
212

Implementing post-quantum KEMs:
Practical challenges and solutions ⋆

Pavlo Vorobets1,†, Oleksandr Vakhula1,†, Andrii Horpenyuk1,† and Nataliia Korshun2,*,†

1 Lviv Polytechnic National University, 12 Stepana Bandery str., 79013 Lviv, Ukraine
2 Borys Grinchenko Kyiv Metropolitan University, 18/2 Bulvarno-Kudryavska str., 04053 Kyiv Ukraine

Abstract
The paper provides an overview and analysis of the current state, problems, and prospects of post-quantum
key encapsulation mechanisms. The essential cryptographic building blocks for implementing secure
communication protocols are key-encapsulation mechanisms. KEMs enable two parties to securely
establish a shared secret key over an insecure channel. This shared key can then be used for symmetric
encryption of messages, ensuring confidentiality and integrity of the exchanged data. The National Institute
of Standards and Technology (NIST) is actively working on standardizing post-quantum cryptography
including KEMs. After the third round of the NIST PQC Standardization Process, NIST has identified the
CRYSTALS-KYBER KEM algorithm for standardization. The four algorithms selected for a fourth round are
BIKE, Classic McEliece, HQC, and SIKE. In this paper, we explore all these algorithms.

Keywords
post-quantum cryptography, KEM, standardization process, NIST, CRYSTALS-KYBER, BIKE, Classic
McEliece, HQC, SIKE 1

1. Introduction
As quantum computing advances, the implementation of
post-quantum Key Encapsulation Mechanisms (KEMs)
becomes critical for securing data against future threats.

Quantum computing represents a paradigm shift in
computational power, capable of solving complex
mathematical problems much faster than classical
computers. This capability poses a significant threat to
current cryptographic systems, particularly those relying on
public-key algorithms like RSA and ECC, which are
vulnerable to quantum attacks. The most widely used key
exchange algorithms today are based on hard mathematical
problems, such as integer factorization and the discrete
logarithm problem. However, these problems can be
efficiently solved by a quantum computer [1].

Key Encapsulation Mechanisms are cryptographic
protocols designed to securely exchange symmetric keys
over insecure channels. They are a cornerstone of many
secure communication systems, enabling the safe
transmission of encryption keys that can then be used for
symmetric encryption. In the quantum era, the security of
these key exchanges is paramount.

To counteract the threat posed by quantum computing,
researchers are developing post-quantum cryptographic
algorithms, including post-quantum KEMs. These
mechanisms are based on mathematical problems believed
to be resistant to quantum attacks.

CPITS-II 2024: Workshop on Cybersecurity Providing in Information
and Telecommunication Systems II, October 26, 2024, Kyiv, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 pavlo.a.vorobets@lpnu.ua (P. Vorobets);
oleksandr.p.vakhula@lpnu.ua (O. Vakhula);
andrii.y.horpeniuk@lpnu.ua (A. Horpenyuk);
n.korshun@kubg.edu.ua (N. Korshun)

The transition to post-quantum cryptography, including
KEMs, is a proactive measure to secure communications
against future quantum threats. Standardization bodies like
the National Institute of Standards and Technology (NIST)
are actively working on evaluating and standardizing post-
quantum cryptographic algorithms, including KEMs, to
provide clear guidelines and frameworks for adoption.

As quantum computing advances, the cryptographic
landscape must evolve to ensure the continued security of
key exchanges and communications. Post-quantum Key
Encapsulation Mechanisms are at the forefront of this
evolution, offering new approaches to secure key exchange
that are resistant to quantum attacks. Understanding and
implementing these mechanisms will be crucial for
protecting sensitive information in the quantum era,
ensuring that cryptographic systems remain robust and
secure against emerging threats.

2. Literature review and problem
statement

Cryptography is an essential aspect of modern life,
providing the necessary security and trust in our digital
interactions, financial transactions, communication, and
data privacy. Its widespread use ensures the confidentiality,
integrity, and authenticity of information in various aspects
of our daily lives.

 0009-0007-3870-829X (P. Vorobets);
0009-0008-5367-3344 (O. Vakhula);
0000-0001-5821-2186 (A. Horpenyuk);
0000-0003-2908-970X (N. Korshun)

© 2024 Copyright for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

\

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

213

As quantum computing continues to advance, the threat it
poses to classical cryptographic systems becomes more
apparent. Quantum computers, once fully realized, will be
able to efficiently break commonly used cryptographic
schemes like RSA and ECC through Shor’s algorithm,
rendering traditional cryptographic infrastructure insecure.
In response to this looming threat, post-quantum
cryptography has emerged as a field focused on developing
cryptographic algorithms that are resistant to quantum
attacks. Key Encapsulation Mechanisms, which are used for
secure key exchange, are a key focus in this field [2].

The National Institute of Standards and Technology
(NIST) launched its Post-Quantum Cryptography
Standardization project in 2017, aiming to identify and
standardize quantum-resistant cryptographic algorithms.
Many algorithms have been proposed, with a significant
portion focusing on KEMs due to their critical role in secure
communications [3].

To address this, post-quantum key encapsulation
mechanisms are being developed to ensure the secure
exchange of encryption keys, even in the presence of
powerful quantum adversaries [4].

3. Introduction to key encapsulation
mechanisms in post-quantum
cryptography

A Key Encapsulation Mechanism (KEM) is a cryptographic
protocol used to securely exchange encryption keys
between two parties. The primary goal of KEMs is to
generate and securely encapsulate a random key, which can
then be used for further cryptographic operations, such as
symmetric encryption.

A KEM typically consists of three main phases:
Key Generation: The sender generates a pair of keys

(public and private keys). The public key is shared with the
recipient.

Encapsulation: The sender uses the public key to
generate a random secret and encapsulates it. The
encapsulated secret is sent to the recipient.

Decapsulation: The recipient uses their private key to
recover the original secret from the encapsulated data.

The most widely used key exchange algorithms today
are based on hard mathematical problems, such as integer
factorization and the discrete logarithm problem. But these
problems can be efficiently solved by a quantum computer.

KEMs are generally designed to be non-interactive,
meaning they only require a single communication round
(i.e., one message from the sender to the recipient).

The main security goal of a KEM is to prevent attackers
from gaining any useful information about the shared
secret. These goals are formalized using security definitions,
often based on the IND-CCA (Indistinguishability under
Chosen Ciphertext Attack) security model [5].

A KEM can be seen as similar to a Public Key Encryption
(PKE) scheme since both use a combination of public and
private keys. In a PKE, one encrypts a message using the
public key and decrypts using the private key. In a KEM, one
uses the public key to create an “encapsulation”—giving a
randomly chosen shared key—and one decrypts this
“encapsulation” with the private key.

Public key encryption is often used to transmit symmetric
encryption keys, which are then used to encrypt the
originally intended plain-text content needing encryption
protection. Symmetric keys are faster and stronger (for
smaller key sizes) than asymmetric encryption, and so PKEs
are often just used as a secure transport vehicle for the
symmetric keys that do all the direct encryption work. PKEs
have worked great for decades, but they have at least one
big inherent flaw [6].

When the public key is longer than the content being
encrypted (such as is usually the case with the symmetric
key in key exchanges), it allows attackers a very easy way
to derive the original private key. To prevent this scenario,
when the message content to be encrypted (e.g., the
symmetric key) is shorter than the asymmetric private key
used to do the encryption, PKEs will usually add additional
“padding” to the message to be encrypted (e.g., the
symmetric key) to remove the vulnerability.

Key encapsulation methods, also known as key
encapsulation schemes, are a type of asymmetric encryption
technique designed to improve the secure transmission (or
generation) of symmetric keys because they don’t need
random padding added to short messages to stay secure.
Many postquantum cryptographic algorithms are especially
conducive to creating KEMs and because postquantum
algorithms often have even longer asymmetric keys, you
will see many quantum-resistant teams offering KEMs
instead of PKEs. Also, some post-quantum cryptographic
algorithms will offer both PKE and KEM versions [7].

Figure 1: Key Encapsulation Mechanisms

3.1. Types of KEMs in post-quantum
cryptography

In the post-quantum world, the security of KEMs must rely
on quantum-resistant mathematical problems. Here are the
key post-quantum techniques used for designing KEMs:

 Lattice-based cryptography—uses lattices and
their associated mathematical properties to
provide security. A lattice is a set of points in a
multi-dimensional space that form a regular grid-
like structure. Lattice-based cryptography is one of
the most promising post-quantum techniques
because it provides strong security guarantees and
relatively efficient operations. It is based on the
hardness of problems like Learning with Errors
and Short Integer Solution [8]. Lattice-based KEMs
are attractive due to their relatively small key sizes
and fast operations, making them suitable for
practical implementations [9].

 Code-based cryptography—relies on error-correcting
codes to provide security. The security of these

214

schemes is based on the hardness of decoding certain
structured codes, making them resistant to quantum
attacks. Code-based cryptography uses the difficulty
of decoding random linear codes, particularly
generalized Goppa codes. One of the oldest forms of
post-quantum cryptography, it offers a high level of
security but often comes with larger key sizes [10].

 Hash-based cryptography—built upon cryptographic
hash functions. These schemes are based on the
hardness of finding collisions in the hash function,
offering a potential post-quantum solution. Hash-
based cryptography’s fundamental benefit is that it is
a commonly used, well-researched technique that
ensures great resistance to quantum assaults, making
it a candidate for long-term security in the post-
quantum period (as a long enough key is utilized).
While primarily used in signature schemes, hash-
based cryptography can also be adapted for KEM.
These rely on the difficulty of finding preimages or
collisions in cryptographic hash functions.

 Multivariate polynormal cryptography—relies on
algebraic equations with multivariate polynomials.
Although secure, the size of the public and private
keys can be large [11, 12].

 Isogeny-based cryptography—based on the
mathematics of elliptic curves and isogenies. These
schemes rely on constructing mappings between
elliptic curves. It offers some of the smallest key sizes
of any post-quantum cryptosystem but is relatively
slow [13–16].

During the transition to post-quantum cryptography,
hybrid KEMs are being used. These combine classical
cryptographic methods (like RSA or ECC) with post-
quantum methods. For example, a hybrid KEM could
simultaneously run both a lattice-based KEM (for post-
quantum security) and an RSA-based KEM (for classical
security), ensuring safety from both quantum and classical
attacks [17].

3.2. Practical challenges in implementing
post-quantum KEMs

Implementing post-quantum Key Encapsulation
Mechanisms in real-world systems presents several
practical challenges.

Many post-quantum KEMs, especially those based on
lattice and code-based cryptography, involve much larger
key sizes compared to classical systems. For example, code-
based KEMs like Classic McEliece have public keys that are
several hundred kilobytes in size, which is significantly
larger than RSA or ECC public keys. Larger key sizes
increase the bandwidth needed for key exchange, which can
slow down communication, particularly in low-bandwidth
environments such as mobile networks, IoT devices, or
satellite communications.

Post-quantum cryptographic schemes often require
more computational power than traditional cryptographic
algorithms.

Table 1
Performance Assessment

Algorithm Type Performance
CRYSTALS-

KYBER
Lattice-
based

Overall performance of
CRYSTALS-KYBER in
software, hardware, and
hybrid settings is excellent.

BIKE Code-based The performance of BIKE
would be suitable for most of
the applications as confirmed
by several hardware
benchmarks.

HQC Code-based The bandwidth of the HQC
exceeds that of BIKE, HQC’s
key generation but
decapsulation only requires a
fraction of the kilocycles
required by BIKE. HQC is one
of the top two alternate KEMs.
The overall performance of
the HQC is not optimal but
still, it is acceptable.

Classic
McEliece

Code-based It has the smallest ciphertext
among any of the NIST PQC
candidates

SIKE Isogeny-
based

It has relatively low
communication costs.
However, performance on
embedded devices may be an
issue because of the time to
perform a single key
encapsulation/decapsulation.

For instance, lattice-based schemes like CRYSTALS-KYBER
are efficient in terms of security but may still require more
CPU cycles compared to classical systems. Implementing
these algorithms on resource-constrained devices (e.g., IoT
devices) can be difficult, as they may not have the
processing power required to handle the increased
computational load. The increased computation can
introduce latency in key exchange processes. This can be a
significant issue for real-time systems (e.g., VoIP, video
conferencing), where even small delays in establishing
secure connections can degrade user experience [17].

Many existing security protocols (e.g., TLS, SSH, IPsec)
are based on classical cryptographic primitives like RSA and
ECC. Implementing post-quantum KEMs requires either
significant changes to these protocols or hybrid systems
that combine classical and post-quantum techniques.
Modifying or extending widely used protocols to support
post-quantum KEMs can be complex [18]. It requires not
only software updates but also widespread adoption to
ensure that all parties in a communication system can use
the new algorithms [8].

One solution to this challenge is the use of hybrid
cryptography, where both classical and post-quantum
algorithms are used together in a key exchange process.
However, this increases the complexity of the system and
can further slow down performance. Hybrid methods can
add overhead, as two cryptographic algorithms (classical
and post-quantum) are run in parallel, increasing
computational and communication costs [19].

Many post-quantum algorithms, especially those based
on lattice cryptography, are vulnerable to side-channel
attacks such as timing attacks, power analysis, and fault
injection attacks. These attacks exploit the physical
characteristics of a system to recover secret keys. Protecting

215

implementations of post-quantum KEMs from side-channel
attacks requires additional countermeasures, such as
constant-time implementations or masking techniques.
These countermeasures can increase the complexity and
reduce the performance of the system [20].

While NIST is in the process of standardizing post-
quantum algorithms, the field is still evolving.
Organizations face uncertainty when selecting which post-
quantum algorithm to implement, as premature adoption
could lead to interoperability issues or the need for future
upgrades. Additionally, ensuring interoperability between
different implementations of post-quantum KEMs remains
a challenge. After careful consideration during the third
round of the NIST PQC Standardization Process, NIST has
identified a candidate algorithm for standardization. NIST
will recommend the primary KEM algorithm to be
implemented for most use cases: CRYSTALS-KYBER. The
four algorithms selected for this fourth round are BIKE,
Classic McEliece, HQC, and SIKE. Many industries rely on
cryptographic standards and certifications to ensure
security (e.g., FIPS 140-2/3). Post-quantum cryptographic
systems will need to go through extensive certification
processes to be widely adopted in regulated environments,
which can be time-consuming.

While post-quantum KEMs are designed based on
problems thought to be hard for quantum computers (e.g.,
lattice problems, isogenies, etc.), there is still some
uncertainty about the long-term security of these
algorithms. It is possible that future mathematical
breakthroughs or quantum algorithms could weaken these
assumptions. Building trust in the security of post-quantum
KEMs is essential for their widespread adoption. However,
businesses may be reluctant to deploy post-quantum
solutions until there is a high level of confidence in their
security. There is also resistance to change in the industry.
Many organizations have deeply entrenched cryptographic
infrastructures that rely on RSA or ECC, and the cost of
transitioning to post-quantum cryptography may be
prohibitive in the short term.

During the transition to post-quantum cryptography,
systems will need to support both classical and quantum-
safe algorithms simultaneously. This creates additional
complexity in terms of key management, negotiation of
algorithms, and ensuring that both parties in a

communication can agree on a common cryptographic
approach. Implementing dual cryptographic systems can
lead to security risks if not done properly, such as potential
downgrade attacks where an adversary forces the use of
weaker, classical algorithms.

The transition to post-quantum KEMs is necessary to
ensure long-term security in the face of quantum computing
advancements, but it comes with practical challenges related
to efficiency, key sizes, integration, and trust. Overcoming
these challenges will require advances in both cryptographic
research and engineering, as well as widespread industry
adoption of post-quantum standards [21].

4. Overview of post-quantum KEM
algorithms

NIST has selected several KEMs for standardization,
including CRYSTAL-Kyber and BIKE, Classic McEliece,
HQC, and SIKE. These algorithms represent some of the
most promising candidates for post-quantum Key
Encapsulation Mechanisms that have emerged from the
NIST Post-Quantum Cryptography Standardization project.
Each one is based on different hard mathematical problems,
providing diverse approaches to ensuring security in the
post-quantum era [22–24].

4.1. CRYSTALS-Kyber

CRYSTALS-Kyber (Cryptographic Suite for Algebraic
Lattices) is one of the most prominent lattice-based KEMs and
was selected as a NIST finalist due to its efficiency, security,
and small key and ciphertext sizes. It is based on the Module
Learning With Errors (Module-LWE) problem, a variant of
the Learning With Errors (LWE) problem, which is widely
regarded as hard for quantum computers to solve [25].

The construction of Kyber follows a two-stage
approach: first introduce an INDCPA-secure public-key
encryption scheme encrypting messages of a fixed length of
32 bytes, which is called Kyber.CPAPKE. Then use a slightly
tweaked Fujisaki–Okamoto (FO) transform to construct the
IND-CCA2-secure KEM, which is called Kyber.CCAKEM.

Kyber defines three parameter sets, which we call
Kyber512, Kyber768, and Kyber1024. The parameters are
listed in Table 2.

Table 2
Parameter sets for Kyber

NIST Level Designation n k q n1 n2 (du, dv) b
Level 1 Kyber512 256 2 3329 3 2 (10,4) 2-130
Level 2 Kyber768 256 3 3329 2 2 (10,4) 2-164
Level 3 Kyber1024 256 4 3329 2 2 (11,5) 2-174

n is set to 256 because the goal is to encapsulate keys with
256 bits of entropy (i.e., use a plaintext size of 256 bits in
Kyber.CPAPKE.Enc). Smaller values of n would require
encoding multiple key bits into one polynomial coefficient,
which requires lower noise levels and therefore lowers
security. Larger values of n would reduce the capability to
easily scale security via parameter k.

q as a small prime satisfying n | (q-1); this is required to
enable fast NTT-based multiplication. There are two smaller

primes for which this property holds, namely 257 and 769.
However, for those primes we would not be able to achieve
the negligible failure probability required for CCA security,
so was chosen the next largest, i.e., q = 3329.

k is selected to fix the lattice dimension as a multiple of n;
changing k is the main mechanism in Kyber to scale security
(and as a consequence, efficiency) to different levels.

216

Kyber offers a good balance between key/ciphertext size
and performance. It is more efficient in both space and speed
compared to many other post-quantum candidates.

Public Key Size: Ranges from 736 bytes (Kyber512) to
1,568 bytes (Kyber1024).

Ciphertext Size: Ranges from 800 bytes (Kyber512) to
1,568 bytes (Kyber1024).

Kyber’s computational efficiency makes it suitable for a
wide range of applications, including low-power devices
such as IoT and mobile devices. Kyber provides a very
efficient encapsulation and decapsulation process,
particularly when compared to other post-quantum KEMs.

4.2. BIKE

BIKE (Bit-Flipping Key Encapsulation) is a code-based
cryptographic system that uses Quasi-Cyclic Moderate-
Density Parity-Check (QC-MDPC) codes. It’s designed to
offer efficient key encapsulation while relying on the
hardness of decoding random linear codes, a well-
established hard problem in cryptography.

BIKE is based on the decoding of QC-MDPC codes,
which involves error correction methods. This problem has

been studied for decades, and no quantum or classical
efficient algorithms are known to solve it. The core
cryptographic mechanism is the decoding process for
MDPC codes, which involves flipping bits to correct errors
in a way that only the legitimate parties can succeed.

BIKE’s first building block is a public key encryption
scheme based on a variant of the Niederreiter framework.
The plaintext is represented by the sparse vector (e0, e1),
and the ciphertext by its syndrome. The decryption is
performed with a decoding procedure. Next, this PKE is
converted into an IND-CCA KEM with the application of
the Fujisaki-Okamoto transformation. For the scheme to be
truly IND-CCA, there must be conditions on the decoding
failure rate (also called DFR), which is the case here with the
chosen decoder [26, 27].

As defined in the specifications, the parameters should
satisfy several constraints. The block length r should be a
prime number, and 2 should be primitive modulo r. The
parameter w should be such that w = 2d ≈ √n with d being
odd. In addition, the error weight should be such that t ≈ √n.
Instantiated parameters are present in Table 3.

Table 3
Parameter sets for BIKE

 r w t l Public key, bits Private key, bits Ciphertext, bits
Level 1 12323 142 134 256 12323 2244 12579
Level 2 24659 206 274 256 24659 3346 24915
Level 3 40973 199 264 256 40973 4640 4640

While BIKE offers relatively compact ciphertext sizes, it
tends to require larger public keys compared to lattice-based
KEMs like Kyber.

Public Key Size: Ranges from 1,254 bytes to 4,140
bytes, depending on the security level.

Ciphertext Size: Approximately 154 bytes to 284 bytes.
BIKE is relatively efficient in the key encapsulation

process due to the use of fast bit-flipping decoding
algorithms, although it can be slower than some lattice-
based systems in some use cases. The reliance on error-
correcting codes is a tried-and-tested approach, giving
confidence in its long-term security against both classical
and quantum attacks.

4.3. Classic McEliece

Classic McEliece is one of the oldest and most established
post-quantum cryptosystems, first proposed in 1978. It
relies on the hardness of decoding random Goppa codes, a
task that has resisted efficient attacks for over four decades.
Classic McEliece has gained attention due to its long-
standing security record and robust resistance to quantum
attacks [28].

The original purpose is to encode data and transmit it on a
noisy channel, allowing the receiver to remove the errors to
get the correct message. If the decoder is kept secret and
cannot be deduced from the encoder, it makes encoding with
errors a one-way trapdoor function: the sender encodes with
the public encoder and adds as many errors as the decoder
can remove. The receiver with the decoder is then the only
one who can remove the errors and read the message.

The public key size grows substantially from 261120
bytes at NIST level 1 to 1357824 bytes at NIST level 5c. The
private key size also sees a significant increment from 6492
bytes at level 1 to 14120 bytes at level 5c. These increases
align with the general principle that larger key sizes
translate into stronger security, making the system more
resilient against cryptographic attacks. The ciphertext size
and the session key size also increase as the NIST level
progresses, pointing to stronger security and larger
communication overheads [29]. However, the session key
size remains consistent at 32 bytes, as its primary role is to
ensure confidentiality and integrity during a session,
regardless of the NIST level.

Table 4
Parameter sets for Classic McEliece

NIST Level Designation Public key, bytes Private key, bytes Ciphertext, bytes Session key, bytes
Level 1 mceliece348864 261120 6492 96 32
Level 3 mceliece460896 524160 13608 156 32
Level 5 mceliece6688128 1044992 13932 208 32

Level 5b mceliece6960119 1047319 13948 194 32
Level 5c mceliece8192128 1357824 14120 208 32

217

Classic McEliece is known for its very large public key sizes,
which are its primary drawback, but it has very small
ciphertext sizes and extremely fast decapsulation.

Public Key Size: Up to 1 MB or more for higher
security levels.

Ciphertext Size: 208 bytes.
Although the public keys are large, the small ciphertext

size and fast decryption process make McEliece suitable for
high-performance applications where the size of the public
key is not a critical issue. The major disadvantage of
McEliece is the size of its public keys, which can be as large
as several hundred kilobytes to over a megabyte. This makes
it less practical for systems with bandwidth or storage
limitations.

4.4. HQC

HQC (Hamming Quasi-Cyclic) is another code-based
cryptographic system that uses Quasi-Cyclic codes to
achieve secure key encapsulation. HQC is based on the
hardness of decoding random linear codes but uses a
different type of code construction compared to Classic
McEliece and BIKE.

HQC is built on the difficulty of decoding random linear
codes, which is believed to be a hard problem both for
classical and quantum computers.

HQC uses SHAKE256 for multiple purposes e.g., as a
PRNG for fixed weight vector generation and random vector
generation in Key Generation, as a PRNG for fixed weight
vector generation in Encryption, and for hashing in
encapsulation and decapsulation. HQC-KEM uses
polynomial multiplication in various stages of its operation.
In HQC, the fundamental mathematical structure involves
cyclic codes, and polynomial operations over finite fields
play a crucial role in both the encryption and decryption
processes [30].

Polynomial Multiplication is used in the public key
generation stage. The public key involves a codeword that

is derived from the multiplication of two polynomials, one
of which is a secret, and another is a random element. The
process relies on encoding the secret key, which consists of
small random polynomials, and performing multiplication
in a finite field to produce part of the public key.

During the encapsulation process, the key encapsulator
generates a random message and encodes it using a public
codeword. The encoding procedure involves polynomial
multiplication between the message (represented as a
polynomial) and the public key polynomial. The ciphertext
is generated as the sum of a product of polynomials
(including the random polynomials and the public key)
along with some error terms. These multiplications are done
in a ring of polynomials, where coefficients are taken
modulo a prime number.

On the receiver’s side, the decryption process also
involves polynomial multiplication. The receiver uses their
private key to multiply it with part of the ciphertext. By
multiplying the ciphertext polynomial by the private key
and removing the error components, the original message
can be recovered. The structure of the private key, being
sparse (i.e., consisting mostly of small entries), ensures that
this operation is efficient despite the potential for larger
polynomials.

In all cases, these polynomial multiplications are
performed in a finite ensuring that the polynomials remain
manageable in size and that the modular arithmetic
preserves the structure of the quasi-cyclic codes.
Polynomial multiplication in HQC is typically implemented
using efficient algorithms such as the Number Theoretic
Transform (NTT), which is a variant of the Fast Fourier
Transform (FFT) for polynomials over finite fields, to speed
up the process of large polynomial multiplications. Thus,
polynomial multiplication is a critical and recurring
operation in the key generation, encryption, and decryption
steps of HQC-KEM.

Table 5
Parameter sets for HQC

NIST Level Designation n k t Public key, bytes Private key, bytes Ciphertext, bytes
Level 1 hqc-128 35338 17669 132 2249 56 4497
Level 2 hqc-192 71702 35851 200 4522 64 9042
Level 3 hqc-256 115274 57637 262 7245 72 14485

HQC’s key sizes are intermediate between those of McEliece
and BIKE, but its ciphertexts are generally larger.

Public Key Size: Ranges from 2,249 bytes to 7,245
bytes.

Ciphertext Size: Approximately 7,245 bytes to 7,870
bytes.

HQC provides security levels aligned with NIST’s
requirements, targeting 128-bit and 256-bit classical security
levels.

HQC is more efficient in terms of key generation and
encapsulation compared to Classic McEliece, while still
offering strong security guarantees. As a code-based
system, HQC benefits from decades of cryptographic
research, giving confidence in its resistance to quantum and
classical attacks. Compared to other post-quantum KEMs,
HQC produces relatively large ciphertexts, which may be a
disadvantage in bandwidth-constrained applications.

4.5. SIKE

SIKE (Supersingular Isogeny Key Encapsulation) is based on
isogeny-based cryptography, a relatively new and
promising post-quantum cryptographic approach. SIKE
uses the difficulty of finding isogenies (mappings) between
elliptic curves. While elliptic curve cryptography (ECC) is
vulnerable to quantum attacks, isogeny-based systems
remain secure.

SIKE is protected by the computational supersingular
isogeny (CSSI) problem and allows for an IND-CCA2 key
establishment between two parties [31].

The underlying hard problem for SIKE, the
Computational Supersingular Isogeny problem, involves
finding a secret isogeny (a specific type of function between
elliptic curves) between two given supersingular elliptic
curves. This is believed to be computationally infeasible,
even for quantum computers, making it a good foundation

218

for post-quantum security. SIKE provides IND-CCA2
security, which is a strong form of security for encryption
schemes. This means that even if an attacker can request
decryptions of ciphertexts of their choice, they cannot learn
any useful information about the encryption of a different
message. This ensures that the key establishment process
between two parties is secure even against active attackers
who can manipulate and intercept communications.

SIKE primes are carefully chosen to optimize both
performance and security in the context of supersingular
elliptic curves and the supersingular isogeny problem. SIKE

uses a prime number 𝑝 of a particular form to define the
finite field Fp over which elliptic curves are constructed. The
form of these primes allows efficient isogeny computations
and ensures that the curves used are supersingular.

SIKE primes are of the form:
p=2a*3b*f-1

where a and b are large integers.
f is a small cofactor, typically set to 1 in many cases.
The prime is of a size that ensures 128-bit, 192-bit, or

256-bit security levels, depending on the target.

Table 6
Parameter sets for HQC

NIST Level Prime Form Designation Public key, bytes Private key, bytes Ciphertext, bytes
Level 1 22163137 − 1 SIKEp434 330 374 346
Level 2 22503159 − 1 SIKEp503 378 434 402
Level 3 23053192 − 1 SIKEp610 462 524 486
Level 5 23723239 − 1 SIKEp751 564 644 596

SIKE offers one of the smallest key and ciphertext sizes of
any other post-quantum cryptosystem, making it
particularly attractive for use in bandwidth-constrained
environments. However, it tends to have slower
performance compared to other post-quantum KEMs.

Public Key Size: As small as 330 bytes.
Ciphertext Size: Ranges from 346 to 596 bytes.
SIKE’s compact key and ciphertext sizes make it one of

the most bandwidth-efficient post-quantum cryptosystems,
making it attractive for specific use cases where data size
and storage are a concern, despite its slower performance
compared to other schemes.

5. Conclusions
Cryptographers, researchers, and industry experts are
working together to develop and test these algorithms to
ensure their security and efficiency in real-world
applications. These algorithms are being evaluated for their
ability to resist both classical and quantum attacks as part
of the NIST Post-Quantum Cryptography Standardization
process. The goal is to identify cryptosystems that will be
secure in a future where quantum computers could break
existing cryptography, while also being efficient in real-
world applications.

KEMs are critical for secure key exchange in
cryptographic protocols, enabling two parties to securely
establish a shared secret over an insecure channel. In post-
quantum cryptography, various KEMs are being explored
for their security and practicality in terms of key sizes,
speed, and resilience against quantum attacks [32].

The development of these KEMs involves close
collaboration between academia, industry, and government
organizations. The NIST process, for example, has provided
a platform where researchers can submit their
cryptographic algorithms for rigorous evaluation by the
global cryptographic community. This collaboration
ensures that these algorithms are tested for:

Security: To withstand both classical and quantum
attacks.

Performance: In terms of speed, key size, and memory
usage in practical applications.

Real-World Implementation: Testing includes both
hardware and software implementations to ensure that the
algorithms are suitable for a range of use cases, from small
devices (like IoT) to high-performance systems (like cloud
servers) [33, 34].

The ongoing development of post-quantum KEMs like
Crystal-Kyber, BIEK, HQC, Classic McEliece, SIKE, and
others is crucial to ensuring secure communication in a
quantum future. Each of these algorithms brings unique
advantages in terms of performance, security, and
efficiency, and the NIST competition is helping to refine
these technologies for eventual standardization and
widespread adoption.

References
[1] L. K. Grover, A Fast Quantum Mechanical Algorithm

for Database Search, Proceedings of the 28th Annual
ACM Symposium on Theory of Computing (1996).

[2] D. J. Bernstein, J. Buchmann, E. Dahmen, Code-based
Cryptography (2016).

[3] Horpenyuk, I. Opirskyy, P. Vorobets, Analysis of
Problems and Prospects of Implementation of Post-
Quantum Cryptographic Algorithms, in: Classic,
Quantum, and Post-Quantum Cryptography, vol. 3504
(2023) 39–49.

[4] Bernhardt, Quantum Computing for Everyone,
Cambridge, MA: MIT Press (2019).

[5] V. Cini, et al., CCA-Secure (Puncturable) KEMs from
Encryption with Non-Negligible Decryption Errors,
Advances in Cryptology – ASIACRYPT 2020. Lecture
Notes in Computer Science, vol. 12491. (2020). doi:
10.1007/978-3-030-64837-4_6.

[6] Woodward, Will Quantum Computers Be the End of
Public Key Encryption? J. Cyber Secur. Technol. 1(1)
(2016). 1–22. doi: 10.1080/23742917.2016.1226650.

[7] L. Chen, Cryptography Standards in Quantum Time:
New Wine in an Old Wineskin? IEEE Security &
Privacy 15(4) (2017) 51–57. doi:
10.1109/MSP.2017.3151339.

219

[8] P. Hauke, et al., Perspectives of Quantum Annealing:
Methods and Implementations, Reports on Progress in
Physics 83(5) (2020).

[9] J. Bernstein, Visualizing Size-Security Tradeoffs for
Lattice-Based Encryption, IACR Cryptol, ePrint Arch
(2019).

[10] M. Baldi, P. Santini, G. Cancellieri. Post-Quantum
Cryptography based on Codes: State of the Art and
Open Challenges, AEIT International Annual
Conference. (2017). doi: 10.23919/aeit.2017.8240549.

[11] Casanova, et al., A Great Multivariate Short Signature,
Submission to NIST (2017).

[12] R. A. Grimes, Cryptography Apocalypse (2020).
[13] A. Bessalov, et al., Implementation of the CSIDH

Algorithm Model on Supersingular Twisted and
Quadratic Edwards Curves, in: Workshop on
Cybersecurity Providing in Information and
Telecommunication Systems, vol. 3187, no. 1 (2022)
302–309.

[14] A. Bessalov, et al., Modeling CSIKE Algorithm on
Non-Cyclic Edwards Curves, in: Workshop on
Cybersecurity Providing in Information and
Telecommunication Systems, vol. 3288 (2022) 1–10.

[15] A. Bessalov, et al., Multifunctional CRS Encryption
Scheme on Isogenies of NonSupersingular Edwards
Curves, in: Workshop on Classic, Quantum, and Post-
Quantum Cryptography, vol. 3504 (2023) 12–25.

[16] A. Bessalov, et al., CSIKE-ENC Combined Encryption
Scheme with Optimized Degrees of Isogeny
Distribution, in: Workshop on Cybersecurity
Providing in Information and Telecommunication
Systems, vol. 3421 (2023) 36–45.

[17] V. Pastushenko, D. Kronberg, Improving the
Performance of Quantum Cryptography by Using the
Encryption of the Error Correction Data, Entropy
25(956) (2023). doi: 10.3390/e25060956.

[18] U. Banerjee, S. Das, A. P. Chandrakasan, Accelerating
Post-Quantum Cryptography using an Energy-
Efficient TLS Crypto-Processor, IEEE International
Symposium on Circuits and Systems (2020).
doi: 10.1109/iscas45731.2020.9180550.

[19] M. Kumar. Post-Quantum Cryptography Algorithm’s
Standardization and Performance Analysis, Array, 15
(2022). doi: 10.1016/j.array.2022.100242.

[20] F. Borges, P. R. Reis, D. Pereira. A Comparison of
Security and Its Performance for Key Agreements in
Post-Quantum Cryptography, IEEE Access, 8 (2020)
142413–142422. doi: 10.1109/access.2020.3013250.

[21] Bellizia, et al., Post-Quantum Cryptography:
Challenges and Opportunities for Robust and Secure
HW Design, IEEE International Symposium on Defect
and fault tolerance in VLSI and Nanotechnology
systems (DFT) (2021) 1–6.
doi: 10.1109/DFT52944.2021.9568301.

[22] L. Chen, et al., Report on Post-Quantum
Cryptography, NIST Publications (2016).
doi: 10.6028/NIST.IR.8105.

[23] G. Alagic, et al., Status Report on the Second Round of
the NIST Post-Quantum Cryptography
Standardization Process, NIST Publications (2020).
doi: 10.6028/NIST.IR.8309.

[24] G. Alagic, et al., Status Report on the Third Round of
the NIST Post-Quantum Cryptography
Standardization Process, NIST Publications (2022).
doi: 10.6028/NIST.IR.8413.

[25] J. Bos, et al., CRYSTALS - Kyber: A CCA-Secure
Module-Lattice-based KEM, 2018 IEEE European
Symposium on Security and Privacy (EuroS&P) (2018)
353–367. doi: 10.1109/EuroSP.2018.00032.

[26] L. Demange, M. Rossi, A Provably Masked
Implementation of BIKE Key Encapsulation
Mechanism, Cryptology ePrint Archive (2024).
doi: 10.62056/aesgvua5v.

[27] Y. Lia, L. -P. Wang, Security Analysis of the Classic
McEliece, HQC and BIKE Schemes in Low Memory, J.
Inf. Secur. Appl. 79 (2023). doi: 10.1016/j.jisa.2023.
103651.

[28] O. Kuznetsov, et al., Trade-offs in Post-Quantum
Cryptography: A Comparative Assessment of BIKE,
HQC, and Classic McEliece, in: Classic, Quantum, and
Post-Quantum Cryptography, vol. 3504 (2023) 12–25.

[29] C. Nugier, V. Migliore, Acceleration of a Classic
McEliece Postquantum Cryptosystem with Cache
Processing, in: IEEE Micro, 44(1) (2024) 59–68.
doi: 10.1109/MM.2023.3304425.

[30] R. Azarderakhsh, et al., Hardware Deployment of
Hybrid PQC, Cryptology ePrint Archive (2021).

[31] R. Elkhatib, B. Koziel, R. Azarderakhsh, Faster
Isogenies for Quantum-Safe SIKE, Topics in
Cryptology – CT-RSA (2022) 49–72. doi: 10.1007/978-
3-030-95312-6_3.

[32] M. Raavi1, et al., Security Comparisons and
Performance Analyses of Post-Quantum Signature
Algorithms, ACNS 2021: Applied Cryptography and
Network Security (2021) 424–447. doi: 10.1007/978-3-
030-78375-4_17.

[33] O. I. Harasymchuk, et al., Generator of Pseudorandom
Bit Sequence with Increased Cryptographic Security,
Metallurgical and Mining Industry: Sci. Tech. J. 5
(2014) 25–29.

[34] V. Maksymovych, et al., Combined Pseudo-Random
Sequence Generator for Cybersecurity, Sensors 22
(2022). doi: 10.3390/s22249700.

