
153

Integrating DevSecOps into the software development
lifecycle: A comprehensive model for securing
containerized and cloud-native environments ⋆

Bohdan Leshchenko1,*,†, Bohdan Snisar1,†, Anton Stupak1,† and Viacheslav Osadchyi2,†

1 Zhytomyr Polytechnic State University, 103 Chudnivsyka str., 10005 Zhytomyr, Ukraine
2 Borys Grinchenko Kyiv Metropolitan University, 18/2 Bulvarno-Kudriavska str., 04053 Kyiv, Ukraine

Abstract
The increased use of containerized and cloud-native environments necessitates integrating security
measures throughout the entire Software Development Lifecycle (SDLC). This study proposes a
comprehensive DevSecOps model designed to address modern infrastructures’ security challenges. Our
model prioritizes the continuous inclusion of security measures from the initial planning stages to the
secure decommissioning of applications. Key elements of the model are improved governance of security,
frequent auditing, disaster recovery planning, and a focus on continuous innovation within SDLC. The
proposed approach offers a robust basis for protecting development processes, ensuring resilience, and
maintaining compliance in rapidly evolving technological environments by integrating these activities into
the DevOps framework. The practical applicability of the model is validated by comparing it against the
existing frameworks and its prospective capacity to significantly enhance security posture within
organizations working with containerized and cloud-native environments.

Keywords
DevSecOps, Software Development Lifecycle, SDLC, containerized environments, cloud-native security,
security governance, continuous integration 1

1. Introduction

1.1. Relevance of the topic

In today’s fast-paced IT landscape, incorporating security
practices into development and operational workflows is
critical, giving rise to the DevSecOps approach. DevSecOps
is an evolution of traditional DevOps methodology that
emphasizes embedding security controls early in the SDLC,
addressing potential security issues from the start. This
proactive integration is critical because it ensures that
security is not an afterthought but a fundamental part of the
development process.

The problems created by traditional security
approaches, which frequently fail to keep up with modern
IT systems’ quick deployment cycles, drive the change to
DevSecOps. By adding security measures into continuous
integration and continuous deployment (CI/CD) pipelines,
DevSecOps improves the capacity to discover and remediate
vulnerabilities early, minimizing security breach risk [1, 2].

While containers provide agility and efficiency, they are
vulnerable to certain security flaws. These include
vulnerabilities in container images, misconfigurations, and
unsafe runtime environments. Containers frequently employ
images from public sources, which may include obsolete or

CPITS-II 2024: Workshop on Cybersecurity Providing in Information
and Telecommunication Systems II, October 26, 2024, Kyiv, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 zogyyy1@gmail.com (B. Leshchenko);
b.snisar@ukr.net (B. Snisar);
s2pak.anton@gmail.com (A. Stupak);
v.osadchyi@kubg.edu.ua (V. Osadchyi)

vulnerable components. Furthermore, containers may
contain unneeded software, which expands the attack surface
and poses significant security threats if not adequately
controlled [3].

As more organizations move to containerized systems,
the requirement for integrated security solutions grows.
Containers make installing and scaling programs easier but
may also provide entry sites for malicious attacks if not
properly secured. The significance of safeguarding these
environments is clear as organizations strive to secure their
applications and data from possible breaches [4].

Several issues arise when traditional security measures
are combined with the DevOps model. These include
incompatibilities with quick development cycles, challenges
in automating security processes, tool complexity and
integration concerns, configuration management issues,
container vulnerabilities, and cultural and organizational
hurdles. Addressing these difficulties is critical for the
successful implementation of DevSecOps, which allows
organizations to develop safe software quickly and
effectively [5].

DevSecOps practices are essential for improving the
security of containerized environments, as they address
unique security challenges, ensure a more secure and

 0009-0001-5781-3518 (B. Leshchenko);
0009-0007-0091-0943 (B. Snisar);
0009-0008-1247-5990 (A. Stupak);
0000-0001-5659-4774 (V. Osadchyi)

© 2024 Copyright for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

154

resilient IT infrastructure, and ultimately improve
cybersecurity in modern software development.

1.2. Research objectives and goals

This research aims to model all the practices under the
framework and integrate them into the more extensive
software development process, emphasizing cloud-native
security. Our approach aims to enhance security by
integrating security measures with DevSecOps in mind at
each phase of development and operations. Identifying and
addressing security vulnerabilities early on aims to reduce
the risk of potential data breaches and other security
threats. Ultimately, the research aims to establish best
practices for implementing DevSecOps in a cloud-native
environment. Enhancing overall security posture and
resilience is crucial.

This research has several goals: identification and analysis
of the current challenges. This includes examining the
limitations of current security methodologies.

Additionally, the research will focus on developing
strategies for integrating security measures seamlessly into
the development process. By understanding the current
challenges and limitations, the goal is to create a more
robust and proactive security framework that can adapt to
the evolving threat landscape. Ultimately, the aim is to
provide organizations with practical guidance on
implementing DevSecOps effectively in a cloud-native
environment, ensuring that security is prioritized from the
outset of the development process.

We focus on developing an expanded DevSecOps model
that includes additional stages and practices such as security
governance, disaster recovery, continuous innovation, and
secure decommissioning.

1.3. Research methods

Our work uses a complex methodological approach to
create a complete DevSecOps model. The model should be
designed specifically for protecting containerized and
cloud-based environments. The research methodologies
were devised to address the study's objectives and goals
methodically.

The first method involves a thorough literature review,
which is the foundation for understanding existing
DevSecOps methods and unique security problems. This
review included academic journals, conference papers, and
business publications. “Gray” literature and materials from
third-party vendors were also used in our work. The literature
research gave crucial insights into the growth of security
procedures in modern IT infrastructures and gaps in existing
models, which influenced the succeeding phases of the
research.

Based on the findings of the literature overview, a
comparative analysis was performed to assess the efficiency
of existing DevSecOps models and frameworks. This
investigation thoroughly evaluated various models based on
factors such as security integration into the SDLC, adaptation
to cloud-native environments, and scalability in complex IT
ecosystems. The comparison research highlighted substantial
strengths and limitations in the existing models, enabling the
identification of particular areas for development. This stage

was critical in determining the design of the new, expanded
DevSecOps model suggested in this study.
The third part of the research concluded with the
development of a new model. Drawing on the findings of the
literature study and comparative analysis, the expanded
model was created to fill the gaps in current frameworks.

The new model’s structure is purposefully linked with
the SDLC to ensure easy incorporation into existing
development processes, making it both practical and
successful.

The research uses these methodologies to establish a
robust and adaptive DevSecOps model that organizations
can use to improve the security of their software
development processes, particularly in containerized and
cloud-native environments.

1.4. Practical significance

This research offers a comprehensive DevSecOps model for
organizations to integrate security into their software
development processes. This model helps mitigate risks and
enhance overall security posture in modern cloud
infrastructures.

Our research will introduce an extended DevSecOps
model, incorporating security governance, regular auditing,
disaster recovery planning, and continuous innovation. This
model ensures that security is integrated into development
and maintained as the organization evolves.

Its alignment with real-world operational practices
further reinforces the model’s practical applicability. Its
design should be easily integrated into existing DevOps
workflows, allowing organizations to adopt it without
significantly disrupting their current processes. This ease of
integration is essential for encouraging widespread
adoption, as it reduces the barriers to implementing
comprehensive security measures in cloud-native
environments.

Our research should provide a scalable, adaptable, and
comprehensive security model for organizations to protect
their containerized cloud-native environments, enhancing
security during development and ensuring ongoing
protection against emerging threats.

2. Literature review and theoretical
foundations

2.1. Software development life cycle

Understanding the Software Development Lifecycle (SDLC)
is essential as it offers an organized system for overseeing
software development, guaranteeing productivity, security,
and appropriate resource use at every project stage. SDLC
provides an organized technique for developing software,
ensuring that every stage—from design and planning to
implementation and upkeep—carefully handles essential
details. Researchers and practitioners can significantly
improve the security of containerized applications,
including security considerations at every level.

Several studies [6, 7] have examined the phases and
models of various approaches of different SDLCs. Fig. 1
illustrates the salient features of these studies.

155

Consequently, the process used to design, develop, and test
software is called the SDLC. Planning, design,
implementation, testing, deployment, and maintenance are
some of the phases that make it up. Specific tasks, like
gathering requirements, coding, testing for bugs, and
software deployment, are part of each phase.

Models such as waterfall, iterative, spiral, and agile offer
different approaches to structuring these phases to
maximize development. By offering a methodical
framework and enhancing planning, visibility, risk
management, and customer satisfaction, the SDLC helps
manage software development.

By comprehending the advantages and drawbacks of
each methodology, software development teams can make
well-informed decisions and adopt the most sustainable
approach, thereby enhancing the likelihood of successful
project outcomes in the long run [8].

Figure 1: Key Aspects of the SDLC

As suggested by Olorunshola et al., utilizing two or more
methods within a single project is recommended because
choosing a specific method can be challenging for a
company [9].

Unfortunately, their suggestions do not cover all
modern SDLC. Despite the numerous techniques and
models suggested, incorporating security remains a
challenge.

2.2. DevSecOps

Today, most teams recognize that security is integral to the
software development lifecycle. Security can be addressed
throughout the development lifecycle by following
DevSecOps practices and conducting security assessments
throughout the entire SDLC process.

In their research [10], Rafiq Ahmad et al. classified
significant studies through a systematic literature review.
They have identified 145 security risks and 424 best
practices for managing security via DevSecOps. They
proposed the following six phases of DevSecOps:
requirement engineering (RE), design, development/coding,
testing, deployment, and maintenance.

Using these phases, researchers and practitioners can
create robust security plans that tackle the difficulties
presented by containerized environments, ultimately
producing more resilient and secure applications.

The term DevSecOps (an organizational software
engineering culture) means the processes of development
(Dev), security (Sec), and operations (Ops). The ultimate goal
of DevSecOps is to achieve safe and rapid code release.
Security was traditionally seen as a distinct stage that came
after the development cycle and occasionally even after
deployment. However, with the introduction of DevSecOps,
security procedures are now integrated into the whole
software development lifecycle, completely changing the
original strategy. Continuous security involves persistent
monitoring and real-time insight into security vulne-
rabilities at every stage of the DevSecOps lifecycle [11].

DevSecOps’ primary idea is based on the principle of
“shifting left” [5], which involves incorporating security
early in the development process. This technique enables
the early discovery and remediation of vulnerabilities,
lowering the cost and complexity of addressing security
concerns later in the development cycle. Fig. 2 portrays
DevSecOps as DevOps with continuous security assurance,
where security controls may be included throughout the
DevOps workflow [12].

Kumar and R. Goyal described the stages of the
continuous security process in their paper [12]. Their
concept consists of 12 points, which expand upon our prior
SDLC phases. Fig. 3 illustrates a short explanation of their
phases.

DevSecOps is a significant progression in IT operations
that combines the speed and agility of DevOps with strong
security safeguards. Its importance in containerized
architectures cannot be emphasized, as it improves security
and increases cooperation and efficiency among
development and operational teams. DevSecOps adoption
will be critical to ensure safe, robust, and high-performing
IT systems as organizations increasingly embrace cloud-
native technologies and complex microservice application
architectures.

2.3. Cloud security

Containers and associated orchestration software used
in cloud systems provide new security challenges. Bader
Alouffi et al. [13] did a literature study underlining the
critical and ongoing issues in cloud computing security,
emphasizing the need for further research and development.

Software
Development

Lifecycle (SDLC)

Phases

Plan

Design

Implement

Test

Deploy

Maintain

Models

Waterfall

Iterative

Spiral

Agile

Security DevSecOps

Importance

Systematic
management

Increased visibility

Efficient planning

Risk management

Customer
satisfaction

156

Figure 2: Common representation of DevSecOps [12]

Figure 3: Continuous security workflow by Kumar and
Goyal [12]

Сloud-based system security becomes increasingly
important as cloud computing’s importance in commercial
and consumer contexts grows. The analysis identified seven
significant security dangers, with data manipulation and
leaking being the most urgent issues. These attacks threaten

the integrity and confidentiality of cloud-stored data,
necessitating the development of increasingly complex
security procedures [14].

Significant weaknesses exist in containerized cloud
infrastructures, such as data tampering, unauthorized
changes to stored data, data leaks, and the unauthorized
exposure of sensitive information. The frequency of these
weaknesses in the studied literature indicates that current
security solutions are insufficient to properly defend cloud
systems from all sorts of attackers. As a result, there is an
obvious and immediate need for continued research to
improve cloud security protocols.

Furthermore, the topic of data outsourcing—the transfer
of control over sensitive data from users to cloud service
providers (CSPs) remains a significant worry. This power
transfer creates possible weaknesses, notably in data
confidentiality and integrity. The evaluation emphasizes the
significance of creating more robust security.

2.4. Culture

Culture is critical to effective DevSecOps workflow [15],
determining how security is integrated into the software
development lifecycle. The DevSecOps culture emphasizes
teamwork, with development, operations, and security
teams working together to integrate security into all aspects
of software development. This collaborative strategy breaks
down traditional silos, allowing for proactive control of
security concerns.

A DevSecOps culture [16] is distinguished by
continuous improvement, in which teams regularly refine
their security practices in response to evolving threats, and
shared responsibility ensures that all team members, not
just security specialists, are accountable for upholding
security standards. Communication is also essential for
enabling open conversation across teams to handle security
risks promptly and effectively.

Plan: Analyze
requirements and adopt

an adaptive security
architecture.

Code: Follow secure
code development

guidelines.

Commit: Check-in code
in a source repository

with automatic version
control.

Build: Compile source
code and trigger static

code analysis.

Integrate: Conduct
system integration and

security tests.

Package: Bundle
application binaries and
store them in an artifact

repository.

Release: Deliver the
packaged application to
a staging environment.

Configure: Configure the
application for

acceptance testing.

Accept: Perform
functional and non-
functional testing.

Deploy: Deploy the
application in the

production
environment.

Operate: Monitor the
deployed applications

continuously.

Adapt: Scale
infrastructure on

demand and replace
compromised
environments.

157

DevSecOps is critical for managing the complexity of
modern programs that use microservices and containers. It
incorporates security into CI/CD pipelines to assure
ongoing protection and promotes a shared security
responsibility across development, operations, and security
teams. Without an established security culture, developers
will “take shortcuts” [17].

So, the keys to defining DevSecOps culture are
recognising the importance of cooperation, continuous
improvement, shared accountability, communication, and
trust. These cultural components are vital for integrating
security into the fabric of software development, ensuring
that security is not an afterthought but rather a necessary
component of the development process.

2.5. Regular security audits

Cybersecurity audits have evolved as a critical element of
the overall cyber risk management strategy, mainly as
organizations rely more on digital technologies that expose
them to a broader range of cyber threats. The success of
cybersecurity audits (CSA) is critical for organizations
seeking to protect their digital assets’ integrity,
confidentiality, and availability [18].

The quality of these cybersecurity audits directly
impacts the effectiveness of an organization’s cyber threat
defense mechanisms. Understanding and quantifying audit
quality, as described in Rajgopal, Srinivasan, and Zheng’s
[19] study on audit quality in financial audits, can provide
valuable insights into improving the robustness of
cybersecurity audits.

Rajgopal et al. [19] present a comprehensive framework
for assessing audit quality by examining audit problems
reported in enforcement proceedings and litigation cases.
Their findings highlight the importance of particular
proxies for audit quality, such as restatements and the audit
fee-to-total fee ratio. Using similar approaches in
cybersecurity audits could help organizations detect and
address flaws in their security policies more effectively.

However, organizations should realize that audits can be
only one part of the cybersecurity puzzle. They must be
integrated with other defensive methods to effectively combat
the evolving landscape of cyber threats.

As a result, the ongoing improvement of cybersecurity
audit procedures, guided by research and best practices, is
crucial for organizations that strive to protect their digital
resources and remain resilient to cyber threats in the long
term.

2.6. Security governance and compliance

Information Security Governance (ISG) is a strategic
framework that connects an organization’s information
security policies with its overall business objectives. It
ensures essential assets are protected while protecting the
organization’s value and reputation [20]. This alignment is
necessary to maintain organizational resilience against the
evolving cyber threat.

If practical, ISG is more than just a technology
requirement—it is a critical business function in which
senior management has to get involved. As noted by
AlGhamdi et al. [20], the research emphasizes the need for
senior management support and dedication in driving the

successful deployment of ISG frameworks. Information
security governance at the highest organizational levels
guarantees that security measures are not seen as separate
IT problems but integrated into strategic decision-making,
reinforcing the organization’s entire risk management
approach.

ISG also ensures compliance with applicable laws,
regulations, and industry best practices. Compliance will
ensure that security practices within an organization have been
attested to regulatory standards and follow well-known best
practices. AlGhamdi et al. [20] emphasize that compliance is
critical for legal protection and improving the organization’s
reputation and credibility.

Organizations can reduce the risks of noncompliance,
such as legal penalties and reputational damage, by adhering
to regulatory frameworks and ensuring that security controls
are consistently deployed and reviewed [5].

2.7. Secure decommissioning

Securely decommissioning IT assets, particularly storage
devices containing sensitive information, is crucial to data
security. Unfortunately, it is often overlooked and can pose
significant security risks and legal obligations.

As the literature further shows, one of the key
challenges in IT asset disposal (ITAD) is ensuring that all
data stored on devices is irretrievably erased before the
hardware is repurposed, sold, or disposed of. The study by
Debnath et al. [21] emphasizes the potential threats posed
by improper decommissioning of IT assets, particularly
among middle card players, such as small- and medium-
sized enterprises (SMEs), institutions, and individuals.
These entities often lack the resources or expertise to
implement stringent data sanitization processes, making
them particularly vulnerable to data breaches when their IT
assets enter the e-waste supply chain [21].

In the e-waste supply chain, improper decommissioning
can escalate the risk even further. IT assets are difficult to
track, and unauthorized parties may be able to retrieve
sensitive information due to a lack of proper disposal
methods, including the physical components that can retain
recoverable data even after standard deletion procedures.

Integrating secure decommissioning practices into
Information Security Management Systems (ISMS), such as
ISO/IEC 27001, is critical for managing information security
risks, including those related to IT asset end-of-life, and
preventing unauthorized data recovery.

Secure decommissioning is a governance challenge, not
just a technical issue. Organizations should establish clear
policies for ITAD, including certified data destruction
services and certificates, to ensure sensitive data is securely
handled and reduce legal risks associated with data
breaches.

Secure decommissioning is an essential part of IT asset
management. It ensures an organization’s security from
breaches and unauthorized access. Compliance with set
standards and a strong policy on ITAD can ensure that data
security prevails throughout the lifecycle of IT assets.

2.8. Continuous innovation in security

Innovation within DevOps is continuous and pervasive
throughout the software development and operation

158

lifecycle. Continuous innovation in DevOps is the ongoing
ability to respond to new requirements and market changes
while keeping the software up-to-date, efficient, and
competitive [22].

DevOps practices, including CI/CD, automation, and
cross-functional collaboration, help organizations maintain
agility and innovate quickly to respond to changing market
conditions [23].

3. Existing classifications
There are several kinds of literature on continuous security
frameworks. The most important among them is presented
by Xiaofan Zhao et al.’s study [24]. Their Challenge-
Practice-Tool-Metric (CPTM) approach offers a complete
framework for successfully integrating security into
DevOps operations. This model is developed based on a
Multi-vocal Literature Review (MLR) and illustrates the
correlations between challenges, processes, tools, and
metrics in the DevSecOps lifecycle.

Key obstacles to adopting DevSecOps identified using
the CPTM model are organizational resistance, integration
complexities, and the need for perpetual compliance. These
struggles are further classified under organizational,
procedural, technological, and business-related difficulties,
providing a solid understanding of what stands in the way
of successfully deploying DevSecOps.

The model emphasizes integrating these technologies into
current processes to improve efficiency and security. It
provides a variety of commercial and open-source solutions
that enable these techniques. This guarantees that the right
instruments are applied to successfully handle certain security
requirements.

The ADOC model [12] introduces a framework that
integrates development, security, and operational activities
to ensure that security practices are incorporated at each
stage of the DevOps pipeline. OSS and cloud technologies
enable this model, which incorporates six dimensions, nine
guidelines, a twelve-stage process, and seven practice areas.

The ADOC model presented in Fig. 3 provides a way
forward for organizations intending to apply DevSecOps
principles through OSS when deploying in the cloud. This
ensures built-in security at every stage of development and
is applied through automation, making it far more
achievable to deliver securely and cost-effectively
developed high-quality software. The twelve-step process
ensures that security does not become an afterthought but
is considered an integral part of the DevOps lifecycle, thus
raising the organization’s overall security posture.

Another great source of categorization information is
the GitHub repository by Sottlmarek, a popular and well-
organized resource in the DevSecOps community library
[25] with over 5,300 stars. It offers a vast library of tools and
approaches for integrating security into the DevOps
lifecycle, primarily focused on cloud cybersecurity and
DevSecOps best practices. It categorizes tools into pre-
commit time, secret management, OSS and dependency
management, supply chain security, SAST, DAST,
continuous deployment security, Kubernetes, and container
security.

The OWASP® Foundation supports software security
through community-led projects, global chapters, and

conferences. Agile frameworks and DevOps practices drive
the software development industry, which often fails to
integrate security concerns during deployment. Standard
safety measures are sometimes ignored in continuous
integration settings, leading to insecure Docker registries and
the potential theft of a company’s entire source code. The
foundation aims to address these challenges by promoting
open-source software projects, ensuring security, and
supporting collaborative conferences. They have created the
DevSecOps Maturity Model for better security planning.

The DevSecOps Maturity Model, as shown in Fig. 4,
demonstrates the security controls applied when
implementing DevOps practices and how they can be
benchmarked. DevOps practices can also enhance security
by evaluating each part of a Docker image, such as
application and operating system libraries, for known
vulnerabilities. Attackers are intelligent and creative,
constantly evolving with new technologies and goals.
Guided by the visionary DevSecOps Maturity Model,
relevant ideas and actions are being implemented to
mitigate threats [26].

Figure 4: DevSecOps Maturity Model example of
Identification of the degree of the implementation [26]

As we can see from the information provided, “white” and
“grey” researchers are not adhering to a single stagnant
classification for the Software Development Lifecycle in
securing containerized and cloud-native environments. This
suggests that diverse perspectives and orientations are
being pursued in this research, leading to a broader model.
It also indicates that the process of integrating DevSecOps
into software development lifecycles is complex and
multifaceted.

3.1. Comparative analysis of models

In this section, we conduct a comparative analysis of four
prominent models: the Continuous Planning and Testing
Model (CPTM), the DevSecOps Maturity Model, the
Application Delivery and Operations Control (ADOC)
model, and a generic DevSecOps library approach.

159

Table 1
Comparison of existing models

CPTM
model [24]

The DevSecOps
Maturity Model [26]

ADOC [12] DevSecOps
library [25]

Plan Requirements
Gathering

Plan Plan

Create Design Code Code

Verify Development Commit Build

Preprod Testing Build Test

Release Deployment Integrate Release

Prevent Maintenance Package Deploy

Detect Release Operate

Respond Configure Monitor

Predict Accept

Adapt Deploy

 Operate

 Adapt

Continuous Planning and Testing Model (CPTM)
illustrates a cyclical approach to security that underlies the
SDLC. It begins with the Planning phase, where security
requirements are specified, followed by the creation phase,
which focuses on the design of secure systems. The model
emphasizes continuous Verification during the
Implementation phase. In the Testing phase, the need to
identify security vulnerabilities is prioritized before
deployment, and the Release phase highlights secure
release practices. CPTM presents a continuous loop of
Prevent, Detect, Respond, Predict, and Adapt activities
during the Maintenance phase, underscoring the
importance of ongoing vigilance and adaptability to
maintain secure operations.

DevSecOps Maturity Model provides a structured
approach to scaling security practices in the SDLC. It starts
with requirements gathering in the planning phase,
where security needs are deeply embedded in project
planning. In the Design phase, security is integrated into
system architecture, making it a fundamental part of the
design process. The Implementation phase focuses on
secure Development, emphasizing secure coding and
regular security assessments. Rigorous Testing ensures that
security testing is an integral part of quality assurance. The
Deployment phase incorporates security into the
deployment pipeline, making security checks a continuous
part of software releases. Finally, Maintenance ensures
that security remains a top priority throughout the
software’s lifecycle.

Application Delivery and Operations Control
(ADOC) introduces a unique approach concentrating on
delivery and operational management. The Planning
phase aligns with strategic security planning, while the
Code phase emphasizes secure coding practices as part of
the design. During the Implementation phase, Commit
activities ensure that code commits are secure and reliable.
Build and Integrate activities in the Testing and
Deployment phases to ensure that security is integrated

into the continuous integration/continuous deployment
(CI/CD) pipeline. The Maintenance phase is
comprehensive, covering Package, Release, Configure,
Accept, Deploy, Operate, and Adapt activities, ensuring
security is maintained and adapted to changing
environments and threats.

The DevSecOps Library takes a broader approach to
DevSecOps, reflecting its practices in a more generalized
way. It closely aligns with the traditional Software
Development Life Cycle (SDLC) stages while strongly
focusing on integrating security measures throughout each
phase. Planning involves the identification and integration
of security requirements. Code reflects secure coding
practices, while Build focuses on embedding security into
the build process. The Test phase emphasizes thorough
security testing, ensuring vulnerabilities are identified and
addressed before deployment. Release in this approach
involves the secure deployment of the software.
Maintenance includes deploying, operating, and
monitoring activities to ensure continuous security
throughout the software’s operational life.

The comparative examination (Table 1) of these models
demonstrates that, while each framework has distinct
strengths and emphasis areas, they all strive for the same
goal: seamless security integration into the SDLC. By
comparing these models, we obtain significant insights into
how security might be systematically integrated into
software development processes, improving the security
posture of modern software systems. As the threat
landscape evolves, adopting and enhancing these models
will be critical for organizations seeking to maintain strong
security across the software lifecycle.

3.2. Expanding existing models

Following our research, we identified additional areas for
improvement in existing models and their classification.
Extra phases can be introduced to address the problems and
practices discussed earlier. One key recommendation is to
emphasize the importance of continuous education,
ensuring all team members are regularly trained on security
best practices, tools, and emerging threats. This helps a
security-conscious culture within the organization, where
every stakeholder plays a role in maintaining security.
Incorporating disaster recovery and business continuity
measures is also essential. Developing and testing plans that
allow business operations to recover swiftly after a
significant incident or system failure ensures resilience.

Additionally, regular security audits should be
conducted to assess the effectiveness of security measures.

These audits should be automated and integrated into
the CI/CD pipeline whenever possible to maintain
alignment with current standards and compliance
requirements.

As applications grow, security measures must scale
accordingly. Adapting security strategies to the increasing
complexity of container orchestration and cloud
environments is vital.

Moreover, implementing governance frameworks
helps ensure that all security practices comply with
regulatory and organizational standards. These policies and

160

procedures are crucial for guiding applications’ secure
development, deployment, and maintenance.

Secure decommissioning processes are equally
important when applications or components end their
lifecycle. This involves securely removing data, dismantling
infrastructure, and ensuring no residual vulnerabilities are
left behind.

Lastly, encouraging continuous innovation in
security practices and technologies keeps the organization
ahead of emerging threats. Adopting new tools,
methodologies, and approaches helps to navigate the ever-
evolving challenges within the DevSecOps landscape.

Our extended model (Table 2) contains 20 elements,
which cover the whole range of actions required for the safe
development, deployment, and operation of contemporary
software systems. By including extra stages such as
monitoring, reaction, recovery, auditing, and education, this
model provides a complete framework that handles the
technical components of security and the cultural and
procedural factors required to maintain a strong security
posture.

Table 2
Proposed extended model
Phase Description

Educate Continuously train and educate team members.

Plan Strategic planning, defining project objectives,
gathering requirements, and identifying security
risks.

Govern Establish security governance frameworks and
ensure compliance with regulatory standards.

Code Implement secure coding practices.

Commit Use secure version control practices, protecting
code commits.

Build Integrate automated security testing into the
build process.

Integrate Ensure secure integration of components with
automated testing and validation.

Package Package the application securely.

Configure Manage configurations securely, applying best
practices to ensure consistency and security.

Release Conduct final security checks and validations
before releasing the application to production.

Deploy Automate deployment with integrated security
checks, ensuring secure, validated code reaches
production.

Operate Implement continuous monitoring and real-time
security operations.

Monitor Automated tools are used for continuous
security monitoring and anomaly detection [27].

Respond Establish incident response protocols.

Audit Perform regular security audits to assess the
effectiveness of security measures and ensure
ongoing compliance.

Accept Conduct security acceptance testing.

Scale Adapt security strategies to accommodate
growth and increased complexity.

Adapt Regularly review and update security practices.

Innovate Adopting new technologies and methodologies.

Decommission Securely retire applications or components.

This expanded model is especially well-suited for
addressing the complexities of containerized, cloud-native
environments, ensuring that security is integrated

throughout the entire software lifecycle. It can also be used
to develop and automate deployments of enterprise security
subsystems, as in our previous research [28].

The model addresses all phases of the SDLC and
integrates security considerations at every stage, ensuring a
comprehensive approach to secure software development in
modern, cloud-native environments.

4. Conclusions
This study proposes a complete DevSecOps model designed
to solve the security problems of containerized and cloud-
native environments. By incorporating security practices
throughout the SDLC, the model provides a solid foundation
for organizations to improve their security posture. The
suggested model incorporates essential aspects such as
security governance, disaster recovery planning, frequent
audits, and secure decommissioning to ensure that security
is an ongoing and integrated part of the development
process.

The comparison with existing frameworks shows that
the expanded model fills gaps in current practices and
provides a scalable solution that syncs with the dynamic
nature of modern IT environments. The model’s emphasis
on continual innovation and adaptation helps organizations
stay ahead of emerging threats and changing security
requirements.

Empirical validation of the effectiveness and scalability
of the suggested DevSecOps approach through
implementation in actual applications across several
sectors. Automated security tool integration is another
possible area to explore how these tools might be integrated
into the suggested paradigm, particularly inside the CI/CD
pipeline. Potential pathways for further study might include
examining organizational and cultural obstacles to adopting
DevSecOps methods and how training initiatives and
strategic change management can help remove these
barriers.

As technology advances, future studies should assess
the model’s adaptability to new frameworks, such as
serverless computing and AI-driven development processes.

Another approach is to examine how the suggested
model affects efficiency and performance, especially in
terms of development teams’ resource allocation and time
to market.

Lastly, future research must focus on matching the
model with different regulatory frameworks and
investigating the possibility of automating compliance
checks inside DevSecOps procedures.

Once addressed, these research topics will enrich and
modify the proposed model to suit the changing needs of
the software development industry and, hence, go a long
way toward contributing to the development of secure and
resilient IT infrastructures.

References
[1] D. Berestov, et al., Analysis of Features and Prospects

of Application of Dynamic Iterative Assessment of
Information Security Risks, in: Cybersecurity
Providing in Information and Telecommun. Systems,
CPITS, vol. 2923 (2021) 329–335.

161

[2] S. Shevchenko, et al., Information Security Risk
Management using Cognitive Modeling, in:
Cybersecurity Providing in Information and
Telecommun. Systems II, CPITS-II, vol. 3550 (2023)
297–305.

[3] B. Kaur, et al., An Analysis of Security Vulnerabilities
in Container Images for Scientific Data Analysis,
GigaScience, 10(6) (2021). doi: 10.1093/gigascience/
giab025.

[4] F. Khan, et al., Data Breach Management: An
Integrated Risk Model, Inf. Manag. 58(1) (2021) 103392.
doi: 10.1016/j.im.2020.103392.

[5] R. N. Rajapakse, et al., Challenges and Solutions when
Adopting DevSecOps: A Systematic Review, J. Inf.
Software Technol. 141 (2022) 106700. doi:
10.1016/j.infsof.2021.106700.

[6] N. Dwivedi, D. Katiyar, G. Goel, A Comparative Study
of Various Software Development Life Cycle Models,
Int. J. Res. Eng. Sci. Manag. 5(3) (2022). 141–144.

[7] B. Acharya, P. K. Sahu, Software Development Life
Cycle Models: A Review Paper, Int. J. Adv. Res. Eng.
Technol. 11 (2020). 169–176. doi: 10.34218/ijaret.
11.12.2020.019.

[8] S. Pargaonkar, A Comprehensive Research Analysis
of Software Development Life Cycle (SDLC) Agile &
Waterfall Model Advantages, Disadvantages, and
Application Suitability in Software Quality
Engineering, Int. J. Sci. Res. Publ. 13 (2023) 120–124.
doi: 10.29322/ijsrp.13.08.2023.p14015.

[9] O. E. Olorunshola, F. N. Ogwueleka, Review of
System Development Life Cycle (SDLC) Models for
Effective Application Delivery, Information and
Communication Technology for Competitive
Strategies (ICTCS 2020), LNNS 191 (2021) 281–289.
doi: 10.1007/978-981-16-0739-4_28.

[10] R. A. Khan, et al., Systematic Literature Review on
Security Risks and Its Practices in Secure Software
Development, IEEE Access 10 (2022) 5456–5481. doi:
10.1109/access.2022.3140181.

[11] Solutions — DevSecOps — Addressing Security
Challenges in a Fast Evolving Landscape White Paper
(2022). URL: https://www.cisco.com/c/en/us/
solutions/collateral/executive-perspectives/
devsecops-addressing-security-challenges.html

[12] R. Kumar, R. Goyal, Modeling Continuous Security: A
Conceptual Model for Automated DevSecOps using
Open-Source Software over Cloud, Comput. Secur. 97
(2020) 101967. doi: 10.1016/j.cose.2020.101967.

[13] B. Alouffi, et al., A Systematic Literature Review on
Cloud Computing Security: Threats and Mitigation
Strategies, IEEE Access 9 (2021) 57792–57807. doi:
10.1109/access.2021.3073203.

[14] P. Anakhov, et al., Protecting Objects of Critical
Information Infrastructure from Wartime Cyber
Attacks by Decentralizing the Telecommunications
Network, in: Cybersecurity Providing in Information
and Telecommun. Systems, vol. 3050 (2023) 240-245.

[15] N. Tomas, J. Li, H. Huang, An Empirical Study on
Culture, Automation, Measurement, and Sharing of
DevSecOps, in: International Conference on Cyber

Security and Protection of Digital Services, UK (2019)
1–8. doi: 10.1109/cybersecpods.2019.8884935.

[16] M. Sánchez-Gordón, R. Colomo-Palacios, Security as
Culture: A Systematic Literature Review of
DevSecOps, in: IEEE/ACM 42nd International
Conference on Software Engineering Workshops
(ICSEW'20). Association for Computing Machinery
(2020) 266–269. doi: 10.1145/3387940.3392233.

[17] S. Sultan, I. Ahmad, T. Dimitriou, Container Security:
Issues, Challenges, and the Road Ahead, IEEE Access
7 (2019). 52976–52996. doi: 10.1109/access.2019.
2911732.

[18] H. Hulak, et al., Dynamic model of guarantee capacity
and cyber security management in the critical
automated systems, in: 2nd International Conference
on Conflict Management in Global Information
Networks, vol. 3530 (2022) 102-111.

[19] S. Rajgopal, S. Srinivasan, X. Zheng, Measuring audit
quality, Review of Accounting Studies 26 (2021). 559–
619. doi: 10.1007/s11142-020-09570-9.

[20] S. AlGhamdi, K. T. Win, E. Vlahu-Gjorgievska,
Information Security Governance Challenges and
Critical Success Factors: Systematic Review, Comput.
Secur. 99 (2020). 102030. doi: 10.1016/j.cose.2020.
102030.

[21] B. Debnath, et al., An Analysis of Data Security and
Potential Threat from IT Assets for Middle Card
Players, Institutions and Individuals, Sustainable
Waste Management: Policies and Case Studies (2019)
403–419. doi: 10.1007/978-981-13-7071-7_36.

[22] A. Wiedemann, et al., Implementing the Planning
Process within DevOps Teams to Achieve Continuous
Innovation, in: 52nd Hawaii International Conference
on System Sciences (2019) 7017–7026. doi:
10.24251/hicss.2019.841.

[23] G. Auth, R. Alt, C. Kögler, Continuous Innovation
with DevOps: IT Management in the Age of
Digitalization and Software-defined Business,
Springer Cham (2021). doi: 10.1007/978-3-030-72705-5.

[24] X. Zhao, T. Clear, R. Lal, Identifying the Primary
Dimensions of DevSecOps: A Multi-Vocal Literature
Review, J. Syst. Software 214 (2024) 112063. doi:
10.1016/j.jss.2024.112063.

[25] GitHub. sottlmarek/DevSecOps: Ultimate DevSecOps
Library. URL: https://github.com/sottlmarek/
DevSecOps

[26] OWASP Devsecops Maturity Model | OWASP
Foundation. URL: https://owasp.org/www-project-
devsecops-maturity-model/

[27] O. V. Talaver, T. A. Vakaliuk, Telemetry to Solve
Dynamic Analysis of a Distributed System, J. Edge
Comput. 3 (2024) 87–109. doi: 10.55056/jec.728.

[28] B. Leshchenko, et al., Model of a Subsystem for
Securing E-Mail Against Loss using Mail Transport
Agents based on Containerized Environments, in:
Cybersecurity Providing in Information and
Telecommunication Systems II co-located with
International Conference on Problems of
Infocommunications. Science and Technology (PICST
2023), vol. 3550 (2023) 14–28.

