we observed that the process of extracting patterns does not take into account whether the involved
object and datatype properties have domain or range defined, information that is needed to generate
the Chowlk visualisations. At this point, we arbitrarily decided to draw the patterns using the notation

168

for domain and range definition for this version; however, it is planned for the next version to keep
track of that information at the structure level.

Acknowledgments

This work has been supported by Horizon 2020 research and innovation programme under grant agree-
ments no. 958310 (COGITO) and 101016854 (AURORAL) and by the Madrid Government (Comunidad
de Madrid-Spain) under the Multiannual Agreement with the Universidad Politécnica de Madrid in
the Excellence Programme for University Teaching Staff, in the context of the V PRICIT (Regional
Programme of Research and Technological Innovation).

References

[1] M. Fernández-López, M. Poveda-Villalón, M. C. Suárez-Figueroa, A. Gómez-Pérez, Why are
ontologies not reused across the same domain?, Journal of Web Semantics 57 (2019) 100492. URL:
https://www.sciencedirect.com/science/article/pii/S1570826818300726. doi:https://doi.org/
10.1016/j.websem.2018.12.010.

[2] M. Poveda-Villalón, A reuse-based lightweight method for developing linked data ontologies and
vocabularies, in: Extended Semantic Web Conference, Springer, 2012, pp. 833–837.

[3] G.-Q. Zhang, M. R. Kamdar, T. Tudorache, M. A. Musen, A systematic analysis of term reuse and
term overlap across biomedical ontologies, Semant. Web 8 (2017) 853–871. doi:https://doi.
org/10.3233/SW-160238.

[4] A. Gangemi, V. Presutti, Ontology design patterns, in: Handbook on ontologies, Springer, 2009,
pp. 221–243.

[5] S. Chávez-Feria, R. García-Castro, M. Poveda-Villalón, Chowlk: from UML-Based Ontology
Conceptualizations to OWL, in: P. Groth, M.-E. Vidal, F. Suchanek, P. Szekley, P. Kapanipathi,
C. Pesquita, H. Skaf-Molli, M. Tamper (Eds.), The Semantic Web, Springer International Publishing,
Cham, 2022, pp. 338–352. doi:https://doi.org/10.1007/978-3-031-06981-9_20.

[6] M. Poveda-Villalón, M. C. Suárez-Figueroa, A. Gómez-Pérez, The landscape of ontology reuse in
linked data, in: Proceedings Ontology Engineering in a Data-driven World (OEDW 2012), 2012.

[7] G. F. Schneider, Automated ontology matching in the architecture, engineering and construction
domain–a case study, in: Proceedings of the 7th Linked Data in Architecture and Construction
Workshop (LDAC), volume 2389, CEUR-WS. org Lisbon, Portugal, 2019, pp. 35–49.

[8] N. Matentzoglu, S. Bail, B. Parsia, A snapshot of the owl web, in: H. Alani, L. Kagal, A. Fokoue,
P. Groth, C. Biemann, J. X. Parreira, L. Aroyo, N. Noy, C. Welty, K. Janowicz (Eds.), The Semantic
Web – ISWC 2013, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 331–346.

[9] B. Glimm, A. Hogan, M. Krötzsch, A. Polleres, Owl: Yet to arrive on the web of data?, arXiv
preprint arXiv:1202.0984 (2012).

[10] L. Asprino, V. A. Carriero, V. Presutti, Extraction of common conceptual components from multiple
ontologies, in: Proceedings of the 11th on Knowledge Capture Conference, 2021, pp. 185–192.

[11] P.-Y. Vandenbussche, G. A. Atemezing, M. Poveda-Villalón, B. Vatant, Linked Open Vocabularies
(LOV): a gateway to reusable semantic vocabularies on the Web, Semantic Web 8 (2017) 437–452.

169

https://www.sciencedirect.com/science/article/pii/S1570826818300726
http://dx.doi.org/https://doi.org/10.1016/j.websem.2018.12.010
http://dx.doi.org/https://doi.org/10.1016/j.websem.2018.12.010
http://dx.doi.org/https://doi.org/10.3233/SW-160238
http://dx.doi.org/https://doi.org/10.3233/SW-160238
http://dx.doi.org/https://doi.org/10.1007/978-3-031-06981-9_20

	1 Introduction
	2 Related work
	3 Methodology
	4 Results
	5 Conclusions and future work

