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Abstract 
The paper provides an overview and analysis of the current state, problems, and prospects of post-quantum 
key encapsulation mechanisms. The essential cryptographic building blocks for implementing secure 
communication protocols are key-encapsulation mechanisms. KEMs enable two parties to securely 
establish a shared secret key over an insecure channel. This shared key can then be used for symmetric 
encryption of messages, ensuring confidentiality and integrity of the exchanged data. The National Institute 
of Standards and Technology (NIST) is actively working on standardizing post-quantum cryptography 
including KEMs. After the third round of the NIST PQC Standardization Process, NIST has identified the 
CRYSTALS-KYBER KEM algorithm for standardization. The four algorithms selected for a fourth round are 
BIKE, Classic McEliece, HQC, and SIKE. In this paper, we explore all these algorithms. 
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1. Introduction 
As quantum computing advances, the implementation of 
post-quantum Key Encapsulation Mechanisms (KEMs) 
becomes critical for securing data against future threats.  

Quantum computing represents a paradigm shift in 
computational power, capable of solving complex 
mathematical problems much faster than classical 
computers. This capability poses a significant threat to 
current cryptographic systems, particularly those relying on 
public-key algorithms like RSA and ECC, which are 
vulnerable to quantum attacks. The most widely used key 
exchange algorithms today are based on hard mathematical 
problems, such as integer factorization and the discrete 
logarithm problem. However, these problems can be 
efficiently solved by a quantum computer [1]. 

Key Encapsulation Mechanisms are cryptographic 
protocols designed to securely exchange symmetric keys 
over insecure channels. They are a cornerstone of many 
secure communication systems, enabling the safe 
transmission of encryption keys that can then be used for 
symmetric encryption. In the quantum era, the security of 
these key exchanges is paramount. 

To counteract the threat posed by quantum computing, 
researchers are developing post-quantum cryptographic 
algorithms, including post-quantum KEMs. These 
mechanisms are based on mathematical problems believed 
to be resistant to quantum attacks. 
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The transition to post-quantum cryptography, including 
KEMs, is a proactive measure to secure communications 
against future quantum threats. Standardization bodies like 
the National Institute of Standards and Technology (NIST) 
are actively working on evaluating and standardizing post-
quantum cryptographic algorithms, including KEMs, to 
provide clear guidelines and frameworks for adoption. 

As quantum computing advances, the cryptographic 
landscape must evolve to ensure the continued security of 
key exchanges and communications. Post-quantum Key 
Encapsulation Mechanisms are at the forefront of this 
evolution, offering new approaches to secure key exchange 
that are resistant to quantum attacks. Understanding and 
implementing these mechanisms will be crucial for 
protecting sensitive information in the quantum era, 
ensuring that cryptographic systems remain robust and 
secure against emerging threats. 

2. Literature review and problem 
statement 

Cryptography is an essential aspect of modern life, 
providing the necessary security and trust in our digital 
interactions, financial transactions, communication, and 
data privacy. Its widespread use ensures the confidentiality, 
integrity, and authenticity of information in various aspects 
of our daily lives. 
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As quantum computing continues to advance, the threat it 
poses to classical cryptographic systems becomes more 
apparent. Quantum computers, once fully realized, will be 
able to efficiently break commonly used cryptographic 
schemes like RSA and ECC through Shor’s algorithm, 
rendering traditional cryptographic infrastructure insecure. 
In response to this looming threat, post-quantum 
cryptography has emerged as a field focused on developing 
cryptographic algorithms that are resistant to quantum 
attacks. Key Encapsulation Mechanisms, which are used for 
secure key exchange, are a key focus in this field [2]. 

The National Institute of Standards and Technology 
(NIST) launched its Post-Quantum Cryptography 
Standardization project in 2017, aiming to identify and 
standardize quantum-resistant cryptographic algorithms. 
Many algorithms have been proposed, with a significant 
portion focusing on KEMs due to their critical role in secure 
communications [3].  

To address this, post-quantum key encapsulation 
mechanisms are being developed to ensure the secure 
exchange of encryption keys, even in the presence of 
powerful quantum adversaries [4]. 

3. Introduction to key encapsulation 
mechanisms in post-quantum 
cryptography  

A Key Encapsulation Mechanism (KEM) is a cryptographic 
protocol used to securely exchange encryption keys 
between two parties. The primary goal of KEMs is to 
generate and securely encapsulate a random key, which can 
then be used for further cryptographic operations, such as 
symmetric encryption. 

A KEM typically consists of three main phases: 
Key Generation: The sender generates a pair of keys 

(public and private keys). The public key is shared with the 
recipient. 

Encapsulation: The sender uses the public key to 
generate a random secret and encapsulates it. The 
encapsulated secret is sent to the recipient. 

Decapsulation: The recipient uses their private key to 
recover the original secret from the encapsulated data. 

The most widely used key exchange algorithms today 
are based on hard mathematical problems, such as integer 
factorization and the discrete logarithm problem. But these 
problems can be efficiently solved by a quantum computer. 

KEMs are generally designed to be non-interactive, 
meaning they only require a single communication round 
(i.e., one message from the sender to the recipient).  

The main security goal of a KEM is to prevent attackers 
from gaining any useful information about the shared 
secret. These goals are formalized using security definitions, 
often based on the IND-CCA (Indistinguishability under 
Chosen Ciphertext Attack) security model [5]. 

A KEM can be seen as similar to a Public Key Encryption 
(PKE) scheme since both use a combination of public and 
private keys. In a PKE, one encrypts a message using the 
public key and decrypts using the private key. In a KEM, one 
uses the public key to create an “encapsulation”—giving a 
randomly chosen shared key—and one decrypts this 
“encapsulation” with the private key.  

Public key encryption is often used to transmit symmetric 
encryption keys, which are then used to encrypt the 
originally intended plain-text content needing encryption 
protection. Symmetric keys are faster and stronger (for 
smaller key sizes) than asymmetric encryption, and so PKEs 
are often just used as a secure transport vehicle for the 
symmetric keys that do all the direct encryption work. PKEs 
have worked great for decades, but they have at least one 
big inherent flaw [6]. 

When the public key is longer than the content being 
encrypted (such as is usually the case with the symmetric 
key in key exchanges), it allows attackers a very easy way 
to derive the original private key. To prevent this scenario, 
when the message content to be encrypted (e.g., the 
symmetric key) is shorter than the asymmetric private key 
used to do the encryption, PKEs will usually add additional 
“padding” to the message to be encrypted (e.g., the 
symmetric key) to remove the vulnerability. 

Key encapsulation methods, also known as key 
encapsulation schemes, are a type of asymmetric encryption 
technique designed to improve the secure transmission (or 
generation) of symmetric keys because they don’t need 
random padding added to short messages to stay secure. 
Many postquantum cryptographic algorithms are especially 
conducive to creating KEMs and because postquantum 
algorithms often have even longer asymmetric keys, you 
will see many quantum-resistant teams offering KEMs 
instead of PKEs. Also, some post-quantum cryptographic 
algorithms will offer both PKE and KEM versions [7]. 

 
Figure 1: Key Encapsulation Mechanisms 

3.1. Types of KEMs in post-quantum 
cryptography 

In the post-quantum world, the security of KEMs must rely 
on quantum-resistant mathematical problems. Here are the 
key post-quantum techniques used for designing KEMs: 

 Lattice-based cryptography—uses lattices and 
their associated mathematical properties to 
provide security. A lattice is a set of points in a 
multi-dimensional space that form a regular grid-
like structure. Lattice-based cryptography is one of 
the most promising post-quantum techniques 
because it provides strong security guarantees and 
relatively efficient operations. It is based on the 
hardness of problems like Learning with Errors 
and Short Integer Solution [8]. Lattice-based KEMs 
are attractive due to their relatively small key sizes 
and fast operations, making them suitable for 
practical implementations [9]. 

 Code-based cryptography—relies on error-correcting 
codes to provide security. The security of these 
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schemes is based on the hardness of decoding certain 
structured codes, making them resistant to quantum 
attacks. Code-based cryptography uses the difficulty 
of decoding random linear codes, particularly 
generalized Goppa codes. One of the oldest forms of 
post-quantum cryptography, it offers a high level of 
security but often comes with larger key sizes [10]. 

 Hash-based cryptography—built upon cryptographic 
hash functions. These schemes are based on the 
hardness of finding collisions in the hash function, 
offering a potential post-quantum solution. Hash-
based cryptography’s fundamental benefit is that it is 
a commonly used, well-researched technique that 
ensures great resistance to quantum assaults, making 
it a candidate for long-term security in the post-
quantum period (as a long enough key is utilized). 
While primarily used in signature schemes, hash-
based cryptography can also be adapted for KEM. 
These rely on the difficulty of finding preimages or 
collisions in cryptographic hash functions. 

 Multivariate polynormal cryptography—relies on 
algebraic equations with multivariate polynomials. 
Although secure, the size of the public and private 
keys can be large [11, 12]. 

 Isogeny-based cryptography—based on the 
mathematics of elliptic curves and isogenies. These 
schemes rely on constructing mappings between 
elliptic curves. It offers some of the smallest key sizes 
of any post-quantum cryptosystem but is relatively 
slow [13–16]. 

During the transition to post-quantum cryptography, 
hybrid KEMs are being used. These combine classical 
cryptographic methods (like RSA or ECC) with post-
quantum methods. For example, a hybrid KEM could 
simultaneously run both a lattice-based KEM (for post-
quantum security) and an RSA-based KEM (for classical 
security), ensuring safety from both quantum and classical 
attacks [17]. 

3.2. Practical challenges in implementing 
post-quantum KEMs 

Implementing post-quantum Key Encapsulation 
Mechanisms in real-world systems presents several 
practical challenges.  

Many post-quantum KEMs, especially those based on 
lattice and code-based cryptography, involve much larger 
key sizes compared to classical systems. For example, code-
based KEMs like Classic McEliece have public keys that are 
several hundred kilobytes in size, which is significantly 
larger than RSA or ECC public keys. Larger key sizes 
increase the bandwidth needed for key exchange, which can 
slow down communication, particularly in low-bandwidth 
environments such as mobile networks, IoT devices, or 
satellite communications. 

Post-quantum cryptographic schemes often require 
more computational power than traditional cryptographic 
algorithms. 

 

Table 1 
Performance Assessment 

Algorithm Type Performance 
CRYSTALS-

KYBER 
Lattice-
based 

Overall performance of 
CRYSTALS-KYBER in 
software, hardware, and 
hybrid settings is excellent. 

BIKE Code-based The performance of BIKE 
would be suitable for most of 
the applications as confirmed 
by several hardware 
benchmarks. 

HQC Code-based The bandwidth of the HQC 
exceeds that of BIKE, HQC’s 
key generation but 
decapsulation only requires a 
fraction of the kilocycles 
required by BIKE. HQC is one 
of the top two alternate KEMs. 
The overall performance of 
the HQC is not optimal but 
still, it is acceptable. 

Classic 
McEliece 

Code-based It has the smallest ciphertext 
among any of the NIST PQC 
candidates 

SIKE Isogeny-
based 

It has relatively low 
communication costs. 
However, performance on 
embedded devices may be an 
issue because of the time to 
perform a single key 
encapsulation/decapsulation. 

 
For instance, lattice-based schemes like CRYSTALS-KYBER 
are efficient in terms of security but may still require more 
CPU cycles compared to classical systems. Implementing 
these algorithms on resource-constrained devices (e.g., IoT 
devices) can be difficult, as they may not have the 
processing power required to handle the increased 
computational load. The increased computation can 
introduce latency in key exchange processes. This can be a 
significant issue for real-time systems (e.g., VoIP, video 
conferencing), where even small delays in establishing 
secure connections can degrade user experience [17]. 

Many existing security protocols (e.g., TLS, SSH, IPsec) 
are based on classical cryptographic primitives like RSA and 
ECC. Implementing post-quantum KEMs requires either 
significant changes to these protocols or hybrid systems 
that combine classical and post-quantum techniques. 
Modifying or extending widely used protocols to support 
post-quantum KEMs can be complex [18]. It requires not 
only software updates but also widespread adoption to 
ensure that all parties in a communication system can use 
the new algorithms [8]. 

One solution to this challenge is the use of hybrid 
cryptography, where both classical and post-quantum 
algorithms are used together in a key exchange process. 
However, this increases the complexity of the system and 
can further slow down performance. Hybrid methods can 
add overhead, as two cryptographic algorithms (classical 
and post-quantum) are run in parallel, increasing 
computational and communication costs [19]. 

Many post-quantum algorithms, especially those based 
on lattice cryptography, are vulnerable to side-channel 
attacks such as timing attacks, power analysis, and fault 
injection attacks. These attacks exploit the physical 
characteristics of a system to recover secret keys. Protecting 
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implementations of post-quantum KEMs from side-channel 
attacks requires additional countermeasures, such as 
constant-time implementations or masking techniques. 
These countermeasures can increase the complexity and 
reduce the performance of the system [20]. 

While NIST is in the process of standardizing post-
quantum algorithms, the field is still evolving. 
Organizations face uncertainty when selecting which post-
quantum algorithm to implement, as premature adoption 
could lead to interoperability issues or the need for future 
upgrades. Additionally, ensuring interoperability between 
different implementations of post-quantum KEMs remains 
a challenge. After careful consideration during the third 
round of the NIST PQC Standardization Process, NIST has 
identified a candidate algorithm for standardization. NIST 
will recommend the primary KEM algorithm to be 
implemented for most use cases: CRYSTALS-KYBER. The 
four algorithms selected for this fourth round are BIKE, 
Classic McEliece, HQC, and SIKE. Many industries rely on 
cryptographic standards and certifications to ensure 
security (e.g., FIPS 140-2/3). Post-quantum cryptographic 
systems will need to go through extensive certification 
processes to be widely adopted in regulated environments, 
which can be time-consuming. 

While post-quantum KEMs are designed based on 
problems thought to be hard for quantum computers (e.g., 
lattice problems, isogenies, etc.), there is still some 
uncertainty about the long-term security of these 
algorithms. It is possible that future mathematical 
breakthroughs or quantum algorithms could weaken these 
assumptions. Building trust in the security of post-quantum 
KEMs is essential for their widespread adoption. However, 
businesses may be reluctant to deploy post-quantum 
solutions until there is a high level of confidence in their 
security. There is also resistance to change in the industry. 
Many organizations have deeply entrenched cryptographic 
infrastructures that rely on RSA or ECC, and the cost of 
transitioning to post-quantum cryptography may be 
prohibitive in the short term. 

During the transition to post-quantum cryptography, 
systems will need to support both classical and quantum-
safe algorithms simultaneously. This creates additional 
complexity in terms of key management, negotiation of 
algorithms, and ensuring that both parties in a 

communication can agree on a common cryptographic 
approach. Implementing dual cryptographic systems can 
lead to security risks if not done properly, such as potential 
downgrade attacks where an adversary forces the use of 
weaker, classical algorithms. 

The transition to post-quantum KEMs is necessary to 
ensure long-term security in the face of quantum computing 
advancements, but it comes with practical challenges related 
to efficiency, key sizes, integration, and trust. Overcoming 
these challenges will require advances in both cryptographic 
research and engineering, as well as widespread industry 
adoption of post-quantum standards [21]. 

4. Overview of post-quantum KEM 
algorithms 

NIST has selected several KEMs for standardization, 
including CRYSTAL-Kyber and BIKE, Classic McEliece, 
HQC, and SIKE. These algorithms represent some of the 
most promising candidates for post-quantum Key 
Encapsulation Mechanisms that have emerged from the 
NIST Post-Quantum Cryptography Standardization project. 
Each one is based on different hard mathematical problems, 
providing diverse approaches to ensuring security in the 
post-quantum era [22–24]. 

4.1. CRYSTALS-Kyber 

CRYSTALS-Kyber (Cryptographic Suite for Algebraic 
Lattices) is one of the most prominent lattice-based KEMs and 
was selected as a NIST finalist due to its efficiency, security, 
and small key and ciphertext sizes. It is based on the Module 
Learning With Errors (Module-LWE) problem, a variant of 
the Learning With Errors (LWE) problem, which is widely 
regarded as hard for quantum computers to solve [25]. 

The construction of Kyber follows a two-stage 
approach: first introduce an INDCPA-secure public-key 
encryption scheme encrypting messages of a fixed length of 
32 bytes, which is called Kyber.CPAPKE. Then use a slightly 
tweaked Fujisaki–Okamoto (FO) transform to construct the 
IND-CCA2-secure KEM, which is called Kyber.CCAKEM. 

Kyber defines three parameter sets, which we call 
Kyber512, Kyber768, and Kyber1024. The parameters are 
listed in Table 2.

 

Table 2 
Parameter sets for Kyber 

NIST Level Designation n k q n1 n2 (du, dv) b 
Level 1 Kyber512 256 2 3329 3 2 (10,4) 2-130 
Level 2 Kyber768 256 3 3329 2 2 (10,4) 2-164 
Level 3 Kyber1024 256 4 3329 2 2 (11,5) 2-174 

n is set to 256 because the goal is to encapsulate keys with 
256 bits of entropy (i.e., use a plaintext size of 256 bits in 
Kyber.CPAPKE.Enc). Smaller values of n would require 
encoding multiple key bits into one polynomial coefficient, 
which requires lower noise levels and therefore lowers 
security. Larger values of n would reduce the capability to 
easily scale security via parameter k. 

q as a small prime satisfying n | (q-1); this is required to 
enable fast NTT-based multiplication. There are two smaller 

primes for which this property holds, namely 257 and 769. 
However, for those primes we would not be able to achieve 
the negligible failure probability required for CCA security, 
so was chosen the next largest, i.e., q = 3329. 

k is selected to fix the lattice dimension as a multiple of n; 
changing k is the main mechanism in Kyber to scale security 
(and as a consequence, efficiency) to different levels. 
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Kyber offers a good balance between key/ciphertext size 
and performance. It is more efficient in both space and speed 
compared to many other post-quantum candidates. 

Public Key Size: Ranges from 736 bytes (Kyber512) to 
1,568 bytes (Kyber1024). 

Ciphertext Size: Ranges from 800 bytes (Kyber512) to 
1,568 bytes (Kyber1024). 

Kyber’s computational efficiency makes it suitable for a 
wide range of applications, including low-power devices 
such as IoT and mobile devices. Kyber provides a very 
efficient encapsulation and decapsulation process, 
particularly when compared to other post-quantum KEMs. 

4.2. BIKE 

BIKE (Bit-Flipping Key Encapsulation) is a code-based 
cryptographic system that uses Quasi-Cyclic Moderate-
Density Parity-Check (QC-MDPC) codes. It’s designed to 
offer efficient key encapsulation while relying on the 
hardness of decoding random linear codes, a well-
established hard problem in cryptography. 

BIKE is based on the decoding of QC-MDPC codes, 
which involves error correction methods. This problem has 

been studied for decades, and no quantum or classical 
efficient algorithms are known to solve it. The core 
cryptographic mechanism is the decoding process for 
MDPC codes, which involves flipping bits to correct errors 
in a way that only the legitimate parties can succeed. 

BIKE’s first building block is a public key encryption 
scheme based on a variant of the Niederreiter framework. 
The plaintext is represented by the sparse vector (e0, e1), 
and the ciphertext by its syndrome. The decryption is 
performed with a decoding procedure. Next, this PKE is 
converted into an IND-CCA KEM with the application of 
the Fujisaki-Okamoto transformation. For the scheme to be 
truly IND-CCA, there must be conditions on the decoding 
failure rate (also called DFR), which is the case here with the 
chosen decoder [26, 27]. 

As defined in the specifications, the parameters should 
satisfy several constraints. The block length r should be a 
prime number, and 2 should be primitive modulo r. The 
parameter w should be such that w = 2d ≈ √n with d being 
odd. In addition, the error weight should be such that t ≈ √n. 
Instantiated parameters are present in Table 3.

Table 3 
Parameter sets for BIKE 

 r w t l Public key, bits Private key, bits Ciphertext, bits 
Level 1 12323 142 134 256 12323 2244 12579 
Level 2 24659  206 274 256 24659 3346 24915 
Level 3 40973  199 264 256 40973 4640 4640 

While BIKE offers relatively compact ciphertext sizes, it 
tends to require larger public keys compared to lattice-based 
KEMs like Kyber. 

Public Key Size: Ranges from 1,254 bytes to 4,140 
bytes, depending on the security level. 

Ciphertext Size: Approximately 154 bytes to 284 bytes. 
BIKE is relatively efficient in the key encapsulation 

process due to the use of fast bit-flipping decoding 
algorithms, although it can be slower than some lattice-
based systems in some use cases. The reliance on error-
correcting codes is a tried-and-tested approach, giving 
confidence in its long-term security against both classical 
and quantum attacks. 

4.3. Classic McEliece 

Classic McEliece is one of the oldest and most established 
post-quantum cryptosystems, first proposed in 1978. It 
relies on the hardness of decoding random Goppa codes, a 
task that has resisted efficient attacks for over four decades. 
Classic McEliece has gained attention due to its long-
standing security record and robust resistance to quantum 
attacks [28]. 

The original purpose is to encode data and transmit it on a 
noisy channel, allowing the receiver to remove the errors to 
get the correct message. If the decoder is kept secret and 
cannot be deduced from the encoder, it makes encoding with 
errors a one-way trapdoor function: the sender encodes with 
the public encoder and adds as many errors as the decoder 
can remove. The receiver with the decoder is then the only 
one who can remove the errors and read the message. 

The public key size grows substantially from 261120 
bytes at NIST level 1 to 1357824 bytes at NIST level 5c. The 
private key size also sees a significant increment from 6492 
bytes at level 1 to 14120 bytes at level 5c. These increases 
align with the general principle that larger key sizes 
translate into stronger security, making the system more 
resilient against cryptographic attacks. The ciphertext size 
and the session key size also increase as the NIST level 
progresses, pointing to stronger security and larger 
communication overheads [29]. However, the session key 
size remains consistent at 32 bytes, as its primary role is to 
ensure confidentiality and integrity during a session, 
regardless of the NIST level.

 
Table 4 
Parameter sets for Classic McEliece 

NIST Level Designation Public key, bytes Private key, bytes Ciphertext, bytes Session key, bytes 
Level 1 mceliece348864 261120 6492 96 32 
Level 3 mceliece460896 524160 13608 156 32 
Level 5 mceliece6688128 1044992 13932 208 32 

Level 5b mceliece6960119 1047319 13948 194 32 
Level 5c mceliece8192128 1357824 14120 208 32 
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Classic McEliece is known for its very large public key sizes, 
which are its primary drawback, but it has very small 
ciphertext sizes and extremely fast decapsulation. 

Public Key Size: Up to 1 MB or more for higher 
security levels. 

Ciphertext Size: 208 bytes. 
Although the public keys are large, the small ciphertext 

size and fast decryption process make McEliece suitable for 
high-performance applications where the size of the public 
key is not a critical issue. The major disadvantage of 
McEliece is the size of its public keys, which can be as large 
as several hundred kilobytes to over a megabyte. This makes 
it less practical for systems with bandwidth or storage 
limitations. 

4.4. HQC 

HQC (Hamming Quasi-Cyclic) is another code-based 
cryptographic system that uses Quasi-Cyclic codes to 
achieve secure key encapsulation. HQC is based on the 
hardness of decoding random linear codes but uses a 
different type of code construction compared to Classic 
McEliece and BIKE.  

HQC is built on the difficulty of decoding random linear 
codes, which is believed to be a hard problem both for 
classical and quantum computers. 

HQC uses SHAKE256 for multiple purposes e.g., as a 
PRNG for fixed weight vector generation and random vector 
generation in Key Generation, as a PRNG for fixed weight 
vector generation in Encryption, and for hashing in 
encapsulation and decapsulation. HQC-KEM uses 
polynomial multiplication in various stages of its operation. 
In HQC, the fundamental mathematical structure involves 
cyclic codes, and polynomial operations over finite fields 
play a crucial role in both the encryption and decryption 
processes [30]. 

Polynomial Multiplication is used in the public key 
generation stage. The public key involves a codeword that 

is derived from the multiplication of two polynomials, one 
of which is a secret, and another is a random element. The 
process relies on encoding the secret key, which consists of 
small random polynomials, and performing multiplication 
in a finite field to produce part of the public key. 

During the encapsulation process, the key encapsulator 
generates a random message and encodes it using a public 
codeword. The encoding procedure involves polynomial 
multiplication between the message (represented as a 
polynomial) and the public key polynomial. The ciphertext 
is generated as the sum of a product of polynomials 
(including the random polynomials and the public key) 
along with some error terms. These multiplications are done 
in a ring of polynomials, where coefficients are taken 
modulo a prime number. 

On the receiver’s side, the decryption process also 
involves polynomial multiplication. The receiver uses their 
private key to multiply it with part of the ciphertext. By 
multiplying the ciphertext polynomial by the private key 
and removing the error components, the original message 
can be recovered. The structure of the private key, being 
sparse (i.e., consisting mostly of small entries), ensures that 
this operation is efficient despite the potential for larger 
polynomials. 

In all cases, these polynomial multiplications are 
performed in a finite ensuring that the polynomials remain 
manageable in size and that the modular arithmetic 
preserves the structure of the quasi-cyclic codes. 
Polynomial multiplication in HQC is typically implemented 
using efficient algorithms such as the Number Theoretic 
Transform (NTT), which is a variant of the Fast Fourier 
Transform (FFT) for polynomials over finite fields, to speed 
up the process of large polynomial multiplications. Thus, 
polynomial multiplication is a critical and recurring 
operation in the key generation, encryption, and decryption 
steps of HQC-KEM.

Table 5 
Parameter sets for HQC 

NIST Level Designation n k t Public key, bytes Private key, bytes Ciphertext, bytes 
Level 1 hqc-128 35338 17669 132 2249 56 4497 
Level 2 hqc-192 71702 35851 200 4522 64 9042 
Level 3 hqc-256 115274 57637 262 7245 72 14485 

HQC’s key sizes are intermediate between those of McEliece 
and BIKE, but its ciphertexts are generally larger. 

Public Key Size: Ranges from 2,249 bytes to 7,245 
bytes. 

Ciphertext Size: Approximately 7,245 bytes to 7,870 
bytes. 

HQC provides security levels aligned with NIST’s 
requirements, targeting 128-bit and 256-bit classical security 
levels. 

HQC is more efficient in terms of key generation and 
encapsulation compared to Classic McEliece, while still 
offering strong security guarantees. As a code-based 
system, HQC benefits from decades of cryptographic 
research, giving confidence in its resistance to quantum and 
classical attacks. Compared to other post-quantum KEMs, 
HQC produces relatively large ciphertexts, which may be a 
disadvantage in bandwidth-constrained applications. 

4.5. SIKE 

SIKE (Supersingular Isogeny Key Encapsulation) is based on 
isogeny-based cryptography, a relatively new and 
promising post-quantum cryptographic approach. SIKE 
uses the difficulty of finding isogenies (mappings) between 
elliptic curves. While elliptic curve cryptography (ECC) is 
vulnerable to quantum attacks, isogeny-based systems 
remain secure. 

SIKE is protected by the computational supersingular 
isogeny (CSSI) problem and allows for an IND-CCA2 key 
establishment between two parties [31]. 

The underlying hard problem for SIKE, the 
Computational Supersingular Isogeny problem, involves 
finding a secret isogeny (a specific type of function between 
elliptic curves) between two given supersingular elliptic 
curves. This is believed to be computationally infeasible, 
even for quantum computers, making it a good foundation 
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for post-quantum security. SIKE provides IND-CCA2 
security, which is a strong form of security for encryption 
schemes. This means that even if an attacker can request 
decryptions of ciphertexts of their choice, they cannot learn 
any useful information about the encryption of a different 
message. This ensures that the key establishment process 
between two parties is secure even against active attackers 
who can manipulate and intercept communications. 

SIKE primes are carefully chosen to optimize both 
performance and security in the context of supersingular 
elliptic curves and the supersingular isogeny problem. SIKE 

uses a prime number 𝑝 of a particular form to define the 
finite field Fp over which elliptic curves are constructed. The 
form of these primes allows efficient isogeny computations 
and ensures that the curves used are supersingular. 

SIKE primes are of the form: 
p=2a*3b*f-1 

where a and b are large integers. 
f is a small cofactor, typically set to 1 in many cases. 
The prime is of a size that ensures 128-bit, 192-bit, or 

256-bit security levels, depending on the target.

 
Table 6 
Parameter sets for HQC 

NIST Level Prime Form Designation Public key, bytes Private key, bytes Ciphertext, bytes 
Level 1 22163137 − 1 SIKEp434 330 374 346 
Level 2 22503159 − 1 SIKEp503 378 434 402 
Level 3 23053192 − 1 SIKEp610 462 524 486 
Level 5 23723239 − 1 SIKEp751 564 644 596 

SIKE offers one of the smallest key and ciphertext sizes of 
any other post-quantum cryptosystem, making it 
particularly attractive for use in bandwidth-constrained 
environments. However, it tends to have slower 
performance compared to other post-quantum KEMs. 

Public Key Size: As small as 330 bytes. 
Ciphertext Size: Ranges from 346 to 596 bytes. 
SIKE’s compact key and ciphertext sizes make it one of 

the most bandwidth-efficient post-quantum cryptosystems, 
making it attractive for specific use cases where data size 
and storage are a concern, despite its slower performance 
compared to other schemes. 

5. Conclusions 
Cryptographers, researchers, and industry experts are 
working together to develop and test these algorithms to 
ensure their security and efficiency in real-world 
applications. These algorithms are being evaluated for their 
ability to resist both classical and quantum attacks as part 
of the NIST Post-Quantum Cryptography Standardization 
process. The goal is to identify cryptosystems that will be 
secure in a future where quantum computers could break 
existing cryptography, while also being efficient in real-
world applications. 

KEMs are critical for secure key exchange in 
cryptographic protocols, enabling two parties to securely 
establish a shared secret over an insecure channel. In post-
quantum cryptography, various KEMs are being explored 
for their security and practicality in terms of key sizes, 
speed, and resilience against quantum attacks [32]. 

The development of these KEMs involves close 
collaboration between academia, industry, and government 
organizations. The NIST process, for example, has provided 
a platform where researchers can submit their 
cryptographic algorithms for rigorous evaluation by the 
global cryptographic community. This collaboration 
ensures that these algorithms are tested for: 

Security: To withstand both classical and quantum 
attacks. 

Performance: In terms of speed, key size, and memory 
usage in practical applications. 

Real-World Implementation: Testing includes both 
hardware and software implementations to ensure that the 
algorithms are suitable for a range of use cases, from small 
devices (like IoT) to high-performance systems (like cloud 
servers) [33, 34]. 

The ongoing development of post-quantum KEMs like 
Crystal-Kyber, BIEK, HQC, Classic McEliece, SIKE, and 
others is crucial to ensuring secure communication in a 
quantum future. Each of these algorithms brings unique 
advantages in terms of performance, security, and 
efficiency, and the NIST competition is helping to refine 
these technologies for eventual standardization and 
widespread adoption. 

References 
[1] L. K. Grover, A Fast Quantum Mechanical Algorithm 

for Database Search, Proceedings of the 28th Annual 
ACM Symposium on Theory of Computing (1996). 

[2] D. J. Bernstein, J. Buchmann, E. Dahmen, Code-based 
Cryptography (2016). 

[3] Horpenyuk, I. Opirskyy, P. Vorobets, Analysis of 
Problems and Prospects of Implementation of Post-
Quantum Cryptographic Algorithms, in: Classic, 
Quantum, and Post-Quantum Cryptography, vol. 3504 
(2023) 39–49. 

[4] Bernhardt, Quantum Computing for Everyone, 
Cambridge, MA: MIT Press (2019). 

[5] V. Cini, et al., CCA-Secure (Puncturable) KEMs from 
Encryption with Non-Negligible Decryption Errors, 
Advances in Cryptology – ASIACRYPT 2020. Lecture 
Notes in Computer Science, vol. 12491. (2020). doi: 
10.1007/978-3-030-64837-4_6. 

[6] Woodward, Will Quantum Computers Be the End of 
Public Key Encryption? J. Cyber Secur. Technol. 1(1) 
(2016). 1–22. doi: 10.1080/23742917.2016.1226650. 

[7] L. Chen, Cryptography Standards in Quantum Time: 
New Wine in an Old Wineskin? IEEE Security & 
Privacy 15(4) (2017) 51–57. doi: 
10.1109/MSP.2017.3151339. 



219 

[8] P. Hauke, et al., Perspectives of Quantum Annealing: 
Methods and Implementations, Reports on Progress in 
Physics 83(5) (2020). 

[9] J. Bernstein, Visualizing Size-Security Tradeoffs for 
Lattice-Based Encryption, IACR Cryptol, ePrint Arch 
(2019). 

[10] M. Baldi, P. Santini, G. Cancellieri. Post-Quantum 
Cryptography based on Codes: State of the Art and 
Open Challenges, AEIT International Annual 
Conference. (2017). doi: 10.23919/aeit.2017.8240549. 

[11] Casanova, et al., A Great Multivariate Short Signature, 
Submission to NIST (2017). 

[12] R. A. Grimes, Cryptography Apocalypse (2020). 
[13] A. Bessalov, et al., Implementation of the CSIDH 

Algorithm Model on Supersingular Twisted and 
Quadratic Edwards Curves, in: Workshop on 
Cybersecurity Providing in Information and 
Telecommunication Systems, vol. 3187, no. 1 (2022) 
302–309. 

[14] A. Bessalov, et al., Modeling CSIKE Algorithm on 
Non-Cyclic Edwards Curves, in: Workshop on 
Cybersecurity Providing in Information and 
Telecommunication Systems, vol. 3288 (2022) 1–10. 

[15] A. Bessalov, et al., Multifunctional CRS Encryption 
Scheme on Isogenies of NonSupersingular Edwards 
Curves, in: Workshop on Classic, Quantum, and Post-
Quantum Cryptography, vol. 3504 (2023) 12–25. 

[16] A. Bessalov, et al., CSIKE-ENC Combined Encryption 
Scheme with Optimized Degrees of Isogeny 
Distribution, in: Workshop on Cybersecurity 
Providing in Information and Telecommunication 
Systems, vol. 3421 (2023) 36–45. 

[17] V. Pastushenko, D. Kronberg, Improving the 
Performance of Quantum Cryptography by Using the 
Encryption of the Error Correction Data, Entropy 
25(956) (2023). doi: 10.3390/e25060956. 

[18] U. Banerjee, S. Das, A. P. Chandrakasan, Accelerating 
Post-Quantum Cryptography using an Energy-
Efficient TLS Crypto-Processor, IEEE International 
Symposium on Circuits and Systems (2020). 
doi: 10.1109/iscas45731.2020.9180550. 

[19] M. Kumar. Post-Quantum Cryptography Algorithm’s 
Standardization and Performance Analysis, Array, 15 
(2022). doi: 10.1016/j.array.2022.100242. 

[20] F. Borges, P. R. Reis, D. Pereira. A Comparison of 
Security and Its Performance for Key Agreements in 
Post-Quantum Cryptography, IEEE Access, 8 (2020) 
142413–142422. doi: 10.1109/access.2020.3013250. 

[21] Bellizia, et al., Post-Quantum Cryptography: 
Challenges and Opportunities for Robust and Secure 
HW Design, IEEE International Symposium on Defect 
and fault tolerance in VLSI and Nanotechnology 
systems (DFT) (2021) 1–6. 
doi: 10.1109/DFT52944.2021.9568301. 

[22] L. Chen, et al., Report on Post-Quantum 
Cryptography, NIST Publications (2016). 
doi: 10.6028/NIST.IR.8105. 

[23] G. Alagic, et al., Status Report on the Second Round of 
the NIST Post-Quantum Cryptography 
Standardization Process, NIST Publications (2020). 
doi: 10.6028/NIST.IR.8309. 

[24] G. Alagic, et al., Status Report on the Third Round of 
the NIST Post-Quantum Cryptography 
Standardization Process, NIST Publications (2022). 
doi: 10.6028/NIST.IR.8413. 

[25] J. Bos, et al., CRYSTALS - Kyber: A CCA-Secure 
Module-Lattice-based KEM, 2018 IEEE European 
Symposium on Security and Privacy (EuroS&P) (2018) 
353–367. doi: 10.1109/EuroSP.2018.00032. 

[26] L. Demange, M. Rossi, A Provably Masked 
Implementation of BIKE Key Encapsulation 
Mechanism, Cryptology ePrint Archive (2024). 
doi: 10.62056/aesgvua5v. 

[27] Y. Lia, L. -P. Wang, Security Analysis of the Classic 
McEliece, HQC and BIKE Schemes in Low Memory, J. 
Inf. Secur. Appl. 79 (2023). doi: 10.1016/j.jisa.2023. 
103651. 

[28] O. Kuznetsov, et al., Trade-offs in Post-Quantum 
Cryptography: A Comparative Assessment of BIKE, 
HQC, and Classic McEliece, in: Classic, Quantum, and 
Post-Quantum Cryptography, vol. 3504 (2023) 12–25. 

[29] C. Nugier, V. Migliore, Acceleration of a Classic 
McEliece Postquantum Cryptosystem with Cache 
Processing, in: IEEE Micro, 44(1) (2024) 59–68. 
doi: 10.1109/MM.2023.3304425. 

[30] R. Azarderakhsh, et al., Hardware Deployment of 
Hybrid PQC, Cryptology ePrint Archive (2021). 

[31] R. Elkhatib, B. Koziel, R. Azarderakhsh, Faster 
Isogenies for Quantum-Safe SIKE, Topics in 
Cryptology – CT-RSA (2022) 49–72. doi: 10.1007/978-
3-030-95312-6_3. 

[32] M. Raavi1, et al., Security Comparisons and 
Performance Analyses of Post-Quantum Signature 
Algorithms, ACNS 2021: Applied Cryptography and 
Network Security (2021) 424–447. doi: 10.1007/978-3-
030-78375-4_17. 

[33] O. I. Harasymchuk, et al., Generator of Pseudorandom 
Bit Sequence with Increased Cryptographic Security, 
Metallurgical and Mining Industry: Sci. Tech. J. 5 
(2014) 25–29. 

[34] V. Maksymovych, et al., Combined Pseudo-Random 
Sequence Generator for Cybersecurity, Sensors 22 
(2022). doi: 10.3390/s22249700. 


