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Abstract 
Jordan-Gauss graphs are bipartite graphs given by special quadratic equations over the commutative ring 
K with unity with partition sets K n and K m, n≥m such that the neighbour of each vertex is defined by the 
system of the linear equation given in its row-echelon form. Assume that K is a finite multivariate 
commutative ring and the cardinality of multiplicative group K* is >2. We use families of these graphs for 
the construction of new injective multivariate maps F of (K*) n onto Kn of unbounded degree of size O(n) 
with the trapdoor accelerators T, i.e. pieces of information which allows us to compute the reimage of the 
given value of F in polynomial time. The number of monomial terms of multivariate rule F written in its 
standard form (the density) is O(n2). Thus public user can encrypt his/her message in time O(n3) similar to 
the case of a quadratic map. This cryptosystem can be obfuscated via the use of a temporal analogue of 
selected Jordan-Gauss graphs. Previously known multivariate cryptosystems of unbounded degree have 
density O(n4) of F allowing us to use the inform in the case of finite field it can be used for the construction 
of new cryptosystems from known pairs (F, T). 
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1. Introduction 
This paper presents the modification of the quadratic 
multivariate public key given in [1] and defined via special 
walks on projective geometries over finite fields and their 
natural analogs defined over general commutative rings. 
New graph-based multivariate rules are “pseudo quadratic”, 
i.e., they are maps of unbounded degree of size O(n) but the 
number of monomial terms in all equations is O(n2). So, like 
in the case of a quadratic map the computation of the value 
of the map on the given tuple costs O(n3). 

Multivariate cryptography is one of the five main 
directions of Post-Quantum Cryptography. 

The progress in the design of experimental quantum 
computers is speeding up lately. Expecting such development 
the National Institute of Standardisation Technologies of USA 
announced in 2017 the tender on the standardisation best 
known quantum-resistant algorithms of asymmetrical 
cryptography. The first round was finished in March 2019, and 
essential parts of the presented algorithms were rejected. At the 
same time, the development of new algorithms with a 
postquantum perspective was continued. A similar process 
took place during the 2, 3, and 4th rounds. 

The last algebraic public key “Unbalanced Oil and Vinegar 
on Rainbow like digital signatures” (ROUV) constructed in 
terms of multivariate cryptography was rejected in 2021 (see [2, 
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3]). The first 4 winners of this competition were announced in 
1922, they were developed in terms of Lattice Theory. 

Noteworthy that the NIST tender was designed for the 
selection and investigation of public key algorithms and in 
the area of multivariate cryptography only quadratic 
multivariate maps were investigated. We have to admit that 
general interest in various aspects of multivariate 
cryptography was connected with the search for secure and 
effective procedures of digital signature where mentioned 
above ROUV cryptosystem was taken as a serious candidate 
to make the shortest signature.  

Let us summarize the outcomes of the mentioned above 
NIST tender.  

There are 5 categories that were considered by NIST in 
the PQC standardization (the submission date was 2017; in 
July 2022, the 4 winners and the 4 final candidates were 
proposed for the 4th round—this is the current official status. 
However, the current 8 final winners and candidates only 
belong to the following 4 different mathematical problems 
(not the 5 announced at the beginning):  

 Lattice-based 
 Hash-based 
 Code-based 
 Supersingular elliptic curve isogeny based. 

The standards are partially published in 2024. 
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It’s interesting that the new obfuscation “TUOV: Triangular 
Unbalanced Oil and Vinegar” was presented to NIST by 
principal submitter Jintaj Ding [4]. 

The historical development of Classical Multivariate 
Cryptography which studies quadratic and cubic 
endomorphisms of Fq[x1, x2,…, xn] can be found in [5] and 
[6]. Current research in Postquantum Cryptography can be 
found in [5, 7–23]. 

Section 2 contains some definitions of Multivariate 
Cryptography over a general commutative ring. 

In Section 3 we introduce the concept of linguistic 
graphs and Jordan-Gauss graphs defined over commutative 
ring K together with the examples of such graphs which 
appear as bipartite-induced subgraphs of the Incidence 
Graph of Projective Geometry or its analogue defined over 
K. 

Equations of some graphs are given explicitly. We 
define the temporal analogue of linguistic graphs. 

Section 4 is dedicated to the constructions of 
multivariate rules with trapdoor accelerators in terms of 
linguistic graphs. In the case of Cellular Schubert graphs or 
their temporal analogue we evaluate the density of 
constructed multivariate rules. 

In Section 5 we describe the Eulerian subgroup of 
transformations of Affene Cremona semigroup of all 
endomorphisms of K[x1, x2,…, xn]. Eulerian transformation 
maps each variable x_i into a monomial term. 

The new cryptosystem is described in Section 6. This 
map is formed as the composition of Eulerian 
transformation J, transformation F defined in terms of 
special Jordan-Gauss graphs in Section 4, and element L 
from AGLn(K). The complexity of the decryption procedure 
is estimated there. 

Section 7 contains concluding remarks. 

2. On the tasks of multivariate 
cryptography over arbitrary 
finite commutative ring 

This paper is dedicated to the construction of public maps F 
of multivariate cryptography transforming the tuple (x1, x2, 
..., xn) from Kn to (f1(x1, x2, ..., xn), f2(x1, x2, ..., xn), ..., fk(x1, x2, 
..., xn)) from Kk where K is a finite commutative ring with 
unity and polynomials fiϵK[x1, x2, ..., xn] are written in their 
standard forms, i.e. lists of their monomial terms ordered 
lexicographically.  

We say that piece of information T is a trapdoor 
accelerator of F if T is the piece of information such that its 
knowledge allows us to compute the reimage of F for given 
value b from Kk in a polynomial time O(nα). 

Classical multivariate cryptography uses surjective map 
F defined over finite field K=Fq with the trapdoor accelerator 
T. Correspondents Alice and Bob use the following scheme. 

Map F is announced publicly. Alice has the knowledge 
of T. Alice and Bob have some digest (hash value) b=(b1, b2, 
..., bk)ϵKk of the document. To sign the document Alice 
solves the system of equations fi(x)=bi, i=1, 2, ..., k. She gets 
a solution x1=d1, x2=d2, ..., xn=dn and sends the tuple d=(d1, d2, 
..., dn). Public user Bob verifies that F(d)=b. 

If k=n then the pair (F, T) can be used as the encryption 
scheme. Bob writes his plaintext p=(p1, p2, ..., pn) and forms 

the ciphertext c=F(p). He sends c to Alice via the open 
channel. Her knowledge of T allows Alice to restore p as F-

1(c). 
In both schemes, correspondents would like to use F as 

one way function for which reimages of b or p are 
impossible to compute in polynomial time without the 
knowledge of T. 

The search for multivariate one way functions is 
motivated by the following gap between linearity and 
nonlinearity. 

We know that the system of linear equations written over 
the field F can be solved in time O(n3) via the Jordan-Gauss 
elimination method. The complexity of solving a nonlinear 
system of constant degree d, d>1 is subexponential (see [24, 
25]). Despite the convenience of the Groebner-Shirshov basis 
method [26] for the implementation the complexity of this 
algorithm is equivalent to the old Gauss elimination method 
for the solution of the system of nonlinear equations. There is 
a standard way to transform of nonlinear system of equation 
of degree d, d>2 to an equivalent quadratic system via the 
introduction of additional variables and substitutions (see 
[5]). 

So if we have a nonlinear map F of bounded degree d in 
“general position” which has a trapdoor accelerator T then 
the corresponding cryptosystem is secure. This status 
insures the fact that F is given as one way function i.e. 
reimage of F is impossible to compute in a polynomial time 
without knowledge of the secret T. 

The map F is not in a “general position” if some 
additional specific information is known. For instance, if F 
is the bijective cubic map and F-1 is also cubic. The public 
user can generate O(n3) pairs of kind plaintext 
p/corresponding ciphertext c and approximate inverse map 
in time O(n10). 

Known computer tests and cryptanalytic methods 
ensure that map F is “in general position”. Noteworthy that 
the existence of one way function is not proven yet even 
under the main complexity conjecture that P≠NP. 

It is well known that the investigation of nonlinear 
systems of equations over the commutative ring K with zero 
divisors is essentially a harder case in comparison to the 
case of a field.  

Multivariate cryptography over rings with zero divisors 
is a brand new direction of research. Another idea is the 
construction of functions F of unbounded degree of size O(n) 
with the trapdoor accelerators. As we already mentioned 
there is a reduction of arbitrary system of nonlinear 
equations to the system of quadratic equations. This method 
leads to the nonlinear increase of a number of variables. The 
change of practically used hundreds of variables for several 
thousands of them makes it impossible to use the Groebner 
basis technique as a cryptanalytical instrument. The 
adversary has the luck of computational resources to break 
the cryptosystem. 

We will combine both ideas for the construction of new 
multivariate public keys for the task of information 
exchange within the following general scheme. 

Let K be a commutative ring with nontrivial 
multiplicative group K*. 

We consider the multivariate map F of Kn into Kn given 
by the rule xi→fi(x1, x2, ..., xn) such that its restriction on 
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(K*)n is injective. We say that T is a multiplicative trapdoor 
of F if the knowledge of T allows us to solve the system of 
equations F(x)=b for bϵF((K*)n). 

Assume that the density of F is O(nd) where d is some 
constant. Then the public rule x→F(x) can be used as an 
encryption scheme with the space of plaintexts (K*)n and the 
space of ciphertexts (Kn). 

Assume that Alice has a pair (F, T) and public user Bob 
has the standard form of F. 

Then he writes his plaintext p=(p1, p2, ...., pn) and sends 
the ciphertext c=F(p) to Alice. She uses the information 
piece T and computes the plaintext. 

3. Linguistic and Jordan-Gauss 
graphs and their temporal analogs 

The missing definitions of graph-theoretical concepts and 
incidence systems theory which appear in this paper can be 
found in each of the books [27–30]. 

All graphs we consider are simple graphs, i.e. undirected 
without loops and multiple edges. Let V(G) and E(G) denote 
the set of vertexes and the set of edges of G respectively. 
When it is convenient, we shall identify G with the 
corresponding anti-reflexive binary relation on V(G), i.e. 
E(G) is a subset of Cartesian product V(G)∙V(G) and write v 
G u for the adjacent vertexes u and v (or neighbours). We 
refer to |{x ϵ V(G)|xGv}| as the degree of the vertex v. The 
incidence structure is the set V with partition sets P (points) 
and L (lines) and symmetric binary relation I such that the 
incidence of two elements implies that one of them is a point 
and another one is a line. We shall identify I with the simple 
graph of this incidence relation or bipartite graph. 

We define linguistic graphs of type (𝑠, 𝑟, 𝑚) where 𝑠>0, 
𝑟>0, 𝑚>0 over the commutative ring 𝐾 with unity as 
bipartite graphs with the partition sets 𝑃=𝐾s+m and 

𝐿=𝐾r+m such that the point (𝑥1, 𝑥2, …, 𝑥s, 𝑥s+1, 𝑥s+2, …, 𝑥s+m) 
from 𝑃 is incident to the line [𝑦1, 𝑦2, …, 𝑦r, 𝑦r+1, 𝑦r+2, …, 𝑦r+m] 
from 𝐿 if and only if the following equations are satisfied: 

𝑎j𝑥s+j-𝑏j𝑦s+j=𝑓j(𝑥1, 𝑥2, …, 𝑥s+j-1, 𝑦1, 𝑦2, …, 𝑦t+j-1) (1) 
where 𝑎j and 𝑏j are elements of the multiplicative group of 
𝐾 and 𝑓j are polynomials from 𝐾[𝑥1, 𝑥2, …, 𝑥s+j-1, 𝑦1, 𝑦2, …, 
𝑦r+j-1] (see [31]). 

We say that a linguistic graph is a Jordan-Gauss graph 
if polynomials 𝑓j have degree 2 and consist of monomial 
terms of kind 𝑥i𝑦k for 𝑗=1, 2, …, 𝑚. 

The neighbourhood of each vertex of a general Jordan-
Gauss graph is given by the system of linear equations in its 
row-echelon form. 

Examples of families of Jordan-Gauss graphs can be 
obtained as induced subgraphs of the incidence graphs of 
geometries of Chevalley groups (see [32]) defined over 
various fields (see [23], [33] and further references). 

Let us consider the case of Coxeter-Dynkin diagram 𝐴n, 
i.e. projective geometry PGn(F) of dimension n over the field 
F. This incidence system is a totality PGn(F) of proper 
nontrivial subspaces of the vector space Fn+1. 

The dimension t(W) of subspace defines the type of W. 
So the set Pn(F) is a disjoint union of Grassmanians Гi(F)={W: 
t(W)=i}, i=1,2, ..., n-1. Two elements 1W and 2W are incident 
(1W I 2W) if they have different types and 1W<2W or 2W<1W. 

We identify the binary relation I with the corresponding 
multipartite graph. 

Let i,jГ(F) be the bipartite graph of the restriction of I on 
the disjoint union of Grassmanians Гi(F) and Гj(F). 

The Borel subgroup B of algebraic group PGLn(K) 
consists of triangular matrices A=(ai,j): such that ai,j=0 if i<j 
with determinant 1. 

Let us consider the orbits of group B acting on PGn(F). 
For the description of orbits, we select the standard basis e1, 
e2, ..., en, en+1 of the vector space Fn+1. 

Then each orbit OJ from Гm(F) contains the unique 
symplectic subspace of kind ej(1), ej(2), ..., ej(m) where J={i(1), 
i(2), ...,i(m)} is a subset of {1, 2, ..., n, n+1}. There is a subgroup 
U(J) of unitriangular elements from GLn+1(F) which consists 
of matrices E+(ai,j ) such that ai,j≠0 if (iϵiϵJ)&(j &N-J)&(i>j). 

The transitive group of transformation (U(J), OJ) is a 
regular representation of abstract group U(J), i.e. stabilisator 
of each representative of the orbit is the unity subgroup. 
Thus there are natural one-to-one correspondence between 
elements U(J) and OJ and we can identify these sets. 

Elements of orbits U(J) and U(J’) are not incident unless 
the condition 

J⸦J’ or J’⸦J and |J|≠|J’| (2) 
holds, i.e. elements J and J’ are incident as elements of Weyl 
geometry An. 

For the description of the incidence condition of 
elements MϵU(J) we introduce subset ∆(J)={(i,j)|(iϵiϵJ)&(j 
&N-J)&(i>j)}.  

We define the projection of triangular matrix M=(m(i,j)) 
on the subset A of {(i, j): i>j} as function f from A to such that 
f(i,j)=m(i,j) for (i,j)ϵA. 

Each unit triangular matrix M from U(J) is uniquely 
determined by its projection on ∆(J). 

Let M and M’ be elements of U(J) and U(J’) where J and 
J’ are incident elements of Weyl geometry. Then M and M’ 
are incident elements of projective geometry if and only if 

(M-M’) ∆(J)∩∆(J’)=(MM-M’M) 1∆(J)∩∆(J’) (3) 
It is easy to see that the bipartite graph FG(J, J’) with 

partition sets U(J) and U(J’) where J and J’ are incident 
elements of Weyl geometry and incidents of points and lines 
are defined by the condition (2) is a Jordan-Gauss graph. 

Noteworthy that the coefficients of monomial terms in 
the system of equations (2) are +1 and -1. So we can 
introduce KG(J, J) over arbitrary commutative ring K with 
unity via the direct change of F for K. We can consider 
unimportant subgroup UK(J) of the group of unitriangular 
matrices U(n+1, K) over K and define the incidence of 
elements UK(J) and UK(J’) by the condition 2 in the case 
when J and J’ satisfy (1). 

In fact, we can define PGn(K) in the case of general 
commutative ring with unity as disjoint union of partition 
sets of bipartite graphs KG(J, J’), type function t(x) of xϵUK(J) 
equals |J| for the incidence xϵUK(J) and y ϵUK(J’) the 
condition (1) is necessary, if (1) holds then (2) is required 
additionally. 

This approach of construction of incidence systems over 
commutative ring K with unity can be used in the case of 
other Dynkin-Coxeter diagrams, i.e. 𝐵n, 𝐶n, 𝐷n, 𝐸6, 𝐸7, 𝐸8, 𝐹4, 
𝐺2 (see [28], [32]). 

Each Grassmanian Гm(K) is the union of affine spaces 
UK(J) where |J|=m. These spaces are known as large 
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Schubert cells, small Schubert cells can be defined in the 
case of field K (see [34], [35]) The variety Гm(K) contains the 
unique largest Schubert cell which is the cell of maximal 
dimension. It is easy to see that the largest Schubert cell of 
Гm(K) is UK(J) for J={n+1, n, ..., n+1-m}. 

We refer to the disjoint union SPGn(K) of largest 
Schubert cells as Schubert with the restriction of incidence 
relation I of PGn(K) on this subset as Schubert system over 
K. It is easy to see that for the incidence of elements x and y 
from distinct Schubert cells the condition (3) is sufficient. 

Let Г(K) be a Jordan-Gauss graph of type (𝑠, 𝑟, 𝑚) where 
𝑠>0, 𝑟>0, 𝑚>0 over the commutative ring 𝐾 with unity with 
the incidence given by conditions (1). 

We refer to the list 𝑆 of all nonzero monomial terms of 
𝑓j taken with coefficient 1, together with the parameters 𝑠, 
𝑟, m as the symbolic type of the Jordan-Gauss graph Г(𝐾). It 
is convenient that the symbolic type of a Jordan-Gauss 
graph Г (𝐾) over 𝐾 is independent of the choice of 𝐾. We 
say that two Jordan-Gauss graphs defined over 
commutative rings 𝐾 and 𝐾’ are symbolically equivalent if 
they have the same symbolic type. 

We define a temporal (depending on time) Jordan-Gauss 
graph Г(𝐾) t of symbolic type 𝑆 as the family of equivalent 
Jordan-Gauss graphs Г(𝐾) t, 𝑡=1, 2, … defined by equations 
(1) with the same constant symbolic type 𝑆 depending on 
time 𝑡 coefficients 𝑎i=ai(t), 𝑏i=bi(t) and nonzero monomial 
terms of 𝑓j of the form j𝑎(𝑖, 𝑘)𝑥i 𝑦k, 𝑥i 𝑦k ∈𝑆, j𝑎(𝑖, 𝑘)=ja(i, 
k)(t)≠0. Some examples of temporal Jordan-Gauss graphs 
can be found in [36]. In contrast to the definition of time-
dependent graphs of [37] we introduce Jordan-Gauss 
temporal graphs via time-dependent equations.  

So we can introduce temporal analogue PGn(K)t of 
PGn(K) and temporal analogue SPGn(K)t of SPGn(K) via the 
option to change the coefficients of monomial terms of each 
nontrivial induced subgraph GK(J, J’), j𝐶n(K). 

Let i, j𝐶n(𝐾) be the bipartite-induced subgraph of SPGn(K) 
of all elements of type i or type j. We refer to this graph as 
a cellular Schubert graph and use the term temporal 
Schubert Graph for SPGn (K). 

We refer to PGn(K)t and SPGn(K)t as temporal projective 
geometry over K and say that SPGn(K)t is temporal Schubert 
Geometry with the diagram An over the commutative ring 
K. Temporal geometries of Chevalley groups and 
corresponding Schubert geometries in the cases of various 
Coxeter-Dynkin diagrams are defined in [36]. 

Let us consider some illustration examples. 
The graph 1, n𝐶n(𝐾) is a bipartite graph of points (𝑥1, 𝑥2, 

…, 𝑥n) and lines [𝑦1, 𝑦2, …, 𝑦 n] with incidences given by 
equations: 𝑥n-𝑦n=𝑥1𝑦1+𝑥2𝑦2+⋯+𝑥n-1𝑦n-1. 

This is symbolically equivalent to the 1,n𝐶n(𝐾’) Jordan-
Gauss graph over the ring 𝐾’ with unity, having partition 
sets isomorphic to (𝐾’)n and with incidences given by 
equations of the form: 𝑎𝑥n-𝑏𝑦n=𝑎1𝑥1𝑦1+𝑎2𝑥2𝑦2+⋯+𝑎n-1𝑦n-1, 
where 𝑎 and 𝑏 are elements of the multiplicative group of 
𝐾’ and 𝑎i≠0, 𝑖=1, 2, …, 𝑛-1. 

Graph 1, n𝐶n(𝐾)t has the same points and lines with 1, 

n𝐶n(K) but the incidence is given by equations 
𝑎(t)𝑥n−𝑏(t)𝑦n=𝑎1(t)x1𝑦1+𝑎2𝑥(t)x2𝑦2+⋯+𝑎n-1(t)xn-1yn-1. 

We say that i, j𝐶n(𝐾)t convert in fixed time moment t=t* 
to static Jordan-Gauss graph i ,j𝐶n(𝐾)t |t=t* via selection of 

values of “time-dependent” coefficients of monomial terms 
of equations. 

In another example, the graph s, s+1𝐶s+r(𝐾) can be interpreted 
as a bipartite graph consisting of points of the form (𝑥1, 𝑥2, …, 
𝑥s, 𝑥1,1, 𝑥1,2, …, 𝑥s,r) and lines [𝑦1, 𝑦2, …, 𝑦r, 𝑦1,1, 𝑦1,2, …, 𝑦s,r], with 
the incidence condition given by the equations: 

𝑥i,j-𝑦i,j=𝑥iyj, 𝑖=1,2, …, s, 𝑗=1,2, …, r. 
This is symbolically equivalent to the graph s, s+1𝐶s+r+1(𝐾), 

defined over the same commutative ring 𝐾 and with an 
incidence relation given by the system of equations: 

𝑎 i,j𝑥i,j-𝑏i,jyi,j=di,j𝑥iyj, where elements 𝑎i,j and bi,j belong to 
𝐾* and di,j are elements from 𝐾∖{0}. 

These two families of graphs give us extremal cases: the 
incidence of points and hyperplanes from 1, n𝐶n(𝐾) is the case 
of the single equation, while the case of subspaces of 
dimension s and s+1 of s, s+1𝐶s+r+1(𝐾) is the case when 
polynomials of the right-hand side have a single monomial. 

4. Jordan-Gauss graphs and the 
maps with the trapdoor 
accelerator 

Let us consider basic operators on the set of vertexes of the 
linguistic graph of type (s, r, m). 

We refer to ρ((x))=(x1, x2, …, xs) for (x)=(x1, x2, …, xs+m) 
and ρ([y])=(y1, y2, …, yr) for [y]=[y1, y2, …, yr+m] as the colour 
of the point and the colour of the line respectively.  

For each bϵ Kr and p=(p1, p2, …, ps+m) there is the unique 
neighbour of the point [l]=Nb(p) with the colour b. Similarly, 
for each c ϵ Ks and line l=[l1, l2, …, lr+m] there is the unique 
neighbour of the line (p)= Nc([l]) with the colour c. We refer 
to operator of taking the neighbour of the vertex 
accordingly chosen colour as neighbourhood operator.  

On the sets P and L of points and lines of the linguistic 
graph we define colour jump operators J=Jb(p)=(b1, b2, …, bs, 
p1, p2, …, ps+m), where (b1, b2, …, bs)ϵKs and J=Jb([l])=[b1, b2, …, 
br, l1, l2, …, lr+m], where (b1, b2, …, br)ϵKr.  

For the point (p) and odd parameter l sequence of the 
colours a(1)ϵKs, b(1) ϵKr, a(2)ϵKr , b(2) ϵKs, ...., a(l)ϵKs, b(l) ϵKr, 
a(1+1) ϵKr which allows us to define the map H: Km+s→Km+r 

moving arbitrary point (v) to the line h=h(a(1), b(1), a(2), 
b(2), ..., a(l), b(l), a(l+1))(v)=vl+1 defined via the following 
sequence of vertexes. 

v1=Ja(1)(v), u1=Nb(1)(v1), 
v2=Ja(2)(v1), u2=Nb(2)(v2), 
..., 
vl=Ja(l)(vl-1), ul=Nb(l)(vl), vl+1=Ja(l+1)(ul). We refer to map H 

as the transition of (v) in the direction (a(1), b(1), a(2), b(2), 
..., a(l), b(l), a(l+1)). 

We can define the transition H(a(1), b(1), a(2), b(2), ..., 
a(l), b(l), a(l+1)) in the case of even l in which v→h(v) will 
be a transformation acting on Ks+m=P. 

For eachlinguistic graph Г(К) we consider Г'=Г(K[z1, z2, 
..., zm+s]) given by the same equation but with the partition 
sets K[z1, z2, ..., zm+s])m+s and K[z1, z2,..., zm+s])m+r. 

We take an odd parameter l, l>2, special point z=(z1, z2, 
..., zm+s) and apply the transition H(a(1), b(1), a(2), b(2), ..., 
a(l), a(l+1)) to the vertex z of the graph Г’ such that 
coordinates of a(i), b(i) are elements of K[[z1, z2,..., zs]. The 
image of z will be the tuple u=(a(l+1)1(z1, z2,..., zs), a(l+1)2(z1, 
z2,..., zs),..., a(l+1 )r(z1, z2,..., zs), f1(z1, z2,..., zm+s), f2(z1, z2,..., zm+s), 
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…, fm(z1, z2,..., zm+s)). Let F=F(a(1), b(1), a(2), b(2), ..., a(l), 
a(l+1)) be a polynomial map of Km+s to Km+r sending (z1, z2, ..., 
zm+s) to (u1, u2, ..., um+s])=u. 

We take two affine transformations L1 and L2 and 
consider the composition G=L1FL2 sending (z1, z2, ..., zm+s) to 
(g1(z1, z2, ..., zm+s), g2(z1, z2, ..., zm+s), …, gm+r(z1, z2,..., zm+s)). 

Additionally, we consider the above-presented 
construction in the case of even parameter l Then a(l+1) is 
an element of K[x1, x2, ..., xs]s, ul+1 and vl+1 are points. We 
have to take L1 and L2 from AGLm+s(K) and construct the 
transformation G=L1FL2 of the affine space Km+s. 

Proposition 1 [23]. Let us assume that the surjective 
map (z1, z2, ..., zs) to (a(l+1)1, a(l+1)2, ..., a(l+1)t) where t=r or 
t=s has a trapdoor accelerator T. 

Then the knowledge on Г(К) and tuples a(1), b(1), a(2), 
b(2). ..., a(l), b(l), transformations L1, L2, and T is a trapdoor 
accelerator of the standard form of G mapping Km+s on Km+t. 

Justification of Proposition 1’. 
Let us assume that Г(К) is temporal graph and its static 

graphs Гі in time i=1, 2, ..., l are known as well as a(1), b(1), 
a(2), b(2), ..., a(l), b(l), a(l+1), T and L1, L2 of the Proposition 
1. Let us consider the equation G(z)=b for the given value of 
the tuple b. 

We compute (L2)-1 (b)=c and introduce intermediate 
vector p=(p1, p2, ..., ps, ps+1, ps+2, ..., ps+m) of variables pi and 
consider the equation H(p)=c where H=H(a(1), b(1), a(2), 
b(2), ..., a(l), a(l+1))=(a(l+1)1, a(l+1)2, ...a(l+1)t, h1, h2,..., hm), 
where hiϵK[x1, x2,..., xs+m]. 

We use our knowledge of the trapdoor accelerator T to 
get solution p1=d1, p2=d2, ..., ps=ds. Let d=(d1, d2,...,ds). It gives 
us the opportunities to compute a*(1)=a(1)(d1, d2, ..., ds), 
b*(1)=b(1)(d1, d2, ..., ds), a*(2)=a(2)(d1, d2, ..., ds), b*(2)=b(2)(d1, 
d2, ..., ds), ..., a*(l)=a(l)(d1, d2, ..., ds), b*(l)=b(l)(d1, d2, ..., ds), 
a*(1)=a(1)(d1, d2, ..., ds). 

So, we compute H(b*(l), a*(l), b*(l-1), a*(l-1), b*(1), a*(1), 
d)= (w1, w2, ..., ws, ws+1, ws+2, ..., ws+m)=w.  

Thus we got a solution for H(p)=c. We compute the 
solution z* of G(z)=c as z*=(L1)-1(w)). 

If l is even or r=1 then the reimage reimage z* is 
uniquely defined. 

We define a density of multivariate polynomial f(z1, z2, ..., 
zn) written in its standard form as a number of monomial terms. 

The density den(b) of the tuple b=(f1, f2, ..., fk) from K[z1, 
z2, ..., zn]k is the maximal density of fi. The density of the map 
F: xi→fi, i=1,2, ..., k coincides with the density of the 
corresponding tuple of polynomials fi. 

Proposition 2 [23]. Let us assume that condition of the 
Proposition 1 hold and Г(К) coincides with the Jordan-Gauss 
graph i,j𝐶n(K), den(a(i))=O(nd), den(b(i))=O(ne), d>1, i-j=O(nk.), 
0≤k≤1 for i=1,2, ..., l. Then the density of the map F(a(1), b(1), 
a(2), b(2), ..., a(l), b(l), a(l+1)) is O(nd+e+k). 

Remark. Proposition 1 and Proposition 2 hold also for 
the temporal linguistic graphs and temporal cellular 
Schubert graphs. 

5. On some subgroups of affine 
Cremona Semigroup 

5.1. Some definitions 

Let us consider the following important object of 
Noncommutative Cryptography. Affine Cremona 

Semigroup nCS(K) is defined as an endomorphism group of 
polynomial ring K[x1, x2, ..., xn] over the commutative ring 
K. It is an important object of Algebraic Geometry (see [38] 
about mathematics of Luigi Cremona—a prominent figure 
in Algebraic Geometry in XIX).  

Element of the semigroup σ can be given via its values 
on variables, i.e. as the rule xi→fi(x1, x2, …, xn), i=1, 2, …, n. 
This rule induces the map σ’: (a1, a2,.., an)→(f1(a1, a2, ..., an), 
f2(x1, x2, …, xn), …, fn(x1, x2, …, xn)) on the free module Kn. 
Automorphisms of K[x1, x2, ..., xn] form affine Cremona 
GroupnCG(K) (see [39]).  

In the case when K is a finite field or arithmetic ring Zm 
of residues modulo m elements of affine Cremona Groups 
or Semigroups are used in algorithms of multivariate 
cryptography. Results about subsemigroups S of nCS(K) (or 
subgroups of nCG(K) such that computation of the 
superposition of arbitrary n elements can be completed for 
polynomial time can be used as so-called platforms of 
Noncommutative Cryptography.  

One class of such objects is formed by stable 
subsemigroups of degree k, i.e. subsemigroup S such that the 
maximal degree of its representative is bounded by the 
constant k. We will talk about the Multiple Composition 
Computability (MCC) property. In the case of k=1 one can 
take AGLn(K), stable subsemigroups of degree k in nCG(K) 
exist for each k, k=2, 3, ... Affine Cremona semigroup nCS(K) 
does not pose MCC. If one takes n quadratic elements 
randomly their product with a probability close to 1 will 
have degree 2n. So the computation is not feasible. 

EXAMPLE: Let us consider the totality nES(K) of 
endomorphisms of K[x1, x2, ..., xn] of kind 

x1→ϻ1x1 a(1,1) x2 a(1,2) … xn a(1,n), 
x2→ϻ2x1 a(2,1) x2 a(2,2) … xn a(2,n), 

… 
xm→ϻnx1 a(n,1) x2 a(n,2) … xn a(n,n) 

(4) 

where ϻi are regular elements of finite commutative ring K 
with unity. 

It is easy to see that the complexity of the computation 
of the product of two elements of kind (4) is O(n3). So, the 
semigroup of Eulerian transformations nES(K) poses the 
property MCC. Semigroups with this property can serve as 
“platforms” of protocols of Noncommutative Cryptography.  

The following examples of special elements of nES(K) 
can be found in [40]. 

5.2. On some bijective transformation of 
(K*)n 

Let π and δ be two permutations on the set {1, 2, ..., n}. Let K 
be a commutative ring with unity which has nontrivial 
multiplicative group K* of order d=|K*|>1 and n≥1. We 
define transformation AJG(π, δ) of the variety (K*)n, where 
A is a triangular matrix with positive integer entries 
0≤a(i,j)≤d, i≥d defined by the following closed formula. 

yπ(1)=ϻ1xδ(1)
a(1,1)

 

yπ(2)= ϻ2xδ(1)
a(2,1) xδ(2)

a(2,2)
  

… 
yπ(n)= ϻnxδ(1)

a(n,1) xδ(2)
a(n,2)

 …xδ(n)
a(n,n)   

where (a(1,1),d)=1, (a(2,2),d)=1,…,(a(n,n),d)=1. 
We refer to AJG(π, δ) as Jordan transformations Gauss 

multiplicative transformation, or simply JG element. It is an 
invertible element of nES(K) with the inverse of kind BJG(δ, 
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π) such that a(i,i)b(i,i)=1 (mod d). Notice that in the case 
K=Zm straightforward process of computation the inverse of 
JG element is connected with the factorization problem of 
integer m. If n=1 and m is a product of two large primes p 
and q the complexity of the problem is used in the RSA 
public key algorithm. The idea to use the composition of JG 
elements or their generalisations with injective maps of Kn 
into Kn was used in [41] (K=Zm) and [42] (K=Fq.). 

We say that τ is a tame Eulerian element over the 
commutative ring K if it is a composition of several Jordan 
Gauss multiplicative maps over a commutative ring or field 
respectively. It is clear that τ sends variable xi to a certain 
monomial term. The decomposition of τ into a product of 
Jordan Gauss transformation allows us to find the solution 
of equations τ(x) = b for x from (Z*m)n or (F*q)m. So tame 
Eulerian transformations over Zm or Fq are special elements 
of nEG(Zm) or nEG(Fq) respectively. 

We refer to elements of nES(K) as multiplicative 
Cremona elements. Assume that the order of K is constant. 
As it follows from the definition the computation of the 
value of element from nES(K) on the given element of Kn is 
estimated by O(n2). The product of two multiplicative 
Cremona elements can be computed in time O(n3). 

We are not discussing here the complexity of computing 
the inverse for general element gϵ nEG(K) on the Turing 
machine or Quantum computer and the problem of finding 
the inverse for tame Eulerian elements. 

6. Multivariate cryptosystem 
Let K be a finite commutative ring with unity and nontrivial 
multiplicative group K* of order d>1. Alice selects graph 

i, j𝐶2m(𝐾), i>j, i=m+α, j=m-β where α>0 and β ≥0 are 
constants ≥0. We assume that parameters α and β are 
essentially smaller than n. She computes parameter 
n=(m+α)(m-α+1) and s=(m+α-1)(α+ β), r=(m-β)(α+β) and 
forms the transformation J1 and J2 from nEG(K) of kind  

y1=μ1x1
a(1,1)

 

y2=μ2x1
a(2,1) x2

a(2,2)
  

… 
yn=μnx1

a(n,1) x2
a(n,2)

 … xn
a(n,n)   

where (a(1,1), d)=1, (a(2, 2), d)=1, …, (a(n, n), d)=1, 
z1=μ’1y1

b(1,1) y2
b(1,2)

 … yn
b(1,n)

 

 
z2=μ’1y2

b(2,2) y2
b(2,3)

 … yn
b(2,n)

 

… 
zn=μ’nyn

b(n,n)
 

 
where (b(n,n), d)=1, (b(n-1, 2), d)=1, …, (b(1, n), d)=1. 

She computes the composition of J1 and J2 and obtains 
the vector (z1, z2, ..., zs, zs+1, …, zn) and treats this tuple as a 
point of graph i, j𝐶2m(𝐾). 

She selects even parameter l, l>5 of size O(1) together 
with sparse tuples a(1), b(1), a(2), b(2), …, a(l), b(l), a(l+1) of 
density O(1) of Proposition 2. 

So, a(i)=(il1(z1, z2, …, zs), il2(z1, z2, …, zs), …,  ils(z1, z2, …, zs)) 
for i=1, 3, 5, …, l-1, l+1, 

a(i)=(il1(z1, z2, …, zs), il2(z1, z2, …, zs), …,  ilr(z1, z2, …, zs)) for 
i=2, 4,…, l, 

b(i)=(ih1(z1, z2, …, zs), ih2(z1, z2, …, zs), …, ihr(z1, z2, …, zs)) 
for i=1, 3, …, l-1,  

b(i)=(ih1(z1, z2, …, zs), ih2(z1, z2, …, zs), …, ihs(z1, z2, …, zs)) 
for i=2, 4, …, l. 

Alice selects a(l+1) as a tuple of kind 
(λ1z1

e(1,1), λ2z1
e(2,1)z2

e(2,2), ..., 
λsz1

e(s,1)z2
e(s,2)

 … zs
(s,s)) where (e(1, 1), d)=1, e(2, 2), d)=1, …, 

(e(s, s), d)=1. 
Alice computes F(z1, z2, …, zn)=(F(a(1), b(1), a(2), b(2), 

..., a(l), b(l), a(l+1)) (z1, z2, …, zn)=(u1, u2, …, un)=u. 
She takes element L from AGLn(K) and computes 

L(u)=(w1, w2, …, wn). So Alice computes the composition 

G=J1J2FL:(x1, x2, …, xn)→(w1(x1, x2, …, xn), w2(x1, x2, …, xn), …, 
wn(x1, x2, …, xn)).  

She sends standard forms of multivariate polynomials 
wi to Bob. Alice keeps J1, J2, L and a(1), b(1), a(2), b(2), ..., 
a(l), b(l), a(l+1) as her private secret.  

Encryption. 
Bob generates his message p=(p1, p2, ..., pn) from the 

space of plaintexts (K*)n. He creates the ciphertext G(p1, p2, 
..., pn)=c and sends it to Alice. 

The process of generating G insures that the density of 
the map is O(n). Each monomial can be computed in time 
O(n). Thus the complexity of the encryption procedure is 
O(n3). 

We have a nonlinear map of an unbounded degree such 
that the computation of its value has the same complexity 
as the computation of an image of a quadratic map. 

Decryption. 
Alice receives the message c from Bob. Firstly she 

computes b=L-1(c). Secondly Alice creates the intermediate 
tuple (z1, z2, ..., zn) to study equation F(z1, z2, ..., zn)=b. 

She writes the equation 
λ1z1

e(1,1)=b1, 
λ2z1

e(2,1)z2
e(2,2)=b2, 

… 

λsz1
e(s,1) z2

e(s,2)
 …zs

e(s,s)=bs 

(5) 

Alice gets the solution z1=d1, z2=d2, ..., zs=ds. 
She computes the parameters a*(i)=a(i)(d1, d2, ..., ds) and 

b*(i)=b(i)(d1, d2, ..., ds) for i=1, 2,..., l. 
Alice takes point (b) and computes recurrently 
ul=Jb*(l)(b), wl= Na*(l)(ul), 
ul-1=Jb*(l-1)(wl), wl-1=Na*(l-1)(ul-1), 
…, 
u1=Jb*(1)(w2), w1=Na*(1)(u1), 
She computes z*=(z*1, z*2,..., z*s, z*s+1,..., z*n) as Jd(w1) for 

d=(d1, d2,…, ds). 
We can see that z* is the solution of the system (3). 
Alice computes the plaintext p as (J2)-1(Jl)-1(z*). 
Alice computes the inverses of J1 and J2 in the group 

nEG(K) as well as the inverse of the map z1→λ1z1
e(1,1), 

z2→λ2z1
e(2,1)z2

e(2,2), ..., zs→ λsz1
e(s,1)z2

e(s,2) … zs
e(s,s) in the group 

sEG(K) in advance. So the complexity of her decryption 
procedure can be estimated as O(n2). 

Obfuscation. 
Instead of graphs i,j𝐶2m(𝐾) Alice takes temporal analogue 

i,j𝐶2m(𝐾) t of them. She forms static graphs i,j𝐶2m(𝐾)t|t=t* for 
t*=1, 2, ..., l. 

So she computes each N_b(i) in static graph i,j𝐶2m(𝐾)t|t=i 
during the algorithm execution. 

Illustrating example. 
Let us consider the case (α=1, β=0).Then graph 

m+1,mC2m(K) known as Double Schubert Graph which has 
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points (x)=(x1, x2, ..., xm, x1,1, x1,2, ..., xm,m) and [y]=[y1, y2, ..., 
ym, y1,1, y1,2, ..., ym,m] and incidence given by equations xi,j-
yi,j=xiyj. We assume that indexes of kind (i,j) are ordered 
lexicographically. 

Alice takes endomorphism J1 and J2 of K[x1, x2, ..., ,..., xm, 
x1,1, x1,2, ..., xm,m]. 

J1J2(x)=(a1(x1, x2, ..., xm, x1,1, x1,2, ..., xm,m), a2(x1, x2, ..., xm, 
x1,1, x1,2, ..., xm,m), …, 

am(x1, x2, ..., xm, x1,1, x1,2, ..., xm,m),  
a1,1(x1, x2, ..., xm, x1,1, x1,2, ..., xm,m), 
a1,2(x1, x2, ..., xm, x1,1, x1,2, ..., xm,m), 
…, 
am,m(x1, x2, ..., xm, x1,1, x1,2, ..., xm,m))=(z1, z2, …, zm, z1,1, z1,2, 

…, zm,m)=(z) where expressions a1, a2, …, am, a1,1, a1,2, …, am,m 
are monomial terms with the coefficients from K*. 

Alice takes graph m+1,mC2m(K[z1, z2, …, zm, z1,1, z1,2, …, 
zm,m]). She selects colours a(1), b(1), a(2), b(2), ..., a(l), b(l), 
a(l+1) where a(i) and b(i) are elements of K[z1, z2, ..., zm, z1,1, 
z1,2, …, zm,m]m. Element a(l+1) will be chosen as (λ1z1

e(1,1), 
λ2z1

e(2,1)z2
e(2,2), ..., λsz1

e(s,1)z2
e(s,2) … zs

e(s,s)). She computes the 
destination point of transition H(a(1), b(1), a(2), b(2), ..., a(l), 
b(l), a(l+1)) of the point (z) in the graph m+1,mC2m(K[z1, z2, …, 
zm, z1,1, z1,2, …, zm,m]). Alice specialise zi as ai(x) and zi,j as 
ai,j(x). 

So she computes the composition of J=J1J2 moving (x) to 
(z) and F(a(1), b(1), a(2), b(2), ..., a(l), b(l), a(l+1) moving z to 
u=(u1, u2, ..., um, u1,1, u1,2, ..., um,m). It is clear that the density 
of JF is O(1). Finally Alice selects L from AGLn(K), n=(m+1)m 
and computes (JF)L=G(x1, x2, ..., xm, x1,1, x1,2, ..., xm,m) of kind  

x1→g1(x1, x2, ..., xm, x1,1, x1,2, ..., xm,m), 
x2→g2(x1, x2, ..., xm, x1,1, x1,2, ..., xm,m), 
..., 
xm→gm(x1, x2, ..., xm, x1,1, x1,2, ..., xm,m), 
x1,1→g1,1(x1, x2, ..., xm, x1,1, x1,2, ..., xm,m), 
x1,2→g1,2(x1, x2, ..., xm, x1,1, x1,2, ..., xm,m), 
... 
xm,m→gm,m(x1, x2, ..., xm, x1,1, x1,2, ..., xm,m). 
For convenience Alice can rename variables from the 

list x1, x2, ..., xm, x1,1, x1,2, ..., xm,m as y1, y2, ..., ym, xm+1, xm+2, ..., 
xm(m+1). 

7. Conclusions 
In this paper, we present the method of construction of 
sparce multivariate maps of unbounded degree O(n) with 
the trapdoor accelerators with the use of walks on algebraic 
graphs. It uses bipartite cellular Schubert graphs of 
projective geometries and their analogues defined over the 
general commutative ring K with the unity. These bipartite 
graphs can be changed for their temporal analogues defined 
via the option of a momentum change of the coefficients of 
monomial terms in the equations defining the incidence of 
points and lines. 

The partition sets of such graphs are affine spaces Kn 
and Km. The special walk on the temporal graph over K [x1, 
x2, ..., xn] can be used for the construction of a multivariate 
map G from Kn to Kn. The information on the temporal 
graph and the walk can serve as corresponding trapdoor 
accelerator T of G, i.e. the knowledge of T allows us to 
compute the reimages of G. We presented some of these 
procedures as Algorithm 1 and 4 in the case of graphs 
s,kCn(K) in terms of Chevalley group over the diagram An 

(case of general linear group). Some other maps with 
trapdoor accelerators are described in [23] the cases of 
diagrams Bn, Cn, and Dn. 

The first graph-based bijective quadratic public key 
where constructed in [6]. It uses special cellular Schubert 
graphs of Projective Geometry over the finite field of 
characteristics 2. The cryptanalysis for this public key is 
unknown. 

The obfuscation of this cryptosystem is presented in [1]. 
Recent development in this direction is reflected in [33] 
where multivariate rules given by quadratic surjective maps 
and temporal analogues of cellular Schubert graphs can be 
used. 

Another bijective quadratic cryptosystem which is also 
constructed in terms of Jordan-Gauss graphs is given in [43]. 

Multivariate cryptosystems with rules of unbounded 
degree are quite rare. We refer to cryptosystems [42] and 
[41] defined in terms of extremal Jordan-Gauss graphs over 
Fq and Zq. 

These multivariate maps have O(n4) monomial maps. 
Cryptanalysis for them is still unknown. Presented in this 
paper cryptosystem is given by multivariate rule with O(n2) 
monomial terms. Thus it can be implemented with hundreds 
of variables, The reduction of the degree of equations to 2 
or 3 leads to an essential increase of variables (more than 
n2). It makes it unfeasible to use standard methods of 
symbolic computations for cryptanalytic purposes. 

For the implementation of this public key, we select 
cases K=Fq and K=Zq where q is a prime power ≥128. 
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