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Enhancement of convolution operation performance 
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Abstract 
Optimization of two-dimensional convolution through 16-bit SIMD technologies of ARM x64 (aarch64) is 
considered. It is shown that by utilizing inline assembler and 16-bit SIMD commands of aarch64, one can 
achieve a significant performance increase compared to the similar functions of OpenCV. Throughout the 
research, filter coefficients were quantized to match the 8-bit range. 
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1. Introduction 
The process of automatic program code vectorization 
(APCV) is based on the SIMD instructions of the CPU. APCV 
is utilized in modern compilers, e.g., GCC and Clang/LLVM. 
The benefits that provide APCV can be achieved by 
compiling the program with -O3 (or “aggressive” -O4/-
Ofast) flag (actually, the flag may differ depending on the 
platform and compiler). But as was shown in [1, 2], we 
achieve performance from APCV less than we need in the 
context of digital image (DI) processing. Moreover, DI 
problems have great importance due to the wide variety of 
applications in video-stream processing (stabilization, 
filtration, noise correction, or applying some effects for a 
single image, etc.). In processing DI, one should always take 
into account the following features: 

1. The computational complexity of the method 
chosen. 

2. Whether the method is optimized. 
3. Hardware resources of the target architecture. 
One can emphasize resource-demanding (but 

significant) operations of DI processing: convolution, 
scaling (mostly achieved through convolution), and analysis 
(of color, brightness, contrast, etc.). Convolution operation 
(CO) (1) is the simplest but most valuable and resource-
demanding operation: 
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where 𝑖 = 𝑎, … , 𝑊 − (𝑟 − 𝑎) − 1, 𝑗 = 𝑎ᇱ, … , 𝐻 − (𝑐 −

𝑎ᇱ) − 1 are indexing pixels of the destination image p; W 
and H are the width and height of the source P and 
destination p images (we neglect border effects in the 
destination at the moment), Γ is the kernel of the 
convolution (matrix r × c), and a, a´ is so-called “anchors” 
that define relative position of a filtered point within the 
kernel. 
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Equation (1) is rather general and perfectly compatible with 
cv::filter2D(...) function of the OpenCV library [3], but 
further we will give our attention to square kernels, i.e. r = c, 
and thus from now on we presume kernel to be square-
shaped without special mentioning. 

So, every pixel of the destination DI can be calculated 
simultaneously. This means that the task can be parallelized. 
To accomplish this task, hardware developers created a set 
of parallel computing platforms (PCP) (like Nvidia CUDA, 
ATI Stream Technology (ATI-ST), etc.) to perform these 
parallelizable problems. To create some common approach 
for all PCP Chronos is distributing the OpenCL API/lib (just 
like Nvidia distributes CUDA and so on). So every PCP 
developer provides the software toolkit to interact with the 
PCP: programming language with C-like syntax, additional 
modules, frameworks, etc. 

Modern GPUs that can perform in parallel nearly any 
parallelizable task is the basis of PCPs. Currently, GeForce 
and ATI video accelerators are very popular for CNN 
learning and significantly accelerate the process. But the 
core/base of this calculation process is performed by shader 
blocks of GPU. The curious fact is that shader blocks of GPU 
are similar to mobile CPUs with RISK architecture, which 
are used in modern smartphones. 

In conclusion, for to positive effect on the software that 
is using the DI processing (image filtration, scaling, edge 
detection, blurring, etc.), it is essential to provide speed 
improvement of CO. This will automatically lead to speed 
improvement in such fields/areas as multimedia (video 
codecs), CNN learning, etc. It is worth noting that CO (1) is 
the basis for (CNN) functioning if it (CO) is used in the base 
optimized computation approach like “Integer-Arithmetic-
Only”. Therefore, by accelerating CO we achieve higher 
CNN performance and decrease its learning time. Moreover, 
GPU architecture is based/has been created to 
improve/solve/speed up such tasks as CO and similar tasks. 
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In the current contribution, we propose a new method of 
CO optimization that utilizes ARMx64 SIMD-like aarch64 
(NEON64) operations. Since NEON64 can be applied to 
integer-valued kernels, we will demonstrate a method for 
kernels with real values that allows this technique to be 
implied. Besides, to prove the suggested approach is 
effective we provide an experimental comparison of a 
human-made code (based on this approach) with recognized 
solutions like OpenCV lib. 

The rest of the paper is organized as follows. First, we 
consider NEON64’s pros and cons, and in subsection II-B we 
introduce the reduction/proposed method itself. 

2. A brief overview of modern 
software optimization 

Will perform the overview in a “bottom to top” style—
consider hardware first, then software, and then algorithmic 
methods of performance enhancement. 

2.1. Acceleration using hardware 

It is worth noting that to significantly enhance software 
product performance, well-chosen hardware architecture is 
the most important. The first question is whether the task 
(e.g., CO) allows parallelization of data flow (or instructions 
flow). Flynn’s taxonomy [4] gives a general perspective on 
possible solutions. 

Today NEON64 (A64 instruction set; Neon SIMD for 
ARM64 CPUs) principles are implemented in both RISC 
(e.g., Cortex-A53-72/X1 ARM64 CPUs) [5] and CISC (e.g., 
Intel x64/x86 series) CPUs. To obtain access to such a feature 
(NEON64) specific extensions of the assembly language are 
needed. CISC architecture implies SSEn and AVX1/2 
extensions of the assembly language. In contrast, MIMD 
principles are not implemented in modern CPUs but are 
partially supported by GPUs. As was noted before, based on 
RISC architecture modern GPUs provide parallel computing 
features due to shader blocks-CPU (SCPU). SCPU contains 
some specific 128/256/...-bit registers using whom partial 
MIMD principles are implemented. The number of these 
special registers is 32 or more, above the number of SIMD 
registers that modern ARM64 CPUs have. The bad part is 
you cannot access SIMD/MIMD instructions directly 
through the language that maintains the possibility of 
communicating with SIMD regs of SCPU. There are some 
preordered intrinsics and pre-implemented operations 
accessible: bit shifts, binary logic, etc. Mostly, programmers 
use specific frameworks to access the mentioned features, 
e.g. CUDA and OpenCL for GPU, or OpenCL for 
CPU/DSP/FPGA. 

Except using GPU, one can employ co-processor units, 
e.g. Digital Signal Processor (DSP) like Qualcomm Hexagon. 
It has been developed for embedding into Snapdragon-
6XX/8XX CPUs to reduce the CPU load by up to ∼75% and 
improve audio/video encoding/decoding performance by up 
to ∼18 times [6, 7]. Moreover, compared to simple NEON64, 
its performance is ∼4 times higher. This DSP uses a very 
long instruction word (VLIW), which means multithreading 
at the assembler level (as SIMD) during one interruption, 
three assembly instructions with different inputs are 
processed. 

2.2. Optimization using software 

The software we use (e.g. compiler itself, additional 
libraries, frameworks) highly influences program 
performance (that we produce) by employing different 
optimizations to use more effective the hardware platform 
capabilities. In the scope of the current paper, we are 
primarily concerned with their ability to perform 
vectorization without significant loss in precision and 
speed. 

Let’s consider three well-known compilers: GNU 
Compiler Collection (GCC/G++) [8], Clang [9], and nvcc 
(compiles cu-files for CUDA).  

The most popular nowadays is still the GCC compiler 
developed/supported by the FSF community. The first 
versions of GCC were a collection of compilers for different 
programming languages developed by Richard Stallman. 
Nowadays GCC is no longer a GNU C compiler now it is a 
GNU Compiler Collection. GNU is an optimizing compiler 
produced by the GNU Project supporting various 
programming languages, hardware architectures, and 
operating systems. 

GCC’s main competitor is Clang. For example, Apple 
already uses it as the basic compiler for its products. 
Moreover, the UNIX/BSD OS/distributives also use it as a 
default compiler. The Android NDK no longer uses GCC and 
by default, the clang compiler is used for it. Clang itself is a 
frontend for different programming languages, e.g. C, C++, 
Objective-C, Objective-C++, and OpenCL. The actual 
generation of binary code and vectorization is performed by 
the LLVM framework. Both GCC and Clang are 
performance-oriented, but still, they fail compared to 
human-made assembly code [1, 2, 10]. 

nvcc is the last compiler that we want to mention. It 
widely utilizes NVidia CUDA plus the power of C language, 
which significantly improves PC performance with NVidia 
GPU only. The main peculiarity is that these GPUs can use 
SIMT Architecture whose core feature is that the 
multiprocessor creates, manages, schedules, and executes 
threads in groups of 32 parallel threads. 

But as we can see, the mentioned compilers and 
technologies introduce significant heterogeneity in the field 
of program optimization. They represent a family of 
separated devices/technologies. In response, the OpenCL 
standard was developed (The Khronos Group Inc.) that is 
supported by all mentioned hardware developers and 
provides access to parallel computations on GPU/DSP/CPU. 

But PCPs have a drawback—a big overhead on 
transferring data through the bus. To avoid the problem, 
programmers organize data into pools, which allows for 
achieving more than a 20-fold increase in performance 
compared to CPU (CNN learning perfectly fits in this 
model). But using big pools is not always the solution—
while processing streams from a video camera does not at 
all. 

One more reasonable approach to achieve performance 
enhancement of DI processing is supplied by different 
libraries (proprietary or not) like OpenCV or arm 
ComputeLibrary. Many of them contain NEON64-optimized 
code for armeaby-v7a and arm64-v8a. Another smart 
strategy is to use a collection of libraries that can be 
combined into a single framework. As a result, the 
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advantages of one library compensate drawbacks of the 
others. OpenCV and ACL [9] are good examples of libraries 
comprising a wide variety of algorithms, including DI 
processing, and DI analysis. Moreover, OpenCV contains 
even modules for CNN learning, optimized for different 
CPU architectures that use SIMD (AVX1/2/SSE4, NEON64) 
and GPU optimized approaches/solutions. Also, OpenCV is 
well-known for its high-quality DI processing. Thus, 
further, we will OpenCV as a reference for comparison. 

At the moment SIMD optimization has spread over a 
wide range of programming products, both proprietary and 
open-source. For example, the kernel of Windows 10 OS is 
widely used AVX1/2/3DNow SIMD optimizations to achieve 
better performance (obviously, this influences the whole 
system). Oracle Java VM utilizes AVX1/2/3DNow and thus 
any Java application runs faster. But, using SIMD 
optimization, they all face the issue of translating floating-
point code to fixed-point with acceptable loss in precision. 
Therefore, it is quite complicated. Thus SIMD optimizations 
used in proprietary software are mostly non-disclosable. 

One more technique to mention is the so-called loop 
unrolling and tiling [11–13]. This technique avoids 
redundant comparison operations at the cost of slightly 
enlarging the out/binary file. It is mainly performed by 
utilizing the compiler or by introducing appropriate 
assembly inline code into the application.  

Some libraries like ACL may use high-level 
programming language features (e.g., templates in C++) to 
perform loop unrolling. A simplified ACL-style code is 
provided in the listing to demonstrate an example 
implementation in Figure 1: Loop unrolling with C++ 
templates. Our previous paper [2] provided a detailed 
description that leads to a huge (over +25%) speed 
improvement to an algorithm. However, the ARM64 
architecture was significantly improved compared to the 
ARMv7-A. If not go too deep in details main conclusion 
about this kind of approach is that we do not need this 
technique. Moreover, we have done some simple research in 
which we compare the speed of two equivalent functions, 
one with loop unrolling and another without it. The result 
was unexpected. The function with a loop unrolling gives a 
3-5% speed reduction. To get proof about the fact that the 
loop was unrolled the IDA was used. As on the ARMv7-A 
arch, the cycle was unrolled on ARM64 by the clang (9 
versions) compiler, and as expected the body of the 
bottleneck CO function part was repeated 8 times. But there 
is one thing to mention—the bottleneck CO function part 
was covered by redundant comparisons which can have 
such a negative effect. The ACL lib part that was optimized 
using NEON64 was rewritten without a loop unrolling 
approach. 

This unusual fact gives food for think and in further 
research about different CO approaches/methods, we will 
cover (go deeper) them. 

2.3. Optimization using special algorithms 

Let’s focus on CO. The primary obstacle for SIMD 
optimization is the act of translation of floating-point CO 
algo into fixed-point algorithm CO algo with an acceptable 
loss of precision or even without it. First of all, SIMD 
operations will be performed on integers further. 

 

 
Figure 1: Loop unrolling with C++ templates 

 
Thus, we should represent elements of the kernel Γ from (1) 
in a suitable form: 

Γ௜,௝ = 𝜈𝛾௜,௝ , 𝜈 ∈ 𝑅, 𝛾௜,௝ ∈ 𝑍 (2) 
where ν is a coefficient for normalization. Now we can 
perform/discuss the most resource-demanding part 
(additions and multiplications) in a SIMD style and 
afterward normalize the result. 

Any kernel can be represented in form (2), but the more 
precise the result we want, the more digits should have γi,j. 
So, we should set some constraints on γ to avoid overflow 
when doing CO because of the platform's limitations on 
which we intend to run the program. 

Suppose, every pixel in the original image is represented 
as a byte and thus possesses 8-bit values 0, …, 255. The same 
range is possessed by kernel elements γi,j. Intermediate 
results are stored as 16-bit signed or unsigned values. To 
warrant that no overflow occurs, we should ensure that it 
does not happen on any algorithm step. If the kernel has 
positive elements only, a condition we need looks as follows 
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Substantially, this means that even the largest possible 
inputs from the image do not lead to overflow. 

If the kernel contains negative elements, the condition 
should be much more complicated and depend on the order 
of additions when doing CO. Instead, we will use much 
stronger but more straightforward to check the condition 
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(4) 

independent of the operations’ order. Moreover, this 
condition can be slightly relaxed—we can use it for positive 
and negative entries of the kernel γ separately. And the last 
thing to mention: one can easily obtain similar results for 
signed/unsigned 32-bit intermediate values by substituting 
16 → 32 in (3) and (4). 

What we propose is selecting for giving Γ the most 
extensive ν possible, such that γ still satisfies (3) or (4) 
(which one depends on whether the kernel is purely positive 
or not). Of course, we shouldn’t be concerned about whether 
any valuable kernels can be reduced to a suitable form/size 
because there are plenty of them. 
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In conclusion, modern hardware provides mechanisms 
for vectorization, i.e., SIMD technologies, that programmers 
can use to enhance the performance of the application. In 
most cases, this technology is utilized by the compiler to 
generate binary code without the participation of the 
programmer. A suitable choice of the library may be handy 
as well—many libraries contain SIMD-optimized code. But 
in some cases, human intervention is needed to get the most 
optimal result. More specifically—the code must represent 
the function/code which can be/suitable for the SIMD 
optimization. However, it is not always possible, and in our 
case restrictions (3,4) should be satisfied. In the next section, 
we will provide a new method of CO optimization and then 
compare it with existing results from OpenCV lib. 

3. Optimization of Convolution 
Operation using SIMD 

In the current contribution, we propose a new Convolution 
Operation (CO) optimization method based on the SIMD 
technique. We presume that the target kernel satisfies the 
3rd condition. This section will provide all necessary 
considerations and an inline assembly code that illustrates 
the proposed approach. The following section will be 
devoted to an experimental comparison of this method’s 
performance to known CO implementations of OpenCV. 

Regarding condition (4), the provided code should be 
just slightly modified. Therefore, we will avoid redundant 
code listings and deliver code that realizes condition (3). In 
contrast, all necessary modifications for a realization of 
condition (4) will be described at the end of the section. We 
start with the basic implementation of CO (see Figure 2b). It 
contains no specific optimizations but still is a good point to 
begin our considerations. 

Here νn are the NEON64 registers. Regarding syntax and 
instructions order, we will strictly follow ARM reference 
manuals. For the sake of simplicity, we avoided 
normalization by the coefficient ν in (see Figure 2b), but for 
completeness, let us provide it separately (see Figure 2c). 

In (Figure 2c) we suppose data for normalization to be 
stored in registers v12–v15, while v1[0] contains the 
normalization coefficient ν. The presented code is in some 
sense multipurpose and may be used with different CO 
implementations. 

Now we switch gears to the CO optimization itself by 
utilizing NEON64. In (see Figure 2b) have been provided a 
naive version/approach of this operation (in assembly code). 
But this variant contains one significant drawback—data 
loading. The data loading/storing process is the slowest 
operation because it involves sub/inner processes like 
communication with the CPU and RAM. Even though such 
hardware approaches like CPU cache cover this operation, 
it is still slow. 

To avoid this problem, one of the registers was used as 
a buffer. The following approach (see Figure 2a) avoids this 
problem by using one of the registers as a buffer. It is known 
that simultaneous loading of 16 bytes is quicker than 
loading them one by one. Thus we use one register for 
preloading extra data and then use this data to perform 
byte-by-byte shift to exclude redundant load operations. 

Let’s comment on the sections of this code/approach 
(Figure 2b). This is a naïve approach representing the 
loading operation for each kernel element and loading 
source image elements (lines 5, 6). The loading and storing 
operations are the most expensive operations. (lines from 8–
11) represent the multiply-and-accumulated image values 
(v2, v3) with the kernel element (v0). The results of these 
operations are stored in the buffer regs (v12, v13, v14, v15). 
The buffer regs represent the result of the 8-bit 
multiplication of image values on each kernel element 
extended up to 16-bit unsigned int using the “umlal” 
operation. These operations are performed for every kernel 
element. So as you can see, this is time time-consuming 
approach. 

Let’s comment on the sections of this code/approach 
(see Figure 2a): line 4 loading 48 bytes of grayscale image to 
v0–v2; line 5 loading 16 bytes of CO kernel in v8; lines 
13,14,17,18 provide conversion from 8-bit to 16-bit and 
multiplication calculation with kernel element in v5 
simultaneously. Please note that v0–v2 registers contain 
part of the image that should be convolved with the kernel 
stored in v8. Register v2 is exploited as a buffer for 16 more 
bytes of the input image to speed up the CO by utilizing the 
“ext” operations. Moreover, data from buffer v2 is being 
used to perform cyclically shifting content of v0 (line 26), v1 
(line 29), and v2 (line 32 with itself) byte-by-byte performed 
with the “ext” command. It is not quite clear but we utilize 
different names of the registers to save shifted states of v0–
v2 (lines 12, 16, 11, 23) which is called the register rename 
technique. Also as you can see we utilized some reordering 
of instructions which brought little obfuscation. 
Nevertheless, all this gives about 7-10% speedup in 
comparison to the ordered instruction set which utilizes the 
process of saving all the time in the same names registers 
names v0..v2. 

Moreover, if we save the result of the shift in the same 
register name (like v0, v1, v2), we receive speed-reduced 
impacts. This is because the operation “ext” saves the result 
in a state of progress, and when the next operation tries to 
obtain the content of the v0 (or v1, or v2), it produces the 
waiting/bottleneck state. So, the more such conditions 
appear in the program, the less win of time provided by the 
algorithm. The most resource part of optimized CO algo 
(Fig. 2a) was almost entirely described by us. Finally, the 
“case” state (Fig. 2a, lines 37 up to 63) represents the 
calculation finishing of the kernel row. 

So as you can see the main feature of the presented 
approach (see Figure 2a) is the usage of cyclic shift (i.e., ext 
v10.16b, v0.16b, v1.16b, #1) that provides the kernel 
buffering, and thus, we need fewer operations of loading. 
One more thing that should be mentioned is the pre-save of 
the shifted data (see Figure 2a) (in lines 11,15) on to 1 
element and (in lines 19, 22) on to 2 elements were used for 
the current iteration of CO. Other “ext” operations (lines 25, 
28, 31) provide the data initialization for the next iteration 
of CO. Worth noting, that provided (see Figure 2a) demands 
a kernel containing not more than 16 elements in one row. 
Another variation of this interpretation in which CO kernel 
size is more than 16 elements should utilize data 
reinitialization of the base registers, which can be seen (in 
lines 3–4). 
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(a) 

(b) 

 
(c) 

Figure 2: CO optimization with SIMD NEON64: (a) optimized approach; (b) naive approach; (c) normalization 
procedure and saving the result. 

 
Let’s comment on the sections of this code/approach 
(Figure 2c). This section provides the normalization of 
coefficient ν. Lines from 2–9 represent the conversion 
process from 16-bit data types up to 32-bit data types. 
Saving all data needs twice as much register stack (v12–
v19) as it was before (v12–v15). Lines from 10–17 
represent the data conversion from unsigned integer 
(32-bit) up to (32-bit) floating-point. Finally, lines 19–25 
describe the normalization process with the ν coefficient 
(placed in v1.s[0]). All other lines (26–46) represent the 
reverse process: the normalized data converts from the 
(32-bit) floating-point up to (8-bit) unsigned integer 
(lines 26-45) and the result saving (line 46). 

As we mentioned earlier, this code works for kernels 
satisfying conditions (3). To make it applicable to 
kernels satisfying (4), we need to change all "umlal" 
operations to "smlal" but before it, the extended 
operation is required (like “sxtl”). These small but crucial 
changes transform (see Figure 2a) into code that works 
with signed integer kernels. Depending on elements in 
the given kernel, one can choose between these two 
options. 

In conclusion, we found a class of kernels that allow 
significant optimization CO utilizing NEON64 and 
implementing appropriate code/algo. For example, the 
Subband low pass filtering kernel, like (5). 
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Furthermore, we achieved a significant CO speedup by 
exploiting substantial differences in time for 
simultaneous 16-byte loading with a byte-shift approach 
compared to one-by-one line loading. More detailed 
results and considerations of the measurement 
procedure will be presented in the following section. 

4. Experimental setup and results 
Ground truth. To evaluate our results certain reference 
is needed. As the etalon, we chose functions 
cv::filter2d(...) from the OpenCV library. The latter is 
well-known among AI and DIP researchers due to its 
high-quality and optimized code. Especially when quick 
prototyping is needed. 

For comparison, we used the latest stable tag 
available when we started to research. The release tag is 
4.5.2 (2021-04-02 11:23) for OpenCV. The compilation 
was performed with clang-9 - the latest stable clang 
version. We ensured that libraries utilize vectorization, 
compiling them with flags: -
DCMAKE_BUILD_TYPE=RELEASE -
DENABLE_NEON=ON ... and the compilation process 
was with the verbose mode on. The result is that some 
critical fields like "CPU_BASELINE" (NEON F16) and 
"C++ flags (Release)" (...-O3 -DNDEBUG...) provided 
needed content. Also, we mention the fact that OpenCV 
lib was linked as a dynamic library. 

Devices. To make our measurements more relevant, 
we used such a device as Odroid-C4. This helps us 

understand the influence of architecture, CPU series, 
and other parameters on the execution time. The 
Odroid-C4 CPU is Cortex-A55; the OS is Ubuntu 20.04; 
Linux 5.7.0-odroid-arm64 is the kernel, and its API is 
aarch64. The CPU series of this device is Amlogic 
S905X3 which is more powerful than the latest 
Raspberry Pi CPUs. 

Measurement procedure. The pivoting parameter 
we need to measure is the execution time of each 
function. Such measurement might be tricky since it is 
highly susceptible to transition processes in any GNU 
OS (Ubuntu, Android, etc.).  

To avoid this problem, we used the following 
procedure: each function (cv::filter2d(...) and proposed 
method - newCO(...)) was successively called three times 
(for robustness and to simulate Grayscale processing), 
and the result was stored to the array—this is one data 
point. Then, after collecting 35 data points, we calculated 
the median value and treated it as twice the function's 
execution time under consideration. 

Kernel sizes varied 2×2, 3×3, …, 15×15 for 
experiments with our implementation and 
cv::filter2d(...). DIs were generated with equal width and 
height, the corresponding formula follows 

image image kernel

125
32 1,

8

n
W H W

 
     

   where 
square brackets […] denote the integer part of the 
number. Results are further presented in the form of 
fractions cv::filter2d(...) execution time divided by 
execution time of proposed/our implementation. 
 

 
(a) 

 
(b) 

Figure 3: Performance comparison of the CO usage of cv::filter2D vs. the proposed method on the devices with 
Cortex-A55 ARM CPU. 
 
Color intensity designates relative time consumption for 
reference function about the proposed method. 
Acceleration one may achieve by using the presented 
approach instead of the reference function (the brighter 
is color—the greater is acceleration). Legends on each 
plot designate how to translate color to acceleration; if 
this number is greater than 1, it is profitable to use the 
proposed method. 

5. Results 
First, we compared the time consumption of the 
proposed code (see Figure 2a) and reference function 
cv::filter2d(...). The result is presented in Figs. 5a and 5b. 
As coordinates, we use sizes of kernel and image. At the 
same time, color intensity designates acceleration, 
which one may achieve using the proposed method 
instead of the reference method (e.g., a fraction of the 
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execution times of the reference function divided by the 
execution time of the proposed method). 

Despite the presented results demonstrating the 
advantage of the proposed method, there is still room for 
improvement. For example, it seems the compiler cannot 
unroll cycles effectively on its own, and we mentioned 
this above. But if we do the same as was done in ACL—
unroll all "bottle-neck cycles" on our own, it seems we 
can achieve a more speedy approach/results. Thus, we 
may reach an additional 10-20% acceleration by utilizing 
techniques [11–13] by writing cycle unrolling with the 
online assembly by hand. 

Results for the modified code are shown in Figure 3. 
We have compared the time consumption of the 
proposed method (see Figure 2a) and function 
cv::filter2d(...). Besides, we varied image sizes up to 
4500×4500 (~20 [MP]) to emulate modern cameras and 
picture libs. 

As Figure 3 suggests, acceleration is independent 
(almost) of the input size, e.g. complexity (big-O) of our 
solution and reference solutions coincide. Some small 
decline in acceleration (but it is still greater than 2) may 
be noted for big kernels (13×13 … 15×15) and smaller 
kernels (2×2 … 4×4). Regarding mean acceleration, it is 
estimated as approximately 3.7 times. 

It is worth noting that we didn’t use parallelism for 
acceleration. Moreover, no preprocessing, e.g., image 
tiling, was performed. Probably, this technique may 
increase the performance of the approach as well. 

6. Conclusions 
In conclusion, we propose a method of convolution 
operation acceleration. We have shown that speed 
improvement can be achieved if kernels have been 
reduced to integer values that allow SIMD command 
usage. Furthermore, despite SIMD itself leading to a 
significant boost of performance, we were able to push 
the frontiers even further by exploiting the considerable 
difference in time for simultaneous 32-byte loading 
compared to their one-by-one loading and using buffer 
(one-time load for the kernel row—48-byte), and loading 
operations are partially substituted with cyclic shift. 

About ALC, we should mention in addition. There 
was a severe code rewriting event in this lib. 
Furthermore, the patches became cumulative ("less 
description more code"). This fact brought more 
obscurity/obfuscation than clarity/understanding. So, 
we will compare the ACL lib and modifications of our 
suggested approach in our following paper but it is 
needed to mention that ALC provides all additional code 
optimization approaches that we mentioned above 
(cycle unrolling, image tiling, etc.). 

To test the approach we performed a comparison 
with the cv::filter2D(...) function from the OpenCV 
library. Our results suggest the current approach leads 
to significant speedup (mean values: ~3.7× compared to 
OpenCV). Measuring acceleration for different kernels 
and images we observed no dependence on image size, 
but kernel size may influence the result—for kernels 
smaller than 8×8 we were able to achieve ×7.379 

acceleration compared to cv::filter2D(...), while for larger 
kernels presented approach allows ~3.7 speedup. 

We expect the current approach to be useful for real-
time image processing and convolutional neural 
network training as it significantly reduces processing 
time. 
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