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Abstract 
A technical implementation option for load balancing among concurrently operating application servers is 
proposed to mitigate the risks of overload amid substantial unpredictable fluctuations in request flow to the 
application system and the variable processing durations by each application server. The structural-
functional model for load balancing inside the server line of the application system is delineated, and 
designed to operate under conditions where the incoming request flow from clients is characterized as 
random, unexpected, non-stationary, and pulsing. A proposal is made for a system that generates a flow of 
requests to the application server line, ensuring the alignment of the stationary intervals of this flow with 
the intervals of discrete control for equalizing server load factors. A technological framework for load 
balancing on application servers is proposed, facilitating the equalization of load factors among application 
system servers through real-time transmission, allowing the redistribution of a portion of incoming request 
traffic from more heavily loaded servers to those with lesser loads. 
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1. Introduction 
In practice, when utilizing computerized real-time 
application systems like ‘client/server’ that permit remote 
access for clients via the Internet, such as various interactive 
help systems, the effectiveness is assessed by the value of 
τs—the average service duration of each stream of customer 
requests entering the application system input. A reduced 
value indicates that the consumer is likely to receive a 
response to their request more promptly [1]. At low request 
flow intensities, queues at the application system’s input are 
virtually nonexistent, thereby making τs directly contingent 
upon the performance of the server hardware hosting the 
application software. Issues occur when the volume of 
incoming requests is misaligned with the processing speed 
of the server infrastructure, leading to the accumulation of 
unprocessed requests, which in turn results in an 
unacceptable increase in service request duration and 
certain instances, the loss of some requests. Given the high 
intensity of request flow in several applications, it is 
essential to partition it in real-time into parallel 
demultiplexed substreams and execute their concurrent 
online processing utilizing a series of application servers 
with identical functionality. For instance, as illustrated in 
Fig. 1. Before the processing of a user’s request by an 
application server, it is initially received by the request 
redirection server (step 1), which employs a block to 
ascertain the current application server number designated 
for the request and allocates the request stream in real-time. 
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Users between the line servers (steps 2 and 3) will 
implement the distribution strategy outlined below. The 
request redirection server transmits the IP address of the 
subsequent application server, as determined by the 
distribution method, to the user terminal (step 4), and 
subsequently readies itself to handle a new request from 
another user, advancing to step 1. The user utilizes the IP 
address of the designated application server to retrieve the 
online result of processing his request from that server 
(step 5). The designated server resolves the application issue 
and transmits the outcome to the user (step 6) [2]. 

Specifically, Fig. 1 illustrates that a series of specialized 
application software and hardware servers process client 
requests concurrently. Choosing the number of servers in 
the configuration should align the request traffic intensity 
with the application system’s performance. Nonetheless, the 
issues get intricate when addressing an erratic and 
unpredictable influx of requests, characterized by 
substantial fluctuations in both intensity and duration. In 
this scenario, due to erratic variations in request volume and 
the uncertain processing times by application servers, these 
servers, in the absence of specific interventions, experience 
uneven and arbitrary loading—resulting in some servers 
becoming overloaded and consequently losing requests, 
while others remain underutilized. Unforeseen variations in 
the volume of requests directed to any application server 
can impede request processing due to potential transient 
server overloads. 
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Figure 1: Generalized structural and functional model for the allocation of user requests among application servers 

Consequently, there is both theoretical and practical 
interest in developing a mechanism for load balancing on 
application servers, specifically a dynamic load balancing 
approach among collaborating application servers in real-
time. This method’s implementation aims to avert potential 
short-term overloads of individual application servers 
during their operation, thereby fostering the sustainable 
functioning of the application system amid uncertainties in 
the dynamics of the aforementioned environmental factors. 
The suggested technique must assure the stability of the 
request distribution process, considering the dynamics of 
unforeseen fluctuations in this flow. The theoretical 
foundation of this strategy is explained in [3–5]. This paper 
presents a potential option for its technical implementation, 
the core of which is as follows. The application system 
hardware depicted in pic.1 comprises a software server 
(ROM server+server definition unit) that concurrently and 
autonomously manages multiple application servers. This 
software server facilitates a real-time adaptive distribution 
of requests among the application servers to maintain a 
more uniform load during unpredictable surges in request 
flow. 

2. Main Part 
The theoretical foundation of the employed load balancing 
method is delineated in [1, 2, 6]. This paper presents a 
potential option for its technical implementation, the core 
of which is as follows. The application system comprises a 
series of application servers that must function concurrently 

and autonomously, with a software server that facilitates 
real-time adaptive distribution of request flow among the 
application servers to achieve more or less uniform load 
balancing. The parameters of the examined load balancing 
technology are established through the resolution of the 
boundary value problem associated with the analytical 
design of the relevant regulator, utilizing the synthesis of 
the corresponding R. Bellman functional and iterative 
numerical integration of the derived tuning equation. The 
implemented technical solution facilitates nearly uniform 
loading of server equipment under the specified conditions 
while maintaining an acceptable average waiting time for 
service requests with the minimal necessary server 
resources. 

2.1. System model for load balancing on 
servers 

This work introduces a structural and functional model for 
load balancing throughout the server line of the application 
system, designed to operate under conditions where the 
incoming request flow from clients is random, unexpected, 
non-stationary, and pulsing. Server load balancing entails 
the real-time redistribution of incoming request flows from 
heavily loaded application servers to those with lighter 
loads, thereby achieving a more uniform distribution of load 
across the servers. Fig. 2 illustrates this model as a series of 
numbered blocks, each representing a certain functional 
component of the model’s structure [7].
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Figure 2: Structural and functional paradigm for load balancing between concurrently operating servers of the applied 
information system 

Fig. 2 use the following designations for functional blocks: 
1—smoothing of an input request stream; 2—creation of 
quasi-stationary segments of incoming request traffic at 
time intervals ∆ti—smoothing steps (as the formation 
process is executed as a stepwise iterative procedure with a 
step ∆ti, while monitoring fluctuations in the intensity of 
the incoming request flow); 3—demultiplexing of the 
resulting input stream of requests at each smoothing 
interval ∆ti; 4—configurator of smoothing and alignment 
procedures (referring to the process of synchronizing the 
current values of load factors for application servers seen in 
pic.2), executed by software-controlled clock generators; 5—
assessing the current values of the intensity of the generated 
input request stream at each smoothing interval ∆ti; 6—
buffering requests (establishing a queue of requests for 
processing by the i-th application server) at the input of the 
i-th application server; 7—evaluating the current values of 
the load factor of the i-th application server at each 
alignment step; 8—determining a singular matrix of 
regulatory relationships among the variables to be aligned 
(i.e., between load factors on servers) at each alignment step; 
9—ascertaining the precise values of the resource allocation 
(i.e., the amount of requests) to be allocated among the input 
queues of application servers at each stage of the alignment; 
10—data processing of the relevant issue; A—incoming 
request stream; B—produced flow of requests; B—query 
substreams post-demultiplexing. Fig. 2 illustrates that to 
create quasi-stationary traffic segments, the non-stationary 
incoming request stream is initially smoothed and 
structured accordingly. The created input stream is 
demultiplexed, and the resulting parallel substreams are 
allocated to the application system’s servers based on the 
established load-balancing method. The primary objective 
of balancing is to attain the most accurate estimate of the 
uniform load across the application system servers. In other 
words, under conditions of unpredictable fluctuations in 
incoming traffic and varying request processing times by 
each server, the balancing algorithm must operate to ensure 

that the generated quasi-stationary traffic segments receive 
approximately equal load factors across all servers. The 
model illustrated in Fig. 2 is founded on the adaptive 
principle of reallocating demultiplexed subflows of requests 
among application servers through real-time monitoring of 
fluctuations in the current intensity of the incoming request 
stream and the existing load levels of the application 
servers. Consequently, this paradigm necessitates the real-
time implementation of the following three processes:  

1) The establishment of an incoming request flow to 
attain a more uniform temporal distribution, 
thereby preventing short-term overloads in the 
application server line. 

2) The demultiplexing of the incoming request 
stream into several concurrently operating 
subflows corresponds to the number of application 
servers in the line. 

3) The equalization of current application server load 
factors diminishes the likelihood of short-term 
overload on any individual server. Examine the 
characteristics of each of these processes. 

2.2. Establishment of the incoming request 
flow 

For the proper functioning of this load-balancing method, 
the incoming request traffic must be transformed into a 
series of quasi-stationary segments representing a discrete 
random process, which can be partially refined by 
specialized averaging techniques. The load balancing 
technology on the application system’s servers necessitates 
the accurate structuring of request flow, specifically to 
maintain the consistency between the stationary intervals 
of this flow, ∆Ts, and the intervals of the discrete control 
process for equalizing server load factors, τk. Some traffic 
creation technologies do not allow for this possibility. The 
“bucket tokens” method [6, 8] has a notable constraint in its 
applicability, being suitable solely for scenarios where 
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actual traffic exhibits the traits of a stationary random 
process. Nevertheless, actual traffic and its derivatives must 
be regarded as a non-stationary discontinuous process, 
rendering the straight application of the “token bucket” 
method, along with other established traffic generating 
techniques, in adaptive load redistribution systems on 

servers, largely unjustifiable. This study presents a 
structural and functional framework for the development of 
request flow, intended as a component of adaptive load-
balancing technology for parallel servers within the 
application system. This diagram is illustrated in Fig. 3. 
 

 
Figure 3: Structural and functional diagram of the request processing pipeline by a series of application servers 

Fig. 3 employs the following designations for functional 
blocks: 1—the request queue buffer at the input of the 
application system (i.e., the input request storage); 2—the 
parameter (generator) defining the size of the smoothing 
step; 3—the measurement of the number of requests 
received at the input of the balancing system during a single 
smoothing step duration; 4—generator of virtual events to 
transmit the request via the gateway (token generator); 5—
repository of virtual events for the request sent through the 
gateway (“bucket of tokens”); 6—gateway for routing 
requests to the input of the demultiplexer; 7—demultiplexer 
for the input stream of requests. Fig. 3 illustrates that the 
foundation of this approach is the ‘buckets of tokens’ 
method, but with some adjustments and enhancements that 
facilitate its application in the processing of non-stationary 
request flows. In this scenario, the request gateway 6 
functions as a lock jumper, allowing requests from the input 
queue to go to the multiplexer only when the fill level of the 
‘bucket’ of virtual events permits the request to traverse the 
‘bucket’, achieving the average flow rate at the current 
smoothing step. The velocity of the token generator 4 is 
contingent upon the strength of the incoming request 
stream. Based on the intensity measurements conducted by 
meter 3 at each smoothing step, the configuration of the 
token generator is executed. Consequently, we acquire 
quasi-stationary segments of the generated request flow. 
The applicability of this traffic generation strategy is 
restricted to instances when there exists a possibility:  

1) Establish time intervals, referred to as stationary 
intervals (∆Tc), during which the average flow rate 
(Rc) at the input of the load balancing system 
remains almost constant. 

2) Ensure the regulated magnitude of pulsations in 
the smoothed stream of queries.  

The implementation of this traffic processing scheme is 
warranted if it can transform a non-stationary flow, marked 
by unpredictable average speeds and fluctuating volumes, 
into a series of quasi-stationary process segments with 
defined maximum current thresholds. This transformation 
enables the implementation of discrete control. The token 
bucket technique is extensively discussed in the literature, 
albeit within rather limited domains of applicability. The 
operational architecture of this algorithm is altered to 
facilitate its integration into the load-balancing system 
circuit. 

2.3. Demultiplexing the incoming request 
stream 

Demultiplexing the incoming request stream from 
application system clients is essential when the 
performance of a single application server is inadequate to 
effectively process this stream, necessitating the utilization 
of multiple parallel application servers with identical 
functionality. One can select from many ways of stream 
multiplexing. The most straightforward option is to allocate 
requests from the incoming stream uniformly across 
application system servers. In this instance, the disparity in 
request processing times would result in certain servers 
experiencing temporary overloads, leading to request 
losses, while other application servers operate under 
capacity. Consequently, it is prudent to execute the 
multiplexing of the input stream precisely as seen below. 

2.4. Model training 

The processing time for each request is an unpredictable 
variable, resulting in real-time fluctuations of application 
server load factors. Under these circumstances, balancing 
server load factors is recommended. Fig. 4 illustrates the 
structural and functional framework of load balancing on 
application servers.
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Figure 4: Structural and functional framework for load balancing on application servers 

Fig. 4 uses the subsequent designations for functional 
blocks: 1—settler (generator) of the alignment step 
magnitude; 2—buffer for the request queue at the server 
application input; 3—assessment of the current value of the 
server application load factor (evaluations are conducted at 
each alignment step); 4—calculation of the determinant of 
the matrix of regulatory connections among server 
applications (resulting from the resolution of the 
configuration equation); 5—computation of the determinant 
of the resource share ∆ (specifically, the number of requests 
to be redistributed at each alignment step among each 
server application). The load balancing process is a 
deliberate iterative procedure for the real-time 
redistribution of requests inside the request queue buffers 
for processing at the inputs of each application server. A 
specific quantity of requests is extracted from one server’s 
queue and subsequently transferred to another server’s 
queue by the established alignment procedure. This 
redistribution aims to diminish the disparity between the 
load factor values of the servers comprising the line, 
facilitating load balancing across each server in the line. The 
technique operates so that at each alignment step, 
determined by setter 1 based on the measured current load 
values of each server, it ascertains the current state of the 
control link matrix 4 (as a result of the incremental 
solution). This matrix delineates the direction of request 
redistribution across server pairs, while the resource share 
determinant of 5, derived from measurements of current 
incoming request traffic intensity, specifies the number of 
requests to be transferred from one server to another. This 
publication does not include a formal synthesis of the 
adaptive system controller that executes load balancing on 
application servers. A synthesis was specifically conducted 
in [1]. The principles of analytical regulator theory are 
presented in references [9–14]. Only the subsequent 
information should be noted. The objective of synthesizing 

an adaptive controller with a specified quantity of 
application servers is to mitigate the risk of server 
equipment overload and to maintain the stability of the load 
balancing process amidst the unpredictable duration of 
request processing by each server. The objective of 
synthesizing such a regulator pertains to the established 
boundary value problem of analytically designing 
regulators to minimize the R. Bellman functional within the 
realm of continuous dynamic control systems for entities 
characterized by ordinary first-order linear differential 
equations. The application of the synthesis results 
facilitated a more uniform loading of the server equipment 
and ensured the requisite stability and length of the 
balancing procedure despite the aforementioned 
unanticipated events. The trajectory of traffic flow 
regulation is dictated by the suitably constructed R. Bellman 
functional. The role of monitoring trends in variations in 
processed flow intensity on servers is executed through the 
incremental integration of the relevant differential tuning 
equation. In the analytical design of the controller, the 
structure of the Bellman function was defined, enabling the 
formulation of the tuning equation, the specification of the 
function, and the derivation of the appropriate Bellman 
equation. The task of designing a controller is simplified to 
solving the Riccati equation, a matrix quadratic equation 
essential for determining the matrix component of the 
Bellman function. Substituting the identified matrix into the 
control expression yields the final formulation for the 
required controller. A regulator is synthesized to maintain a 
consistent trajectory of state changes in the regulation 
object’s phase space C2, adhering to defined quality 
parameters of the transient process. The controller must 
observe both the variations in the intensity of incoming 
request flows and the dynamics of the transient process of 
load factor equalization to minimize control errors while 
considering constraints that maintain the stability of the 
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control system. Initial parameters of the equalization 
system: the number of servers in the queue and the 
attenuation coefficient for the Bellman function α. The 

design of this regulator must address the following inherent 
physical restrictions. Physical Constraint 1:

1 2 3 ... ns s s s F      . (1) 

 
Here’s the translated text: where F  represents the 

total bandwidth of the application server line, 

1 2 3 ... nF f f f f const       , 
1 2 3, , ,..., nf f f f  are the 

server bandwidths, and 
1 2 3, , ,..., ns s s s  are the flow 

intensities of requests at the inputs of application servers.  
Physical constraint 2: the unpredictability of request 

flow ripples.  
Physical constraint 3: Ambiguity regarding the 

processing duration of each specific request by each 
application server. The efficiency of the load balancing 
procedure on the servers, from a physical perspective, is the 
aggregate of the squares of the discrepancies in the load 
factors of each pair of application servers. This number 
should be reduced, as a value of zero indicates that the load 
factors of each server in the line will be identical. Adhering 

to the aforementioned constraints will decrease the risk of 
server traffic overflow. 

2.5. Essential Factors for Operating PHP 
Applications Across Multiple Servers 

Having addressed load balancing, the subsequent 
pertinent inquiry is: how are sessions managed? Sessions 
enable programs to circumvent the stateless characteristic 
of HTTP and retain information across multiple requests 
(e.g., authentication status and shopping cart contents). 
PHP, by default, retains sessions on the server’s disk that 
processes the user’s request. For instance, when User A 
submits a request to Server B, a session for User A is 
established and retained on Server B (Fig. 5) [11].

 

Figure 4: Basic load balancer schematic 

Nonetheless, when requests are distributed among 
numerous servers, this setup is likely to lead to 
malfunctioning functionality. For instance, consumers may 
discover their shopping cart is unexpectedly empty midway 
through the process; they may be arbitrarily redirected to 
the login page; or they may realize that all their responses 
in a survey have been erased while completing it. Two 
alternatives exist to mitigate this: centrally stored sessions 
and sticky sessions. Centrally Stored Sessions. Sessions may 
be centrally saved via a caching server (e.g., Redis or 
Memcached), a database (e.g., MySQL or PostgreSQL), or a 
shared filesystem (e.g., NFS or GlusterFS). The optimal 
choice among these choices is a caching server. This is due 
to two factors: They are an in-memory storage system based 
on key-value pairs, providing superior responsiveness 
compared to SQL databases; sessions are consistently 
written upon the conclusion of a request, whereas SQL 
databases need writing to the database with each request. 
This requirement may result in table locking and sluggish 
write operations. When centrally storing sessions, it is 

imperative to ensure that the session store does not become 
a singular point of failure. This can be circumvented by 
configuring the store in a clustered arrangement. 
Consequently, if one server in the cluster fails, it is not 
catastrophic, as another can be incorporated to substitute it 
[15]. Persistent Sessions. An alternative to session caching 
is Session Stickiness, also known as Session Persistence. 
User queries are routed to the same server for the duration 
of their session. Although it may initially appear to be a 
wonderful concept, there are various possible downsides, 
including Will thermal gradients emerge within the cluster? 
What occurs when a server is inaccessible, overloaded, or 
requires an upgrade? Consequently, I do not endorse this 
strategy. 

3. Conclusions 
In several application systems, such as ‘client/server’, which 
exhibit high traffic intensity, the processing of client 
requests is executed by a series of concurrently operating 
application servers. Owing to the erratic fluctuations in 
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request flow and the variable duration of their processing 
by application servers, these servers, unless specific 
measures are implemented, experience random and uneven 
loading—resulting in some servers becoming overloaded 
and consequently losing requests, while others remain 
underutilized. In [1], a formal balancing method was 
developed to avert potential short-term overloads of 
application servers during their operation, thereby 
promoting the sustainable functioning of the application 
system amidst uncertainties in the dynamics of the 
aforementioned factors. This study presents a potential 
option for the technical implementation of this strategy. 

The structural-functional model of load balancing for 
the application system’s server line is delineated, and 
designed to operate in conditions where the incoming 
request flow from clients is random, unexpected, non-
stationary, and pulsating. The model utilizes the adaptive 
principle of reallocating demultiplexed request sub-streams 
across application servers through real-time monitoring of 
fluctuations in the incoming request stream intensity and 
the current load levels of the application servers. This 
paradigm necessitates the implementation of the following 
three processes:  

1) Establishment of the incoming request flow to 
prevent short-term server line overloads. 

2) Demultiplexing the incoming request stream into 
multiple parallel substreams based on the number 
of application servers in the line. 

3) Equalization of the current load factor values of 
application servers.  

The formation of an incoming request stream to the 
application server line is examined. It is demonstrated that 
the proper functioning of this load-balancing method 
requires the incoming request traffic to be converted into a 
sequence of quasi-stationary segments representing a 
discrete random process. It is essential to align the intervals 
of stationarity of this request flow with the intervals of the 
discrete control steps for equalizing the load factor values of 
application servers. A modification of the established 
technological approach for packet traffic creation, referred 
to as the “bucket of tokens”, is proposed. The token 
generator’s performance is determined by the intensity of 
the incoming request stream. Specifically, based on the 
intensity measurements conducted by the meter at each 
smoothing step, the token generator is calibrated. 
Consequently, we acquire quasi-stationary segments of the 
generated request flow. 

A technological technique for load balancing on 
application servers has been created, characterized as a 
deliberate iterative procedure for the real-time 
redistribution of requests stored in the buffers of request 
queues at the entry points of each application server. This 
redistribution aims to diminish the disparity between the 
load factor values of the servers constituting the line. The 
implemented balancing algorithm enables a specified 
number of application servers to mitigate the risk of short-
term server overloads and ensures the stability of the load-
balancing process amidst the unpredictable duration of 
request processing by each server. 
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