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Abstract 
The paper examines one of the approaches to ensuring the security of cryptographic systems by monitoring 
the generation of random numbers. Random numbers play a key role in cryptography, in particular for 
generating keys, initialization vectors, and other important cryptographic parameters. Unreliable or 
predictable random numbers can lead to successful attacks on cryptographic protocols, making generation 
monitoring critical to the security of systems. The paper proposes an automated monitoring system that 
utilizes statistical tests to check randomness, entropy level, and the presence of correlations between 
generated numbers. Particular attention is paid to researching methods of detecting anomalies and reacting 
to them in real-time. Furthermore, the paper examines the effect of limited entropy in resource-constrained 
devices like those used in the Internet of Things (IoT) and explores the application of machine learning to 
enhance the monitoring of random number generation. The results demonstrate that implementing the 
monitoring system significantly enhances the resilience of cryptographic systems against attacks targeting 
random number generation. 
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1. Introduction 
In today’s conditions of rapid technological development, 
information protection is becoming one of the priority tasks 
in cyber security. Most cryptographic systems for data 
encryption, key generation, and user authentication are 
based on the use of random numbers. The quality of the 
random numbers used in these systems directly affects their 
resistance to cryptographic attacks. However, many 
random number generators are susceptible to attacks that 
reduce entropy or make their sequences predictable, 
creating a vulnerability for the entire cryptographic system. 

The introduction of a random number generation 
monitoring system becomes an important element of cyber 
protection, as it allows for real-time detection of anomalies 
in the generation process and response to them, minimizing 
the risk of data compromise. The use of such systems 
increases the overall reliability of cryptographic protocols, 
especially in the face of entropy attacks or sequence 
prediction attempts. 

The main problem is that cryptographic systems may be 
exposed to vulnerabilities when random number generators 
produce weak or insufficiently unpredictable sequences. 
This creates an opportunity for attacks on pseudorandom 
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number generators, which can lead to the disclosure of keys 
or other sensitive information. Traditional approaches to 
random number generation do not always provide reliable 
control over the quality and randomness of sequences in 
real-time, which increases the risk of system compromise. 

The implementation of a random number generation 
monitoring system addresses this issue by continuously 
overseeing the generation process through statistical tests 
and anomaly detection mechanisms. Such a system can 
automatically signal random violations and propose 
measures to eliminate them, which significantly increases 
the resistance of cryptographic systems to attacks. 

The purpose of the research is to develop and implement 
a monitoring system for the generation of random numbers, 
which will allow us to automatically evaluate the quality 
and compliance of the generation with the criteria of 
randomness. This entails employing statistical methods to 
identify deviations from expected outcomes and ensure the 
reliability of random number generators across various 
systems, particularly in security-critical sectors like 
cryptography and the IoT [1, 2]. 
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2. Review of literature and scientific 
publications 

During the last decade, the issue of ensuring the security of 
cryptographic systems remains relevant, and many 
researchers pay attention to the generation of random 
numbers as one of the key aspects of this security. Random 
numbers are used to generate encryption keys, salt for 
hashing passwords, and other cryptographic processes. The 
poor quality of random numbers or their predictability can 
make cryptographic systems vulnerable to attack. 

One of the key areas of research is the study of attacks 
on Random Number Generators (RNGs) and their impact on 
the security of cryptographic systems. Various types of 
PRNGs and their vulnerabilities are considered in [3–5]. 
Research indicates that predictable or insufficiently random 
sequences can compromise cryptographic keys. 
Additionally, various attacks on cryptographic systems 
have highlighted the necessity of real-time monitoring of 
random number generation quality. 

Recent research indicates that merely employing 
cryptographically secure random number generators 
(CSPRNGs) is not always adequate for ensuring a high level 
of security. The works [6, 7] propose the development of a 
system for real-time monitoring of random number 
generation to identify anomalies and deviations from 
randomness. These systems use statistical tests to assess the 
level of entropy and the presence of correlations in 
sequences of random numbers. 

Some of the popular monitoring methods include the 
Chi-square test for distribution uniformity, Pearson’s test 
for correlations, and entropy analysis for measuring 
unpredictability. Such systems allow the detection of 
anomalies before they lead to real problems in 
cryptographic processes. 

With the development of the IoT, there is a need to use 
lightweight and energy-efficient random number 
generation methods. Publications [8, 9] analyze the impact 
of insufficient entropy in IoT devices on the cryptographic 
stability of these systems. The researchers particularly 
highlight the significance of monitoring random number 
generators, especially given the limited resources of IoT 
devices. Insufficient entropy sources can lead to duplication 
of keys and other cryptographic data, which poses a security 
threat. 

Recent studies, such as [10–13], have proposed the 
application of machine learning techniques for monitoring 
random number generation. Machine learning algorithms 
can analyze large volumes of data, and identify hidden 
patterns and anomalies that may go unnoticed using 

traditional statistical methods. These studies show that 
hybrid approaches combining statistical tests and machine 
learning can significantly improve the reliability of 
cryptographic systems. 

With the development of cloud computing, 
cryptographic systems increasingly rely on random number 
generation in cloud environments. Research [14, 15] 
emphasizes the need to monitor the generation of random 
numbers in the conditions of scalable cloud environments 
[16, 17]. The publications describe the use of distributed 
monitoring systems that can monitor the performance of 
RNGs in different virtual environments and detect 
anomalies related to the computational load. 

The literature review shows the importance of 
monitoring the generation of random numbers as a critical 
component of the security of cryptographic systems. Most 
modern studies point to the need to implement automated 
monitoring systems to detect anomalies and maintain a high 
level of entropy. This applies to both classic cryptographic 
systems and modern platforms such as IoT and cloud 
computing [18]. 

Employing advanced techniques, such as machine 
learning and statistical analysis, can significantly enhance 
the resilience of random number generators against attacks, 
thereby ensuring the reliability and unpredictability of 
cryptographic operations. 

3. Analysis of stability of generators 
Analysis of the stability of pseudorandom number 
generators (PRNGs) in real conditions consists in 
determining how well they can withstand external factors 
that can affect the quality of random number generation 
(Table 1). Such factors include noise, limited computing 
resources, changes in the execution environment, and other 
technical or physical influences. 

The research conducted yielded the following results: 

 A decrease in the quality of random numbers can 
be observed in conditions of unstable power 
supply or increased loads on the system, which 
leads to a decrease in entropy or an increase in the 
predictability of sequences. 

 Reliable generators exhibit consistent random 
number generation even in the face of significant 
fluctuations in available resources or external 
conditions, ensuring high levels of randomness 
and speed. 
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Table 1 
Types of generators testing for resistance to external factors 

Type  Problem Testing 
Noise immunity 
testingм 

Noise attacks. Generators can be subject to noise 
attacks, where the input data is distorted by exposure 
to external noise. For example, for hardware 
generators, it could be electromagnetic radiation, 
while for software generators it could be a 
malfunction of the hardware or operating system. 

During the testing, experiments are carried out with the 
addition of artificial noise to the system to check the 
resistance of the HPC to such influences. This can be done 
by emulating an unstable environment, such as generating 
random numbers under varying power levels or network 
failures. 

Testing in 
conditions of 
limited 
resources 

Limitation of computing resources. IoT devices and 
other low-power systems often have limits on 
computing power, RAM, and energy. Generators 
must remain reliable even with minimal resources. 

Experiments are being carried out with the limitation of 
available resources during the execution of HPC. For 
example, artificially reducing the amount of available RAM 
or increasing delays in processor cycles allows you to assess 
how this will affect the performance and quality of random 
numbers. 

Resistance to 
entropy attacks 

Entropy reduction. One important factor is the level 
of entropy from which random numbers are 
generated. If entropy decreases due to external 
influences or a lack of sufficient sources of entropy, 
this can lead to predictable generation results. 

Entropy sources are analyzed during testing. For example, 
there may be limited input data (noise from physical sensors 
or random sources from the OS) to test whether the HPC 
can generate sufficiently random numbers. 

Analysis under 
conditions of 
high loads 

High load on the system. Real-world conditions often 
include HPC operation under high load, for example, 
when several processes simultaneously use generator 
resources. 

Conducting stress tests, which include increasing the number of 
requests to the generator or performing other computational 
tasks at the same time, allows you to evaluate how this affects 
the speed and randomness of the generated numbers. 

The influence 
of the reliability 
of hardware 
components 

Hardware failures. Hardware oscillators can be 
susceptible to problems with the components 
themselves, such as aging or defects in the chips. 

Simulating hardware component failures or conducting 
tests on various devices with differing levels of wear and 
tear enables the evaluation of their resistance to such 
factors. 

Analysis using 
statistical tests 

Some statistical tests (eg, Chi-squared test, Pearson test, 
autocorrelation analysis) are used to detect outliers or 
non-random patterns during testing. 

Testing using multivariate statistical methods allows you to 
assess the quality of randomness under variable external 
conditions [19, 20]. 

 
Testing pseudorandom number generators in real 
conditions allows you to determine their resistance to 
various external influences, such as noise, limited resources, 
and high loads. The analysis results contribute to enhancing 
generators for use in critical systems like IoT and 
cryptographic algorithms, thereby ensuring reliable random 
number generation even in challenging conditions. 

4. Study of the effectiveness of 
PRNGs  

Investigating the performance of PRNGs for IoT 
infrastructure applications is an important step in 
determining their suitability in terms of resources and 
performance. The primary criteria for assessing efficiency 
include computational complexity, speed, energy 
consumption, and memory utilization. Let’s examine the 
key steps along with examples of research and evaluations 
regarding the effectiveness of various PRNGs. (Table 2). 

Performance evaluation criteria: 
Computational complexity. An estimate of the 

number of operations required to generate one random 
number. Algorithms of different complexity are studied 
(linear complexity O(n), logarithmic complexity O(log n), 
constant complexity O(1)). 

Example: A simple algorithm of congruent HPC has 
linear complexity since at each step a simple operation of 
multiplication, addition, and subtraction is performed 
modulo. 

Speed action. It quantifies the number of random 
numbers a generator can produce within a given time frame 
(such as numbers generated per second). Algorithms on 
different processor architectures are studied: ARM for IoT 
devices, which often have limited computing power. 

Example: Comparing a classic LCG (Linear Congruent 
Generator) and a more complex algorithm such as Mersenne 
Twister can show that LCG has a speed advantage on simple 
IoT device processors. 

Energy consumption. The total power consumption 
for random number generation over a certain time or 
number of operations is measured. Important for battery-
powered IoT devices where energy savings are critical. 

Example: Simple algorithms with minimal computing load 
will be less energy-consuming compared to more complex 
generators that require a lot of resources for their work. 

Memory usage. The amount of RAM required for the 
operation of the generator is estimated. In many IoT devices, 
memory is limited, so memory efficiency is a key factor. 

Example: Algorithms such as LCG require less memory 
compared to algorithms based on complex tables, such as 
the Mersenne Twister, which requires large buffers for its 
operation. 

Table 2 
Evaluating the effectiveness of various PRNGs 

PRNG Complexity Speed 
(numb./sec) 

Energy  
consumption  

(mW) 

Memory 
usage (kB) 

LCG 𝑂(1) 10^6 50 2 
Mersenne 
Twister 𝑂(𝑛) 10^4 150 10 

XORShift 𝑂(1) 10^5 70 3 
CSPRNG 𝑂(𝑛ଶ) 10^3 200 20 

For IoT devices, where speed and energy efficiency are 
crucial, simple generators such as LKG or XORShift 
demonstrate superior performance in both speed and power 
consumption. However, in cases where cryptographic 
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robustness is required, CSPRNG, despite the higher resource 
costs, is a necessary choice. 

5. Description of the random 
number generation monitoring 
system 

A random number generation monitoring system should 
automate data collection, analysis, and visualization 
processes to ensure real-time control of generation quality 
and stability. This will effectively detect any deviations from 
randomness or other anomalies in the operation of PRNGs 
and hardware generators. 

Let’s consider the main components of the monitoring 
system (Fig. 1): 

 
Figure 1: The main components of the monitoring system 

Data collection module. This module gathers data from 
various random number generation sources, including both 
PRNGs and hardware generators. Data can be collected from 
local or remote generating systems. The module facilitates 
real-time data collection, in addition to storing historical 
data for subsequent analysis. Data sources can be generators 
in cryptographic systems, IoT devices, mobile applications, 
or other systems that rely on PRNG. 

Generation quality analysis module. The analysis 
module assesses the quality of randomness in the collected 
numbers. It uses statistical methods to detect correlations, 
and predictable patterns and checks whether the generation 
meets the criteria of randomness. Methods that can be 
utilized in this module: Chi-square test and Pearson’s test to 
test for uniform distribution; autocorrelation analysis to 
check dependencies between numerical sequences; 
multivariate tests for analyzing correlations between 
several parameters; Entropy test for evaluating the degree 
of unpredictability in numbers. 

Visualization module and user interface design. 
Offers an interface for visualizing monitoring results. The 
graphical interface should show indicators such as entropy 
level, distribution uniformity, frequency deviations, and 
other quality metrics. Types of visualizations that can be 
implemented: Histograms and distribution graphs that 
show the distribution of numbers and reveal possible 
deviations from uniformity; heat maps of correlations that 
visualize dependencies between different random number 
generations; real-time monitoring shows current generation 
performance and quality metrics, allowing for immediate 
detection of deviations or anomalies. 

Notification and logging module. This module is 
responsible for logging events and notifying about 
deviations in the generation. It provides logging of all 
generation processes and provides the ability to view 
historical data for in-depth analysis. If serious deviations are 
detected, the system sends a notification to the 
administrator or interested parties via email, mobile 
application, or other means of communication. 

Configuration and settings module. This module 
enables the configuration of various parameters for the 
monitoring system, including data collection frequency, 
alert threshold values, selection of statistical tests for 
analysis, and user interface settings. The system should 
support flexible configuration for different types of 
generators and usage scenarios, allowing it to be adapted to 
specific needs. 

Reporting system. Automatic generation of detailed 
reports on the quality of random number generation. These 
reports can be saved as PDF or other formats, allowing 
detailed analysis of the generation history and making it 
available to interested parties. Reports usually include the 
following factors: randomness metrics, detected deviations, 
and recommendations for improving the quality of 
generation. 

The use of a monitoring system is particularly useful for 
the following industries: 

 Cryptographic systems where the reliability of 
random number generation is critical for security. 

 IoT devices, where constrained resources may 
impact the quality of generation. 

 Mobile applications that utilize random number 
generation for security purposes or gaming. 

Here are the key advantages of the system. 
Increased reliability. Continuous monitoring ensures 

the stable operation of generators, helping to avoid failures 
and anomalies. 

Instant reaction to deviations. Thanks to built-in 
notifications, the system allows you to quickly react to any 
failures in the generation process. 

Real-time analysis. The system supports real-time 
data collection and analysis, which allows you to quickly 
obtain information about the quality of random numbers. 

This system provides an opportunity to flexibly 
configure the generation of random numbers to ensure their 
high quality, convenient visualization, and timely detection 
of problems in real conditions of use. 

6. Modeling the operation of the 
random number generation 
monitoring system 

6.1. Overview of the system’s general 
algorithm 

Let’s examine the key stages of the random number 
generation monitoring system (Fig. 2). 

System initialization. The system is initiated and 
configured to monitor random number generation. The 
sources of random number generation, whether software or 
hardware generators, are identified. 
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Data collection. The system collects numerical 
sequences from generators in real-time. Data collection is 
conducted based on pre-defined intervals or events. 
Data pre-processing. Collected data is sequenced for 
further analysis. The accuracy of the collected data is 
verified to ensure there are no omissions or errors. 

Analysis of generation quality. Statistical tests are 
applied to the collected data to check for randomness: 

Check for anomalies. The analysis results are 
compared against reference indicators. If deviations or 
anomalies are identified (indicating non-compliance with 
randomness criteria), the system triggers a response. 

Decision on anomalies. If no anomalies are detected, 
the system continues to collect and log data. If anomalies 
are detected, the system initiates a response procedure. 

Actions when anomalies are detected 

 Notification: the system alerts the administrator 
or the individual responsible for security systems 
about any identified issues. 

 Automatic actions: an adjustment attempt is 
possible (restarting the generator or changing the 
entropy source). 

 Problem logging: details of the anomaly are 
captured for further analysis. 

System initialization

Data collection

Data pre-processing

Analysis of generation quality

Check for anomalies

Logging and reporting

Completion of the cycle

Periodic audit and optimization

Apply Statistical Tests

Decision on anomalies

Compare Results

If anomalies detected

If No anomalies detected

Store Logs & generate reports

End current cycle

Start new monitoring cycle

Actions when anomalies 
detected

System alerts issues

Automatic actions

Automatic actions

 
Figure 2: The main stages of the general scheme of the 
random number generation monitoring system 

Logging and reporting. All monitoring actions and results 
are stored in logs. The system automatically generates 

reports on the status of random number generation (daily, 
weekly, etc.). 

Completion of the cycle. The system ends the current 
monitoring cycle and starts a new one. 

Periodic audit and optimization. Periodically, the 
system conducts an in-depth audit of the operation of 
generators for further improvement of settings or 
algorithms. 

The algorithm is aimed at automatic quality control of 
random number generation with minimal user intervention. 
The system can quickly react to deviations, ensuring 
stability and reliability of generation in critical systems.  

6.2. Mathematical model of the system for 
monitoring the generation of random 
numbers 

A mathematical model for a random number generation 
monitoring system can be constructed using several key 
components. This model should include a process of data 
collection, random analysis, anomaly detection, and 
response. 

Let: 

 𝑋(𝑡) —is a sequence of random numbers generated 
at time 𝑡. 

 𝑓(𝑋(𝑡)) —is a function describing the properties of 
the sequence 𝑋(𝑡), which is responsible for 
checking its randomness. 

 𝑇௧௦௧—is a set of statistical tests for checking 
randomness (for example, Chi-square test, entropy 
test). 

 𝑃—is the probability of an anomaly occurring 
in the generation process. 

 𝐷(𝑡)—is the deviation from the randomness 
reference values at time 𝑡. 

6.2.1. Modeling the generation of random 
numbers 

The generation of random numbers in the system is 
described as a set of sequences of numbers: 

𝑋(𝑡)  =  {𝑥ଵ, 𝑥ଶ, . . . , 𝑥}, (1) 
where 𝑥 ∈ [𝑎, 𝑏] is a single random number within the 
interval [𝑎, 𝑏], generated at time 𝑡. 

6.2.2. Modeling the quality of randomness 

The randomness test function 𝑓(𝑋(𝑡))  applies statistical 
tests to the sequence 𝑋(𝑡). For example, for the Chi-square 
test: 

𝑓ఞమ(𝑋(𝑡))  = 
(𝑂 − 𝐸)ଶ

𝐸



ୀଵ

, 
(2) 

where 𝑂 are the observed frequencies of random numbers, 
𝐸 are the expected frequencies of random numbers. 

The test results are compared against critical values. If 
the result surpasses the 𝜒௧

ଶ  threshold, this indicates a 
deviation from a uniform distribution, and an anomaly is 
recorded. 

Other tests (for example, the entropy test 𝐻(𝑋)) can 
estimate the level of entropy: 
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𝐻(𝑋) =  𝑝(𝑥)



ୀଵ

logଶ 𝑝(𝑥), 
(3) 

where 𝑝(𝑥) is the probability of the number 𝑥 appearing. 
A high entropy means a more random sequence. 

6.2.3. Modeling the probability of occurrence of 
anomalies 

The probability of an anomaly occurring, denoted as 𝑃, 
is influenced by the extent to which the test results deviate 
from the reference values. If the deviation function 
𝐷(𝑡)exceeds the permissible value 𝐷௫, an anomaly is 
considered to have occurred: 

𝑃 = 𝑃(𝐷(𝑡) > 𝐷௫). (4) 

Here 𝐷(𝑡) = ห𝑓(𝑋(𝑡)) − 𝑓௧௧(𝑋)ห, where 
𝑓௧௧(𝑋)—the reference value of the randomness function. 

6.2.4. Modeling the response of the system 

If the probability of an anomaly exceeds the permissible 
𝑃 > 𝑃௧௦ , the system goes into response: 

 Notification: The system generates a notification 

for the operator. 

 Automatic intervention: It is possible to restart 

the generator or connect a backup source of 

random number generation. 

Formally, the reaction process can be described as 
follows: 

𝑅(𝑡) = ൜
0, 𝑃 ≤ 𝑃୲୦୰ୣୱ୦୭୪ୢ  
1, 𝑃 > 𝑃୲୦୰ୣୱ୦୭୪ୢ

, 
(5) 

where 𝑅(𝑡) is the system response at time 𝑡 (0—normal 
operation, 1—intervention or notification). 

6.2.5. Modeling the logging and reporting 
process 

To provide historical analytics, the system keeps a log of all 
data stored in the form: 

𝐿(𝑡) = {𝑋(𝑡) , 𝑓(𝑋(𝑡)), 𝑃 , 𝑅(𝑡)}. (6) 
This log allows you to track all events related to the 

generation of random numbers and generate reports to 
analyze the monitoring results. 

6.2.6. General mathematical model 

Mathematically, the model of the random number 
generation monitoring system can be represented as a set of 
functions: 

1. Generation of a sequence of random numbers 

𝑋(𝑡)  =  {𝑥ଵ, 𝑥ଶ, . . . , 𝑥}. (7) 

2. Evaluation of the quality of randomness using 
tests:  

𝑓ఞమ(𝑋(𝑡))  = ∑
(ைିா)మ

ா


ୀଵ , 

𝐻(𝑋) =  𝑝(𝑥)



ୀଵ

logଶ 𝑝(𝑥). 
(8) 

3. Probability of anomaly:  

𝑃 = 𝑃(𝐷(𝑡) > 𝐷௫). (9) 

4. System reaction:  

𝑅(𝑡) = ൜
0, 𝑃 ≤ 𝑃୲୦୰ୣୱ୦୭୪ୢ  
1, 𝑃 > 𝑃୲୦୰ୣୱ୦୭୪ୢ

. (10) 

5. Logging and storage of results:  

𝐿(𝑡) = {𝑋(𝑡) , 𝑓(𝑋(𝑡)), 𝑃 , 𝑅(𝑡)}. (11) 

This mathematical model allows for building a system 
that automatically collects, analyzes, and controls the 
quality of random number generation in real-time, 
providing visualization and responding to anomalies. 

7. Overview of the software 

7.1. Library of statistical tests 

The library of statistical tests is a component of the 
monitoring server but can be used as a separate product if 
necessary. The simplest method to utilize it is by adding a 
“.jar” file to the project during compilation. However, it is 
advisable to use tools like “Maven” or “Gradle” for 
automating tasks within Java projects. This avoids manually 
downloading and compiling the project with the library and 
is a safer approach.  

In Maven, you need to define a new repository 
“jitpack.io” and add the library as a dependency (Fig. 3). 

 
Figure 3: Import the library using Maven 

The process is almost identical for Gradle, but the repository 
should be slightly different. The library does not contain 
any configuration parameters or settings that must be made 
before use, so you can perform statistical tests (Fig. 3) 
simply by calling methods on the library classes. 

7.2. Monitoring server 

The monitoring server can be used locally for testing, but it 
is likely to be more useful to deploy it in a cluster, cloud 
environment, or on local servers in a network where client 
applications are already deployed (or planned to be 
deployed in the future). 

A simple and working solution would be to use a docker 
container to deploy the server. 

Just like the integration library, the server has several 
environment variables used for mail and database 
connections. They must be specified for correct operation. 
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7.3. Web application 

The web application does not contain a “Home Page” per se, 
so the user will be immediately redirected to the “Random 
Numbers” page (Fig. 4). This page can be conventionally 
divided into 2 parts—a random number filter and a table 
with random numbers. 

 
Figure 4: Graph of the number of random numbers 
processed by the server 

In the upper right corner of the screen, there is a form that 
enables you to adjust the time parameters of the graphs and 
display values for the past hour, day, week, or month, as 
well as select grouping by labels or programs.  

 
Figure 5: The graph illustrating the distribution of random 
numbers by client programs 

The panels under the heading “Graphs” contain 5 graphs. In 
Fig. 5 you can see two of them—the number of random 
numbers processed by the server and the distribution of 
random numbers by client programs. Additionally, the 
program features a graph that shows the distribution of 
random numbers by values for each label. This can help 
identify whether a generator has a flaw that causes it to 
produce an excess or deficiency of random numbers within 
a specific range. 

8. Recommendations for improving 
the reliability of generators 

Based on the monitoring and testing results, we will develop 
recommendations for enhancing random number 
generation algorithms, focusing on methods to improve 
their stability and performance in critical systems.  

To boost the reliability of random number generators, 
the following recommendations can be made based on these 
findings. 

Improvement of algorithmic stability of 
generators. 

 Use of cryptographically stable generators 
(CSPRNG). Utilizing generators based on 
cryptographic algorithms, such as AES or SHA, 
ensures reliable randomness, even in critical 
systems like secure communication or data 
protection. 

 Update generation algorithms. Consistently 
update and optimize generators to address 
emerging attacks or vulnerabilities. This includes 
improvements to pseudo-random generators such 
as Xorshift, Mersenne Twister, or newer variants 
based on block ciphers. 

Protection against the influence of external 
factors. 

 Addition of noise sources (entropy pool). It is 
important to supplement generators with external 
sources of randomness (for example, noise from 
sensors, and physical processes), which will 
increase the resistance of the generator to 
predictable attacks or distortions due to the 
reduction of internal entropy. 

 Input quality monitoring. Automated control of 
input entropy level and periodic updating of noise 
sources can prevent generation randomness from 
decreasing. 

Minimization of correlations and predictability 

 Regular verification of correlation between 
generations: Applying statistical tests to verify 
the correlation between sequences of numbers will 
help to identify and eliminate patterns that reduce 
the reliability of the generator. 

 Increasing the number of random bits: To 
increase robustness, it is recommended to generate 
a larger number of random bits from different 
independent sources, which reduces the chances of 
correlation or predictability of the results. 

Durability testing in real conditions 

 High-load and stress-testing: It is important to 
regularly test generators under real-world 
operating conditions, particularly in high-load and 
resource-constrained (power, memory) situations, 
to verify their robustness. 

 Integration with monitoring systems: The 
creation of systems that automatically monitor the 
operation of generators in real time allows timely 
detection of possible failures or loss of 
randomness. 

Backup and restoration of the generation system 

 Use of multiple sources of generation: 
Creating redundancy systems where generators 
work in parallel reduces the risks associated with 
failure of one generator or loss of entropy. 

 Automated switching to other generators in 
case of failures: In case of generation problems, 
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the system should automatically switch to another 
random number generator or source. 

Optimization of computational efficiency 

 Optimization of resource usage: It is important 
to configure generators to consume minimum 
power and memory, which is critical in resource-
constrained environments such as IoT. This can be 
achieved by simplifying or adapting existing 
algorithms. 

 Development of lightweight algorithms: 
Using lightweight algorithms specially optimized 
for resource-constrained devices will help improve 
performance and reliability in such systems. 

Periodic update and audit of generators 

 Scheduled updates and retesting: Continuous 
testing and auditing of generators, including the 
use of new statistical tests, will help maintain a 
high level of reliability and identify vulnerabilities 
to new types of attacks. 

These guidelines will enhance the reliability of 
pseudorandom number generators, particularly in critical 
systems like cryptographic algorithms, IoT security, and 
other fields where the quality of randomness is essential for 
the security and stable operation of systems. 

9. Conclusions 
Random number generators are an important tool for 
solving a variety of simulation, numerical methods, 
cryptography, and programming problems. Generation 
facilities can adopt one of several available approaches, each 
with its strengths and weaknesses. Nevertheless, the most 
critical feature of generators is their capacity to produce 
truly random numbers, as the security of cryptographic 
applications and the efficiency and speed of numerical 
applications hinges on the randomness of these numbers. 

Utilizing generation tools necessitates prior research 
through statistical tests and cryptographic attacks to ensure 
confidence in the quality of the generated numbers and the 
security of the tool. During operation, generators sometimes 
show worse performance than was obtained during initial 
tests. This may be due to problems in the entropy source, 
incorrect application, or software implementation. 
Depending on the generator’s specific task, implementing a 
monitoring system is advisable to identify and address 
potential defects promptly. 

The created monitoring system provides the functions 
of monitoring the operation of generation means and 
alerting in case of exceptional situations. Programs or 
hardware devices connect to a centralized server and send 
random numbers generated by them for statistical testing 
and storage for future research. The monitoring system 
consists of the following components: 

A library including 15 NIST tests and 8 multivariate 
statistics tests. The NIST statistical tests are a 
comprehensive approach to the verification of random 
numbers and means of their generation, while the methods 

of multivariate statistics complement them by providing the 
possibility to verify short sequences of bits. 

An integration library designed to quickly connect a 
monitoring server and generators or applications 
containing random number generators. Application 
integration is done only with the use of metadata and 
configuration. 

The monitoring server primarily functions to aggregate 
random numbers transmitted by client programs, along 
with their pre-processing and storage in the database. 
Additional features include various settings for tracking and 
notification processes, as well as detailed reports and real-
time random number testing. 

A web application that is completely based on the 
functions and application interface of the monitoring server 
and is designed to provide a convenient interface for users. 

The monitoring system is recommended to be used in 
the case of operation or research of several generators of 
random numbers and sequences created by them at random. 
Practical application of the product is possible in: 

Cryptography, development, and maintenance of 
software products and hardware—tracking the operation of 
autonomous random number generators and programs that 
use built-in generators; 

Scientific research—simultaneous statistical testing of 
several random number generators, development and 
testing of new random number generators. 
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