
385

Enhancement of convolution operation performance
using SIMD of AArch64⋆

Andrii Shevchenko1,*,† and Pylyp Prystavka1,†

1 National Aviation University, 1 Lubomyra Guzara ave., 03058 Kyiv, Ukraine

Abstract
Optimization of two-dimensional convolution through 16-bit SIMD technologies of ARM x64 (aarch64) is
considered. It is shown that by utilizing inline assembler and 16-bit SIMD commands of aarch64, one can
achieve a significant performance increase compared to the similar functions of OpenCV. Throughout the
research, filter coefficients were quantized to match the 8-bit range.

Keywords
convolution, SIMD, optimization, performance 1

1. Introduction
The process of automatic program code vectorization
(APCV) is based on the SIMD instructions of the CPU. APCV
is utilized in modern compilers, e.g., GCC and Clang/LLVM.
The benefits that provide APCV can be achieved by
compiling the program with -O3 (or “aggressive” -O4/-
Ofast) flag (actually, the flag may differ depending on the
platform and compiler). But as was shown in [1, 2], we
achieve performance from APCV less than we need in the
context of digital image (DI) processing. Moreover, DI
problems have great importance due to the wide variety of
applications in video-stream processing (stabilization,
filtration, noise correction, or applying some effects for a
single image, etc.). In processing DI, one should always take
into account the following features:

1. The computational complexity of the method
chosen.

2. Whether the method is optimized.
3. Hardware resources of the target architecture.
One can emphasize resource-demanding (but

significant) operations of DI processing: convolution,
scaling (mostly achieved through convolution), and analysis
(of color, brightness, contrast, etc.). Convolution operation
(CO) (1) is the simplest but most valuable and resource-
demanding operation:

, , ,
0 0

,
r c

i j k l k i a l j a
k l

p P     
 

 

(1)

where 𝑖 = 𝑎, … , 𝑊 − (𝑟 − 𝑎) − 1, 𝑗 = 𝑎ᇱ, … , 𝐻 − (𝑐 −

𝑎ᇱ) − 1 are indexing pixels of the destination image p; W
and H are the width and height of the source P and
destination p images (we neglect border effects in the
destination at the moment), Γ is the kernel of the
convolution (matrix r × c), and a, a´ is so-called “anchors”
that define relative position of a filtered point within the
kernel.

CPITS-II 2024: Workshop on Cybersecurity Providing in Information
and Telecommunication Systems II, October 26, 2024, Kyiv, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 lllandreyshevchenkolll@gmail.com (A. Shevchenko);
chindakor37@gmail.com (P. Prystavka)

Equation (1) is rather general and perfectly compatible with
cv::filter2D(...) function of the OpenCV library [3], but
further we will give our attention to square kernels, i.e. r = c,
and thus from now on we presume kernel to be square-
shaped without special mentioning.

So, every pixel of the destination DI can be calculated
simultaneously. This means that the task can be parallelized.
To accomplish this task, hardware developers created a set
of parallel computing platforms (PCP) (like Nvidia CUDA,
ATI Stream Technology (ATI-ST), etc.) to perform these
parallelizable problems. To create some common approach
for all PCP Chronos is distributing the OpenCL API/lib (just
like Nvidia distributes CUDA and so on). So every PCP
developer provides the software toolkit to interact with the
PCP: programming language with C-like syntax, additional
modules, frameworks, etc.

Modern GPUs that can perform in parallel nearly any
parallelizable task is the basis of PCPs. Currently, GeForce
and ATI video accelerators are very popular for CNN
learning and significantly accelerate the process. But the
core/base of this calculation process is performed by shader
blocks of GPU. The curious fact is that shader blocks of GPU
are similar to mobile CPUs with RISK architecture, which
are used in modern smartphones.

In conclusion, for to positive effect on the software that
is using the DI processing (image filtration, scaling, edge
detection, blurring, etc.), it is essential to provide speed
improvement of CO. This will automatically lead to speed
improvement in such fields/areas as multimedia (video
codecs), CNN learning, etc. It is worth noting that CO (1) is
the basis for (CNN) functioning if it (CO) is used in the base
optimized computation approach like “Integer-Arithmetic-
Only”. Therefore, by accelerating CO we achieve higher
CNN performance and decrease its learning time. Moreover,
GPU architecture is based/has been created to
improve/solve/speed up such tasks as CO and similar tasks.

 0000-0003-3863-0473 (A. Shevchenko);
0000-0002-0360-2459 (P. Prystavka)

© 2024 Copyright for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

386

In the current contribution, we propose a new method of
CO optimization that utilizes ARMx64 SIMD-like aarch64
(NEON64) operations. Since NEON64 can be applied to
integer-valued kernels, we will demonstrate a method for
kernels with real values that allows this technique to be
implied. Besides, to prove the suggested approach is
effective we provide an experimental comparison of a
human-made code (based on this approach) with recognized
solutions like OpenCV lib.

The rest of the paper is organized as follows. First, we
consider NEON64’s pros and cons, and in subsection II-B we
introduce the reduction/proposed method itself.

2. A brief overview of modern
software optimization

Will perform the overview in a “bottom to top” style—
consider hardware first, then software, and then algorithmic
methods of performance enhancement.

2.1. Acceleration using hardware

It is worth noting that to significantly enhance software
product performance, well-chosen hardware architecture is
the most important. The first question is whether the task
(e.g., CO) allows parallelization of data flow (or instructions
flow). Flynn’s taxonomy [4] gives a general perspective on
possible solutions.

Today NEON64 (A64 instruction set; Neon SIMD for
ARM64 CPUs) principles are implemented in both RISC
(e.g., Cortex-A53-72/X1 ARM64 CPUs) [5] and CISC (e.g.,
Intel x64/x86 series) CPUs. To obtain access to such a feature
(NEON64) specific extensions of the assembly language are
needed. CISC architecture implies SSEn and AVX1/2
extensions of the assembly language. In contrast, MIMD
principles are not implemented in modern CPUs but are
partially supported by GPUs. As was noted before, based on
RISC architecture modern GPUs provide parallel computing
features due to shader blocks-CPU (SCPU). SCPU contains
some specific 128/256/...-bit registers using whom partial
MIMD principles are implemented. The number of these
special registers is 32 or more, above the number of SIMD
registers that modern ARM64 CPUs have. The bad part is
you cannot access SIMD/MIMD instructions directly
through the language that maintains the possibility of
communicating with SIMD regs of SCPU. There are some
preordered intrinsics and pre-implemented operations
accessible: bit shifts, binary logic, etc. Mostly, programmers
use specific frameworks to access the mentioned features,
e.g. CUDA and OpenCL for GPU, or OpenCL for
CPU/DSP/FPGA.

Except using GPU, one can employ co-processor units,
e.g. Digital Signal Processor (DSP) like Qualcomm Hexagon.
It has been developed for embedding into Snapdragon-
6XX/8XX CPUs to reduce the CPU load by up to ∼75% and
improve audio/video encoding/decoding performance by up
to ∼18 times [6, 7]. Moreover, compared to simple NEON64,
its performance is ∼4 times higher. This DSP uses a very
long instruction word (VLIW), which means multithreading
at the assembler level (as SIMD) during one interruption,
three assembly instructions with different inputs are
processed.

2.2. Optimization using software

The software we use (e.g. compiler itself, additional
libraries, frameworks) highly influences program
performance (that we produce) by employing different
optimizations to use more effective the hardware platform
capabilities. In the scope of the current paper, we are
primarily concerned with their ability to perform
vectorization without significant loss in precision and
speed.

Let’s consider three well-known compilers: GNU
Compiler Collection (GCC/G++) [8], Clang [9], and nvcc
(compiles cu-files for CUDA).

The most popular nowadays is still the GCC compiler
developed/supported by the FSF community. The first
versions of GCC were a collection of compilers for different
programming languages developed by Richard Stallman.
Nowadays GCC is no longer a GNU C compiler now it is a
GNU Compiler Collection. GNU is an optimizing compiler
produced by the GNU Project supporting various
programming languages, hardware architectures, and
operating systems.

GCC’s main competitor is Clang. For example, Apple
already uses it as the basic compiler for its products.
Moreover, the UNIX/BSD OS/distributives also use it as a
default compiler. The Android NDK no longer uses GCC and
by default, the clang compiler is used for it. Clang itself is a
frontend for different programming languages, e.g. C, C++,
Objective-C, Objective-C++, and OpenCL. The actual
generation of binary code and vectorization is performed by
the LLVM framework. Both GCC and Clang are
performance-oriented, but still, they fail compared to
human-made assembly code [1, 2, 10].

nvcc is the last compiler that we want to mention. It
widely utilizes NVidia CUDA plus the power of C language,
which significantly improves PC performance with NVidia
GPU only. The main peculiarity is that these GPUs can use
SIMT Architecture whose core feature is that the
multiprocessor creates, manages, schedules, and executes
threads in groups of 32 parallel threads.

But as we can see, the mentioned compilers and
technologies introduce significant heterogeneity in the field
of program optimization. They represent a family of
separated devices/technologies. In response, the OpenCL
standard was developed (The Khronos Group Inc.) that is
supported by all mentioned hardware developers and
provides access to parallel computations on GPU/DSP/CPU.

But PCPs have a drawback—a big overhead on
transferring data through the bus. To avoid the problem,
programmers organize data into pools, which allows for
achieving more than a 20-fold increase in performance
compared to CPU (CNN learning perfectly fits in this
model). But using big pools is not always the solution—
while processing streams from a video camera does not at
all.

One more reasonable approach to achieve performance
enhancement of DI processing is supplied by different
libraries (proprietary or not) like OpenCV or arm
ComputeLibrary. Many of them contain NEON64-optimized
code for armeaby-v7a and arm64-v8a. Another smart
strategy is to use a collection of libraries that can be
combined into a single framework. As a result, the

387

advantages of one library compensate drawbacks of the
others. OpenCV and ACL [9] are good examples of libraries
comprising a wide variety of algorithms, including DI
processing, and DI analysis. Moreover, OpenCV contains
even modules for CNN learning, optimized for different
CPU architectures that use SIMD (AVX1/2/SSE4, NEON64)
and GPU optimized approaches/solutions. Also, OpenCV is
well-known for its high-quality DI processing. Thus,
further, we will OpenCV as a reference for comparison.

At the moment SIMD optimization has spread over a
wide range of programming products, both proprietary and
open-source. For example, the kernel of Windows 10 OS is
widely used AVX1/2/3DNow SIMD optimizations to achieve
better performance (obviously, this influences the whole
system). Oracle Java VM utilizes AVX1/2/3DNow and thus
any Java application runs faster. But, using SIMD
optimization, they all face the issue of translating floating-
point code to fixed-point with acceptable loss in precision.
Therefore, it is quite complicated. Thus SIMD optimizations
used in proprietary software are mostly non-disclosable.

One more technique to mention is the so-called loop
unrolling and tiling [11–13]. This technique avoids
redundant comparison operations at the cost of slightly
enlarging the out/binary file. It is mainly performed by
utilizing the compiler or by introducing appropriate
assembly inline code into the application.

Some libraries like ACL may use high-level
programming language features (e.g., templates in C++) to
perform loop unrolling. A simplified ACL-style code is
provided in the listing to demonstrate an example
implementation in Figure 1: Loop unrolling with C++
templates. Our previous paper [2] provided a detailed
description that leads to a huge (over +25%) speed
improvement to an algorithm. However, the ARM64
architecture was significantly improved compared to the
ARMv7-A. If not go too deep in details main conclusion
about this kind of approach is that we do not need this
technique. Moreover, we have done some simple research in
which we compare the speed of two equivalent functions,
one with loop unrolling and another without it. The result
was unexpected. The function with a loop unrolling gives a
3-5% speed reduction. To get proof about the fact that the
loop was unrolled the IDA was used. As on the ARMv7-A
arch, the cycle was unrolled on ARM64 by the clang (9
versions) compiler, and as expected the body of the
bottleneck CO function part was repeated 8 times. But there
is one thing to mention—the bottleneck CO function part
was covered by redundant comparisons which can have
such a negative effect. The ACL lib part that was optimized
using NEON64 was rewritten without a loop unrolling
approach.

This unusual fact gives food for think and in further
research about different CO approaches/methods, we will
cover (go deeper) them.

2.3. Optimization using special algorithms

Let’s focus on CO. The primary obstacle for SIMD
optimization is the act of translation of floating-point CO
algo into fixed-point algorithm CO algo with an acceptable
loss of precision or even without it. First of all, SIMD
operations will be performed on integers further.

Figure 1: Loop unrolling with C++ templates

Thus, we should represent elements of the kernel Γ from (1)
in a suitable form:

Γ௜,௝ = 𝜈𝛾௜,௝ , 𝜈 ∈ 𝑅, 𝛾௜,௝ ∈ 𝑍 (2)
where ν is a coefficient for normalization. Now we can
perform/discuss the most resource-demanding part
(additions and multiplications) in a SIMD style and
afterward normalize the result.

Any kernel can be represented in form (2), but the more
precise the result we want, the more digits should have γi,j.
So, we should set some constraints on γ to avoid overflow
when doing CO because of the platform's limitations on
which we intend to run the program.

Suppose, every pixel in the original image is represented
as a byte and thus possesses 8-bit values 0, …, 255. The same
range is possessed by kernel elements γi,j. Intermediate
results are stored as 16-bit signed or unsigned values. To
warrant that no overflow occurs, we should ensure that it
does not happen on any algorithm step. If the kernel has
positive elements only, a condition we need looks as follows

8 16
,

0 0

(2 1) 2 1.
r r

i j
i j


 

   

(3)

Substantially, this means that even the largest possible
inputs from the image do not lead to overflow.

If the kernel contains negative elements, the condition
should be much more complicated and depend on the order
of additions when doing CO. Instead, we will use much
stronger but more straightforward to check the condition

8 16 1
,

0 0

(2 1) | | 2 1,
r r

i j
i j

 

 

   

(4)

independent of the operations’ order. Moreover, this
condition can be slightly relaxed—we can use it for positive
and negative entries of the kernel γ separately. And the last
thing to mention: one can easily obtain similar results for
signed/unsigned 32-bit intermediate values by substituting
16 → 32 in (3) and (4).

What we propose is selecting for giving Γ the most
extensive ν possible, such that γ still satisfies (3) or (4)
(which one depends on whether the kernel is purely positive
or not). Of course, we shouldn’t be concerned about whether
any valuable kernels can be reduced to a suitable form/size
because there are plenty of them.

388

In conclusion, modern hardware provides mechanisms
for vectorization, i.e., SIMD technologies, that programmers
can use to enhance the performance of the application. In
most cases, this technology is utilized by the compiler to
generate binary code without the participation of the
programmer. A suitable choice of the library may be handy
as well—many libraries contain SIMD-optimized code. But
in some cases, human intervention is needed to get the most
optimal result. More specifically—the code must represent
the function/code which can be/suitable for the SIMD
optimization. However, it is not always possible, and in our
case restrictions (3,4) should be satisfied. In the next section,
we will provide a new method of CO optimization and then
compare it with existing results from OpenCV lib.

3. Optimization of Convolution
Operation using SIMD

In the current contribution, we propose a new Convolution
Operation (CO) optimization method based on the SIMD
technique. We presume that the target kernel satisfies the
3rd condition. This section will provide all necessary
considerations and an inline assembly code that illustrates
the proposed approach. The following section will be
devoted to an experimental comparison of this method’s
performance to known CO implementations of OpenCV.

Regarding condition (4), the provided code should be
just slightly modified. Therefore, we will avoid redundant
code listings and deliver code that realizes condition (3). In
contrast, all necessary modifications for a realization of
condition (4) will be described at the end of the section. We
start with the basic implementation of CO (see Figure 2b). It
contains no specific optimizations but still is a good point to
begin our considerations.

Here νn are the NEON64 registers. Regarding syntax and
instructions order, we will strictly follow ARM reference
manuals. For the sake of simplicity, we avoided
normalization by the coefficient ν in (see Figure 2b), but for
completeness, let us provide it separately (see Figure 2c).

In (Figure 2c) we suppose data for normalization to be
stored in registers v12–v15, while v1[0] contains the
normalization coefficient ν. The presented code is in some
sense multipurpose and may be used with different CO
implementations.

Now we switch gears to the CO optimization itself by
utilizing NEON64. In (see Figure 2b) have been provided a
naive version/approach of this operation (in assembly code).
But this variant contains one significant drawback—data
loading. The data loading/storing process is the slowest
operation because it involves sub/inner processes like
communication with the CPU and RAM. Even though such
hardware approaches like CPU cache cover this operation,
it is still slow.

To avoid this problem, one of the registers was used as
a buffer. The following approach (see Figure 2a) avoids this
problem by using one of the registers as a buffer. It is known
that simultaneous loading of 16 bytes is quicker than
loading them one by one. Thus we use one register for
preloading extra data and then use this data to perform
byte-by-byte shift to exclude redundant load operations.

Let’s comment on the sections of this code/approach
(Figure 2b). This is a naïve approach representing the
loading operation for each kernel element and loading
source image elements (lines 5, 6). The loading and storing
operations are the most expensive operations. (lines from 8–
11) represent the multiply-and-accumulated image values
(v2, v3) with the kernel element (v0). The results of these
operations are stored in the buffer regs (v12, v13, v14, v15).
The buffer regs represent the result of the 8-bit
multiplication of image values on each kernel element
extended up to 16-bit unsigned int using the “umlal”
operation. These operations are performed for every kernel
element. So as you can see, this is time time-consuming
approach.

Let’s comment on the sections of this code/approach
(see Figure 2a): line 4 loading 48 bytes of grayscale image to
v0–v2; line 5 loading 16 bytes of CO kernel in v8; lines
13,14,17,18 provide conversion from 8-bit to 16-bit and
multiplication calculation with kernel element in v5
simultaneously. Please note that v0–v2 registers contain
part of the image that should be convolved with the kernel
stored in v8. Register v2 is exploited as a buffer for 16 more
bytes of the input image to speed up the CO by utilizing the
“ext” operations. Moreover, data from buffer v2 is being
used to perform cyclically shifting content of v0 (line 26), v1
(line 29), and v2 (line 32 with itself) byte-by-byte performed
with the “ext” command. It is not quite clear but we utilize
different names of the registers to save shifted states of v0–
v2 (lines 12, 16, 11, 23) which is called the register rename
technique. Also as you can see we utilized some reordering
of instructions which brought little obfuscation.
Nevertheless, all this gives about 7-10% speedup in
comparison to the ordered instruction set which utilizes the
process of saving all the time in the same names registers
names v0..v2.

Moreover, if we save the result of the shift in the same
register name (like v0, v1, v2), we receive speed-reduced
impacts. This is because the operation “ext” saves the result
in a state of progress, and when the next operation tries to
obtain the content of the v0 (or v1, or v2), it produces the
waiting/bottleneck state. So, the more such conditions
appear in the program, the less win of time provided by the
algorithm. The most resource part of optimized CO algo
(Fig. 2a) was almost entirely described by us. Finally, the
“case” state (Fig. 2a, lines 37 up to 63) represents the
calculation finishing of the kernel row.

So as you can see the main feature of the presented
approach (see Figure 2a) is the usage of cyclic shift (i.e., ext
v10.16b, v0.16b, v1.16b, #1) that provides the kernel
buffering, and thus, we need fewer operations of loading.
One more thing that should be mentioned is the pre-save of
the shifted data (see Figure 2a) (in lines 11,15) on to 1
element and (in lines 19, 22) on to 2 elements were used for
the current iteration of CO. Other “ext” operations (lines 25,
28, 31) provide the data initialization for the next iteration
of CO. Worth noting, that provided (see Figure 2a) demands
a kernel containing not more than 16 elements in one row.
Another variation of this interpretation in which CO kernel
size is more than 16 elements should utilize data
reinitialization of the base registers, which can be seen (in
lines 3–4).

389

(a)

(b)

(c)

Figure 2: CO optimization with SIMD NEON64: (a) optimized approach; (b) naive approach; (c) normalization
procedure and saving the result.

Let’s comment on the sections of this code/approach
(Figure 2c). This section provides the normalization of
coefficient ν. Lines from 2–9 represent the conversion
process from 16-bit data types up to 32-bit data types.
Saving all data needs twice as much register stack (v12–
v19) as it was before (v12–v15). Lines from 10–17
represent the data conversion from unsigned integer
(32-bit) up to (32-bit) floating-point. Finally, lines 19–25
describe the normalization process with the ν coefficient
(placed in v1.s[0]). All other lines (26–46) represent the
reverse process: the normalized data converts from the
(32-bit) floating-point up to (8-bit) unsigned integer
(lines 26-45) and the result saving (line 46).

As we mentioned earlier, this code works for kernels
satisfying conditions (3). To make it applicable to
kernels satisfying (4), we need to change all "umlal"
operations to "smlal" but before it, the extended
operation is required (like “sxtl”). These small but crucial
changes transform (see Figure 2a) into code that works
with signed integer kernels. Depending on elements in
the given kernel, one can choose between these two
options.

In conclusion, we found a class of kernels that allow
significant optimization CO utilizing NEON64 and
implementing appropriate code/algo. For example, the
Subband low pass filtering kernel, like (5).

390

1 6 1
1

6 36 6 , =
64

1 6 1

 
 
   
 
 

(5)

Furthermore, we achieved a significant CO speedup by
exploiting substantial differences in time for
simultaneous 16-byte loading with a byte-shift approach
compared to one-by-one line loading. More detailed
results and considerations of the measurement
procedure will be presented in the following section.

4. Experimental setup and results
Ground truth. To evaluate our results certain reference
is needed. As the etalon, we chose functions
cv::filter2d(...) from the OpenCV library. The latter is
well-known among AI and DIP researchers due to its
high-quality and optimized code. Especially when quick
prototyping is needed.

For comparison, we used the latest stable tag
available when we started to research. The release tag is
4.5.2 (2021-04-02 11:23) for OpenCV. The compilation
was performed with clang-9 - the latest stable clang
version. We ensured that libraries utilize vectorization,
compiling them with flags: -
DCMAKE_BUILD_TYPE=RELEASE -
DENABLE_NEON=ON ... and the compilation process
was with the verbose mode on. The result is that some
critical fields like "CPU_BASELINE" (NEON F16) and
"C++ flags (Release)" (...-O3 -DNDEBUG...) provided
needed content. Also, we mention the fact that OpenCV
lib was linked as a dynamic library.

Devices. To make our measurements more relevant,
we used such a device as Odroid-C4. This helps us

understand the influence of architecture, CPU series,
and other parameters on the execution time. The
Odroid-C4 CPU is Cortex-A55; the OS is Ubuntu 20.04;
Linux 5.7.0-odroid-arm64 is the kernel, and its API is
aarch64. The CPU series of this device is Amlogic
S905X3 which is more powerful than the latest
Raspberry Pi CPUs.

Measurement procedure. The pivoting parameter
we need to measure is the execution time of each
function. Such measurement might be tricky since it is
highly susceptible to transition processes in any GNU
OS (Ubuntu, Android, etc.).

To avoid this problem, we used the following
procedure: each function (cv::filter2d(...) and proposed
method - newCO(...)) was successively called three times
(for robustness and to simulate Grayscale processing),
and the result was stored to the array—this is one data
point. Then, after collecting 35 data points, we calculated
the median value and treated it as twice the function's
execution time under consideration.

Kernel sizes varied 2×2, 3×3, …, 15×15 for
experiments with our implementation and
cv::filter2d(...). DIs were generated with equal width and
height, the corresponding formula follows

image image kernel

125
32 1,

8

n
W H W

 
     

  where
square brackets […] denote the integer part of the
number. Results are further presented in the form of
fractions cv::filter2d(...) execution time divided by
execution time of proposed/our implementation.

(a)

(b)

Figure 3: Performance comparison of the CO usage of cv::filter2D vs. the proposed method on the devices with
Cortex-A55 ARM CPU.

Color intensity designates relative time consumption for
reference function about the proposed method.
Acceleration one may achieve by using the presented
approach instead of the reference function (the brighter
is color—the greater is acceleration). Legends on each
plot designate how to translate color to acceleration; if
this number is greater than 1, it is profitable to use the
proposed method.

5. Results
First, we compared the time consumption of the
proposed code (see Figure 2a) and reference function
cv::filter2d(...). The result is presented in Figs. 5a and 5b.
As coordinates, we use sizes of kernel and image. At the
same time, color intensity designates acceleration,
which one may achieve using the proposed method
instead of the reference method (e.g., a fraction of the

391

execution times of the reference function divided by the
execution time of the proposed method).

Despite the presented results demonstrating the
advantage of the proposed method, there is still room for
improvement. For example, it seems the compiler cannot
unroll cycles effectively on its own, and we mentioned
this above. But if we do the same as was done in ACL—
unroll all "bottle-neck cycles" on our own, it seems we
can achieve a more speedy approach/results. Thus, we
may reach an additional 10-20% acceleration by utilizing
techniques [11–13] by writing cycle unrolling with the
online assembly by hand.

Results for the modified code are shown in Figure 3.
We have compared the time consumption of the
proposed method (see Figure 2a) and function
cv::filter2d(...). Besides, we varied image sizes up to
4500×4500 (~20 [MP]) to emulate modern cameras and
picture libs.

As Figure 3 suggests, acceleration is independent
(almost) of the input size, e.g. complexity (big-O) of our
solution and reference solutions coincide. Some small
decline in acceleration (but it is still greater than 2) may
be noted for big kernels (13×13 … 15×15) and smaller
kernels (2×2 … 4×4). Regarding mean acceleration, it is
estimated as approximately 3.7 times.

It is worth noting that we didn’t use parallelism for
acceleration. Moreover, no preprocessing, e.g., image
tiling, was performed. Probably, this technique may
increase the performance of the approach as well.

6. Conclusions
In conclusion, we propose a method of convolution
operation acceleration. We have shown that speed
improvement can be achieved if kernels have been
reduced to integer values that allow SIMD command
usage. Furthermore, despite SIMD itself leading to a
significant boost of performance, we were able to push
the frontiers even further by exploiting the considerable
difference in time for simultaneous 32-byte loading
compared to their one-by-one loading and using buffer
(one-time load for the kernel row—48-byte), and loading
operations are partially substituted with cyclic shift.

About ALC, we should mention in addition. There
was a severe code rewriting event in this lib.
Furthermore, the patches became cumulative ("less
description more code"). This fact brought more
obscurity/obfuscation than clarity/understanding. So,
we will compare the ACL lib and modifications of our
suggested approach in our following paper but it is
needed to mention that ALC provides all additional code
optimization approaches that we mentioned above
(cycle unrolling, image tiling, etc.).

To test the approach we performed a comparison
with the cv::filter2D(...) function from the OpenCV
library. Our results suggest the current approach leads
to significant speedup (mean values: ~3.7× compared to
OpenCV). Measuring acceleration for different kernels
and images we observed no dependence on image size,
but kernel size may influence the result—for kernels
smaller than 8×8 we were able to achieve ×7.379

acceleration compared to cv::filter2D(...), while for larger
kernels presented approach allows ~3.7 speedup.

We expect the current approach to be useful for real-
time image processing and convolutional neural
network training as it significantly reduces processing
time.

References
[1] P. Prystavka, A. Shevchenko, Investigation of the

Implementation of the Linear Operator of Digital
Image Convolution in 16-bit Computing, Actual
Problems of Automation and Information
Technologies, no. 20 (2016) 78-90.

[2] A. Shevchenko, V. Tymchyshyn, A SIMD-based
Approach to the Enhancement of Convolution
Operation Performance, CMiGIN (2019).

[3] Image Filtering (2021). URL: https://docs.opencv.
org/4.x/d4/d86/group__imgproc__filter.html#ga2
7c049795ce870216ddfb366086b5a04.

[4] M. J. Flynn, Very High-Speed Computing Systems,
in: Proceedings of the IEEE 54.12 (1966) 1901–1909.

[5] ARM Cortex- A53 MPCore Processor Technical
Reference Manual (2021). URL: https://developer.
arm.com/documentation/ddi0500/j.

[6] Qualcomm Extends Hexagon DSP (2013) URL:
http://pages.cs.wisc.edu/~danav/pubs/qcom/hexa
gon_microreport2013_v5.pdf.

[7] Qualcomm Hexagon DSP: An Architecture
Optimized for Mobile Multimedia and
Communications (2013). URL: https://developer.
qualcomm.com/download/hexagon/hexagon-dsp-
architecture.pdf.

[8] Griffith, Arthur. GCC: The Complete Reference.
McGraw-Hill, Inc., 2002.

[9] B. C. Lopes, R. Auler. Getting Started with LLVM
Core Libraries. Packt. Publishing ltd. (2014).

[10] ARM Compute Library (2021). URL:
https://developer.arm.com/ip-products/
processors/machine-learning/compute-librar

[11] A. Nicolau, Loop Quantization: Unwinding for
Fine-Grain Parallelism Exploitation. Cornell
University (1985).

[12] Xue, Jingling. Loop Tiling for Parallelism, vol. 575
(2000).

[13] T. Veldhuizen, Expression Templates. C++ Report
7.5 (1995) 26–31.

