

206

Hardcoded credentials in Android apps:
Service exposure and category-based vulnerability analysis⋆

Olha Mykhaylova1,†, Taras Fedynyshyn1,† and Artem Platonenko2,*,†

1 Lviv Polytechnic National University, 12 Stepana Bandery str., 79013 Lviv, Ukraine
2 Borys Grinchenko Kyiv Metropolitan University, 18/2 Bulvarno-Kudriavska str., 04053 Kyiv, Ukraine

Abstract
This paper presents an extensive study of the security vulnerabilities in Android applications related to the
hardcoding of sensitive credentials. A total of 6,165 APK files were downloaded from the Google Play Store
and subjected to static analysis using Mobile Security Framework (MobSF). For each application, the
“secrets” section, as identified by MobSF, was further examined using Trufflehog to detect and verify the
presence of hardcoded credentials. The findings reveal a concerning prevalence of hardcoded credentials,
with a significant portion of applications embedding sensitive information such as API keys and
authentication tokens. The analysis identified various services for which credentials are frequently
hardcoded, including cloud service providers, payment gateways, and third-party APIs. We also categorized
the occurrence of hardcoded secrets by app type, analyzing the percentage of applications with exposed
credentials across various Google Play categories. This study underscores the critical security risks posed
by hardcoding secrets in mobile applications and provides insights into the scope and distribution of this
vulnerability within the Android ecosystem. The results emphasize the need for stronger security practices
in mobile app development, particularly regarding the secure management of sensitive information, and
highlight potential areas of improvement in mobile application security.

Keywords
android security, mobile security, data privacy, static analysis, improper credentials usage, OWASP
Mobile, MobSF, Trufflehog 1

1. Introduction
Mobile devices, particularly smartphones, have undergone
constant evolution and are now the most common means
for individuals to connect with others through phone calls
or the Internet. Beyond communication, activities such as
document handling, video streaming, emailing, and gaming
can also be easily performed on smartphones, making them
more versatile and essential than ever. According to [1],
smartphones are expected to remain dominant, especially
with the advent of 5G and future 6G.

Smartphones and the numerous applications that
support various functions have become integral to modern
life. Individuals increasingly depend on mobile applications
for a wide range of daily tasks, utilizing them multiple times
per day. The Apple App Store [2] and Google Play Store [3]
offer over eight million applications combined. However,
the provenance and security of these applications cannot
always be guaranteed. Despite the vetting procedures
employed by Apple and Google before allowing apps into
their respective stores, many mobile applications still
exhibit vulnerabilities and pose significant security risks.
Notably, the data processed by these applications and
mobile devices are frequent targets for cybercriminals.
Mobile operating systems lack adequate tools to detect

CPITS-II 2024: Workshop on Cybersecurity Providing in Information
and Telecommunication Systems II, October 26, 2024, Kyiv, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 olha.o.mykhailova@lpnu.ua (O. Mykhaylova);
fedynyshyn.taras@gmail.com (T. Fedynyshyn);
a.platonenko@kubg.edu.ua (A. Platonenko)

malware that can compromise personal data. As a result,
mobile applications present potential security threats, as
vulnerabilities within them may be exploited by attackers to
gain unauthorized access to device resources, including
sensitive user information [4].

Therefore, mobile applications are a vital element of the
mobile ecosystem that necessitates further research to
develop effective security methods and tools aimed at
mitigating the risks associated with their use.

This study aims to conduct a large-scale static analysis
of 6000+ Android applications from Google Play to identify
and evaluate the presence of hardcoded sensitive
information, such as API keys and credentials, using MobSF
and Trufflehog. By detecting and analyzing these secrets,
the study seeks to assess the security practices of mobile app
developers, highlight potential vulnerabilities, and provide
insights into improving the management of sensitive data
within Android apps [5].

2. Background and related work

2.1. OWASP mobile Top 10

The Open Web Application Security Project (OWASP) is a
nonprofit organization dedicated to enhancing software

 0000-0002-3086-3160 (O. Mykhaylova);
0009-0006-8233-8057 (T. Fedynyshyn);
0000-0002-2962-5667 (A. Platonenko)

© 2024 Copyright for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

207

security through global collaboration and participation.
OWASP provides a platform for leaders in industry,
academia, and government to discuss and promote best
practices in computing. Among its initiatives is the
maintenance of a list highlighting the Top 10 Mobile Risks
to mobile applications. This list identifies key security
threats, including risks to data, internal and external device
communications, and other vulnerabilities in mobile
applications.

The list of common cyber threats to mobile applications
and their descriptions, as outlined by the 2024 OWASP
Mobile Top 10:

 M1: Improper Credential Usage—threat agents
exploiting hardcoded credentials and improper
credential usage in mobile applications can include
automated attacks using publicly available or custom-
built tools.

 M2: Inadequate Supply Chain Security—refers to the
failure to secure third-party components, services, or
libraries integrated into mobile applications, which
can introduce vulnerabilities and increase the risk of
compromise throughout the software supply chain.

 M3: Insecure Authentication/Authorization—treat
agents that exploit authentication and authorization
vulnerabilities typically do so through automated
attacks that use available or custom-built tools.

 M4: Insufficient Input/Output Validation—
insufficient validation and sanitization of data from
external sources, such as user inputs or network data,
in a mobile application can introduce severe security
vulnerabilities.

 M5: Insecure Communication—refers to the failure to
properly secure the transmission of sensitive data
between the mobile app and external entities, such as
servers or other devices, leading to potential
interception, tampering, or exposure of information.

 M6: Inadequate Privacy Controls—refers to the
insufficient protection of users’ data within a mobile
application, leading to unauthorized access, exposure,
or misuse of sensitive information such as location,
contacts, or other private data.

 M7: Insufficient Binary Protection—refers to the lack
of proper defenses against reverse engineering or
tampering with the mobile app’s binary code, which
can allow attackers to modify, exploit, or redistribute
the application maliciously.

 M8: Security Misconfiguration—refers to the
improper configuration of security settings,
permissions, and controls that can lead to
vulnerabilities and unauthorized access.

 M9: Insecure Data Storage—refers to the inadequate
protection of sensitive data stored on a mobile device,
which can lead to unauthorized access, data breaches,
or exposure if the storage mechanisms are not
properly secured.

 M10: Insufficient Cryptography—threat agents who
exploit insecure cryptography in mobile applications
can undermine the confidentiality, integrity, and
authenticity of sensitive information [6].

2.2. Related works

The vulnerabilities of mobile applications, such as
authentication and authorization errors, data leakage, and
their associated security risks—ranging from API
vulnerabilities, weak authorization and authentication,
client-side injection, poor server-side security, insecure data
storage and transmission, improper session handling, to the
use of flawed or insecure encryption algorithms—pose
significant threats [7]. In today’s digital environment, users
often entrust their devices with sensitive information,
including financial and medical data, presenting a major
cybersecurity challenge for mobile application developers
and providers. Cybercriminals frequently target the data
processed by mobile applications and devices [8].
Additionally, the rise of mobile applications for the Internet
of Things (IoT) has heightened the threat of wormhole
attacks [9–13].

NowSecure’s benchmark testing [14] revealed that 85%
of the applications examined contained one or more
security risks. Over 50% of the analyzed applications
exhibited vulnerabilities that compromised data protection
during transmission. Additionally, approximately one-third
of the tested applications had issues related to their source
code. Notably, Android applications were particularly prone
to code vulnerabilities, which could expose them to reverse
engineering and other potential threats.

According to [15], the most common security issues in
mobile applications include improper platform usage,
insecure data storage, insecure client-server
communication, insecure authentication (e.g., traditional
password authentication imposes numerous limitations and
is no longer considered secure or user-friendly for mobile
users, while biometric authentication has gained attention
as a promising solution for enhancing mobile security),
insecure authorization, inadequate data encryption, poor
code quality, code tampering, reverse engineering
vulnerabilities, and extraneous functionality. The
advancement of modern mobile application development
technologies necessitates the parallel evolution of methods
and tools to ensure their security. For instance, forecasting
mobile application security on time can help implement
preventive measures to reduce vulnerabilities and security
risks [16]. Currently, there is a clear tension between the
increasing number of mobile applications in use, along with
the growing responsibilities they bear, and the inadequacy
of existing security methods and tools.

3. Materials and methods
For this study, a comprehensive dataset comprising 6165
APK files was compiled from the Google Play Store [3]. This
dataset was meticulously selected to represent a diverse
array of applications across different categories and
popularity tiers, thus ensuring a broad and representative
sample of the mobile application ecosystem. The collected
APKs underwent static analysis using the Mobile Security
Framework (MobSF) [17], an established tool for assessing
mobile application security. MobSF was utilized to perform
an in-depth static analysis of each APK, focusing on the
identification of potentially sensitive information embedded
within the application’s code. The static analysis process

208

involved extracting a designated “secrets” section for each
APK, which enumerates potential hardcoded secrets,
including API keys, authentication tokens, and other
credentials. After the static analysis, the extracted “secrets”
sections were subjected to further scrutiny using Trufflehog
[18], a tool specialized in detecting secrets within codebases.
Trufflehog was employed to validate the authenticity of the
identified secrets and to discern genuine secrets from false
positives. This secondary analysis aimed to provide a more
precise evaluation of the potential security risks associated
with hardcoded credentials in the APKs. This
methodological framework facilitated a rigorous
examination of credential management practices within
mobile applications and offered valuable insights into the
security implications of secret exposure in Android
applications.

3.1. Sample selection

As of 2024, the Google Play Store hosts over 3.5 million
applications [19]. Conducting a comprehensive assessment
of all these applications would demand substantial server
resources and considerable time. Consequently, this study
focused on analyzing a subset of the most popular
applications. The initial step involved evaluating the
popularity of mobile applications. Data on app downloads,
segmented by country and category, was obtained from
SimilarWeb [20]. At the time of the research, we identified
59,108 unique applications across 57 categories and 96
countries. Subsequently, APK files for these applications
were downloaded for analysis. Given the absence of a direct
method to download APK files from the Google Play Store,
third-party services such as APKCombo [18] were utilized.
Due to limitations in storage and computational resources,
and the availability of APK files on third-party services, we
were able to download and analyze 6,165 APK files.

The number of downloaded applications per Google
Play category is listed in Table 1 which only includes 22
categories where at least 15 APK files were downloaded.

Table 1

3.2. Static analysis

Static analysis using MobSF is an essential technique for
evaluating the security of mobile applications. MobSF is a
versatile, open-source tool designed for the static analysis
of both Android and iOS applications, aimed at identifying
potential security vulnerabilities and insecure coding
practices. The process begins when an APK (Android
Package Kit) file is submitted to MobSF. Due to the nature
of mobile application development, APKs must be
disassembled and decompiled to allow for thorough
examination. MobSF employs tools such as APKTool [21]
and jadx [22] to decompile the APK, transforming the
compiled bytecode into a more accessible, human-readable
format. This step is crucial as it breaks down the application
into its constituent components, including the manifest file,
resources, and code. Once the APK is decompiled, MobSF
performs an in-depth analysis of the application’s code. The
analysis focuses on several key areas: the detection of
sensitive data exposure, the identification of insecure
coding practices, and the discovery of known
vulnerabilities. MobSF scans the code for hardcoded secrets,
such as API keys, credentials, and tokens, which can pose
significant security risks if exposed. Additionally, the tool
evaluates the use of cryptographic algorithms and other
security measures to ensure they are implemented correctly.

3.3. Secrets post-processing with Trufflehog

Trufflehog [18] is a specialized tool designed to identify
sensitive information, such as API keys, credentials, and
tokens, within codebases. Initially developed for Git
repositories, Trufflehog has proven [23] valuable in various
security contexts, including static analysis of mobile
applications and other software projects. Trufflehog’s core
functionality relies on two primary techniques: pattern
matching and entropy-based analysis. The tool employs a
set of predefined regular expressions and heuristics to
detect patterns commonly associated with secrets. These
patterns include a variety of credentials and tokens that are
often embedded directly within the application code. By
leveraging these patterns, Trufflehog is capable of
identifying a broad range of sensitive information that
might otherwise be overlooked. In addition to pattern
matching, Trufflehog utilizes entropy-based analysis to
assess the randomness of certain strings within the code.
Strings with high entropy values are indicative of potential
secrets, as they are less likely to occur by chance in non-
sensitive data. This method enhances Trufflehog’s ability to
detect secrets that may not conform to established patterns
but still pose a risk of exposure. For each detected secret,
Trufflehog provides detailed information on its location
within the code, which facilitates targeted remediation
efforts. Trufflehog’s integration with other static analysis
tools, such as MobSF, further enhances its utility. By
analyzing the “secrets” sections extracted by tools like
MobSF, Trufflehog can verify the authenticity of these
findings and assess which secrets are genuinely at risk. This
integration provides a more comprehensive assessment of
an application’s security posture.

App Category ID Number of downloaded APK’s
SPORTS 580
PARENTING 566
PHOTOGRAPHY 452
NEWS_AND_MAGAZINES 443
SOCIAL 438
TOOLS 437
ENTERTAINMENT 417
PRODUCTIVITY 352
COMMUNICATION 312
AUTO_AND_VEHICLES 280
PERSONALIZATION 274
BOOKS_AND_REFERENCE 246
DATING 202
MUSIC_AND_AUDIO 187
MAPS_AND_NAVIGATION 173
ART_AND_DESIGN 139
BUSINESS 123
BEAUTY 102
EDUCATION 69
MEDICAL 68
HEALTH_AND_FITNESS 28
LIFESTYLE 17

209

4. Results
This study conducted a comprehensive security analysis of
6165 Android applications among 22 categories. The
analysis was performed using a combination of tools,
including MobSF and Trufflehog to identify improper
credential usage according to the OWASP MobileTop 10
framework. The results of the vulnerability analysis provide
valuable insights into the security posture of the selected
applications.

4.1. Hardcoded secret services

The research uncovered credentials for a variety of services,
and the frequency of each type of credential was recorded.
Fig. 1 shows the number of revealed secrets per service. As
we can see Twitter consumer key is the most popular
hardcoded credential.

Figure 1: Number of found secrets per service

The research result shows some applications have cloud
provider secrets hardcoded. Hardcoding AWS (Amazon
Web Services) and GCP (Google Cloud Platform) secrets in
mobile application code pose significant security risks,
which can have serious implications for both the application
and its users:

 Unauthorized Access and Data Breaches—hardcoded
secrets, such as API keys and authentication tokens,
provide direct access to cloud services and resources.

If these secrets are exposed through the application
code, malicious actors can exploit them to gain
unauthorized access to cloud resources. This can lead
to unauthorized data access, data breaches, and
potential compromise of sensitive user information
stored in the cloud [24].

 Increased Attack Surface—embedding secrets directly
in the application code increases the attack surface,
making it easier for attackers to identify and exploit
vulnerabilities. Tools and techniques for reverse
engineering can reveal these hardcoded secrets,
allowing attackers to gain access to cloud services
and escalate their attacks.

 Misuse of cloud resources—once an attacker obtains
hardcoded cloud credentials, they can misuse cloud
resources for malicious purposes. This might include
launching unauthorized instances, executing costly
operations, or conducting activities that could incur
significant financial charges to the cloud account.
This can lead to unexpected costs and resource
depletion, affecting both the application’s operation
and its financial viability.

 Compromise of application integrity—hardcoded
secrets may also lead to the compromise of
application integrity. If attackers can exploit these
credentials to modify or interfere with cloud services,
they may alter application functionality, inject
malicious code, or disrupt the normal operation of the
app. This can undermine user trust and damage the
application’s reputation.

 Difficulty in rotation and management—hardcoded
secrets complicate the management and rotation of
credentials. Ideally, secrets should be regularly
rotated and updated to reduce the risk of long-term
exposure. However, hardcoded secrets require
manual intervention to update, leading to potential
lapses in security and prolonged exposure if
credentials are compromised.

 Compliance and legal implications—hardcoding
sensitive information in application code may also
violate compliance regulations and legal
requirements related to data protection and privacy.
Regulations such as GDPR, HIPAA, and others
mandate strict controls over the handling and
protection of sensitive information. Exposing cloud
credentials can result in non-compliance, legal
repercussions, and fines.

4.2. Hardcoded secrets per app categories

The research demonstrates that applications in some Google
Play categories have significantly different percentages of
applications containing hardcoded secrets. Fig. 2 shows the
number of scanned applications, the number of applications
where secrets were detected, and the percentage of such
applications per category.

210

Figure 2: Percentage of apps with hardcoded secrets per
category

As Fig. 2 shows category with the largest number of
hardcoded secrets is “Health and fitness”—21% of
applications in this category have hardcoded secrets. In the
next four categories—“News and magazines”, “Music and
audio”, “Photography” and “Social” 12% of applications have
hardcoded credentials.

The important finding is that 10% of applications in the
category “Communication” have hardcoded secrets.
Hardcoding secrets such as credentials and API tokens in
communication applications pose a variety of significant
security risks, which can lead to severe consequences for
both users and service providers. Communication apps,
being highly sensitive due to their role in handling personal
messages, calls, and media, are particularly vulnerable to
attacks when secrets are embedded in the application code.
Below are described some of the primary risks associated
with hardcoding secrets in such applications:

 Unauthorized access to user data—hardcoded
credentials can be easily extracted by attackers using
reverse engineering techniques. This unauthorized
access to API tokens or authentication keys may
enable malicious actors to intercept sensitive user
data, including personal messages, call logs, and
media files. Such breaches present substantial privacy
risks, as compromised data may be used for identity
theft, surveillance, or exploitation.

 Compromise of communication integrity—the
integrity of communication services depends on
secure transmission channels. Exposed hardcoded
secrets undermine this integrity, allowing attackers
to impersonate legitimate users or services. This
creates opportunities for man-in-the-middle (MITM)
attacks, where communications may be intercepted,
altered, or injected with malicious content without
user awareness, jeopardizing the authenticity and
confidentiality of the exchanged information.

 Service disruption and denial of service (DoS)
attacks—attackers with access to hardcoded secrets
may exploit them to abuse communication services
by sending an excessive volume of requests or
misusing APIs. Such actions can lead to Denial of
Service (DoS) attacks, disrupting services for
legitimate users. This type of attack not only impacts

user experience but can also damage the service
provider’s reputation.

 Account takeover and identity theft—hardcoded API
tokens or credentials allow attackers to take control
of user accounts. This results in unauthorized access,
where malicious actors can lock users out of their
accounts, send fraudulent messages, or perform
unauthorized actions. Account takeovers can lead to
identity theft, social engineering attacks, or the
dissemination of harmful content through
compromised accounts.

5. Conclusions
This study provides a comprehensive examination of

the prevalence and risks associated with hardcoded
credentials within Android applications, highlighting a
critical security gap in mobile application development.

By analyzing 6,165 Android applications across various
categories using MobSF and Trufflehog, the research
revealed that a significant number of applications contain
hardcoded secrets, which pose substantial risks to user data
privacy and application integrity. The findings indicate that
hardcoded cloud provider secrets, such as AWS and GCP
credentials, are common, representing a serious
vulnerability that may lead to unauthorized access, resource
misuse, and potential data breaches. Specifically,
unauthorized access to sensitive data, compromise of
application integrity, and increased exposure to Denial-of-
Service (DoS) attacks were identified as potential
consequences.

Additionally, hardcoded secrets complicate the rotation
and management of credentials, making it difficult for
developers to adhere to best practices for secure application
management. Applications in categories such as Health and
Fitness, News and Magazines, Music and Audio,
Photography, and Social were particularly prone to
containing hardcoded secrets, with Health and Fitness
applications exhibiting the highest occurrence. Notably,
communication applications were also found to have a high
prevalence of hardcoded secrets, posing unique risks due to
their handling of sensitive personal information, including
messages, calls, and media.

This research underscores the urgent need for mobile
developers to adopt secure coding practices, particularly in
credential management, to reduce the risk of data breaches
and protect user privacy. Implementing secure storage
solutions for sensitive information and regular auditing of
code for potential hardcoded credentials should become
standard practices within the industry.

Additionally, frameworks and libraries should offer
stronger guidance or automated tools for managing secrets
to mitigate the risks associated with credential exposure.

Future work could focus on expanding this analysis to
examine the impact of hardcoded secrets on user behavior
and engagement, or on developing automated tools to detect
and mitigate the risks associated with these vulnerabilities
in real-time. This study ultimately reinforces the
importance of secure credential handling as a fundamental
aspect of mobile application security.

211

References
[1] C. Liu, et al., MobiPCR: Efficient, accurate, and strict

ML-based mobile malware detection, Future
Generation Comput. Syst. 144 (2023) 140–150. doi:
10.1016/j.future.2023.02.014.

[2] Apple Appstore. URL: https://www.apple.com/app-
store/

[3] Google Play. URL: https://play.google.com/store
[4] O. Mykhaylova, et al., Mobile Application as a Critical

Infrastructure Cyberattack Surface, in: Cybersecurity
Providing in Information and Telecommunication
Systems II, vol. 3550 (2023) 29–43.

[5] Y. Dreis, et al., Model to Formation Data Base of
Internal Parameters for Assessing the Status of the
State Secret Protection, in: Workshop on
Cybersecurity Providing in Information and
Telecommunication Systems, CPITS, vol. 3654 (2024)
277–289.

[6] A. Horpenyuk, I. Opirskyy, P. Vorobets, Analysis of
Problems and Prospects of Implementation of post-
Quantum Cryptographic Algorithms, in: Classic,
Quantum, and Post-Quantum Cryptography, vol. 3504
(2023) 39–49.

[7] E. Zaitseva, et al., Identifying the Mutual Correlations
and Evaluating the Weights of Factors and
Consequences of Mobile Application Insecurity,
Systems, 11(5) (2023). doi: 10.3390/systems11050242.

[8] P. Zhu, et al., Using Blockchain Technology to
Enhance the Traceability of Original Achievements,
IEEE Trans. Eng. Manag. 70 (2023) 1693–1707.

[9] S.-Y. Kuo, F.-H. Tseng, Y.-H. Chou, Metaverse
Intrusion Detection of Wormhole Attacks based on a
Novel Statistical Mechanism, Future Gener. Comput.
Syst. 143 (2023) 179–190.

[10] B. Zhurakovskyi, et al., Secured Remote Update
Protocol in IoT Data Exchange System, in: Workshop
on Cybersecurity Providing in Information and
Telecommunication Systems, vol. 3421 (2023) 67–76.

[11] V. Sokolov, et al., Method for Increasing the Various
Sources Data Consistency for IoT Sensors, in: IEEE 9th
International Conference on Problems of
Infocommunications, Science and Technology
(PICST) (2023) 522–526. doi: 10.1109/PICST57299.
2022.10238518

[12] O. Shevchenko, et al., Methods of the Objects
Identification and Recognition Research in the
Networks with the IoT Concept Support, in:
Cybersecurity Providing in Information and
Telecommunication Systems, vol. 2923 (2021) 277–
282.

[13] V. Dudykevych, et al., Platform for the Security of
Cyber-Physical Systems and the IoT in the
Intellectualization of Society, in: Workshop on
Cybersecurity Providing in Information and
Telecommunication Systems, CPITS, vol. 3654 (2024)
449–457.

[14] A Decade in, How Safe Are Your iOS and Android
Apps? URL: https://www.nowsecure.com/blog/
2018/07/11/adecade-in-how-safe-are-your-ios-and-
android-apps

[15] Understanding OWASP Mobile Top 10 Risks with
Real-World Cases. URL:
https://appinventiv.com/blog/owaspmobile-top-10-
real-world-cases/

[16] S. Shevchenko, et al., Protection of Information in
Telecommunication Medical Systems based on a Risk-
Oriented Approach, in: Workshop on Cybersecurity

Providing in Information and Telecommunication
Systems, vol. 3421 (2023) 158–167.

[17] Mobile Security Framework (MobSF). URL:
https://mobsf.github.io/docs/#/

[18] Trufflehog. URL: https://github.com/trufflesecurity/
trufflehog

[19] How Many Apps in Google Play Store? (2024). URL:
https://www.bankmycell.com/blog/number-of-
google-play-store-apps/

[20] Similarweb Digital Intelligence: Unlock Your Digital
Growth. URL: https://www.similarweb.com/

[21] Apktool – A Tool for Reverse Engineering Android
APK Files. URL: https://apktool.org/

[22] jadx – Dex to Java Decompiler. URL:
https://github.com/skylot/jadx

[23] S. K. Basak, et al., A Comparative Study of Software
Secrets Reporting by Secret Detection Tools, 2023
ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), New
Orleans, LA, USA (2023) 1–12. doi:
10.1109/ESEM56168.2023.10304853.

[24] O. Deineka, et al., Designing Data Classification and
Secure Store Policy According to SOC 2 Type II, in:
Cybersecurity Providing in Information and
Telecommun. Systems, vol. 3654 (2024) 398–409.

