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Abstract
Spatial Reasoning is a fundamental aspect of human cognition to perform everyday activities. It is also an essential skill for machines to
engage in human-like interactions with the environment. However, recent research shows that even state-of-the-art language models
struggle in spatial reasoning, especially in unobserved situations with complex input compositions. This is attributed to not achieving
the right level of abstraction required for their generalizability. To alleviate this issue, we propose training the language models with
neuro-symbolic techniques to exploit the spatial logical rules of reasoning and provide an additional source of supervision to the models.
Training models to adhere to spatial reasoning rules guides them to make more effective abstractions for generalizability and transfer
learning. We evaluate our proposed technique on various benchmarks for spatial reasoning over text. Our results based on the multiple
language model backbones show the effectiveness of our neuro-symbolic training in domain transfer and complex multi-hop spatial
reasoning.
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1. Introduction
Spatial reasoning is essential for humans cognition and
also plays a crucial role in many AI applications, including
language grounding [1], computer vision [2, 3], robotics [4,
5, 6] and even more specific fields such as medical domain [7,
8, 9].

Large Language models have been widely applicable in
many of problems in these areas and, in some cases, show
human level performance [10, 11]. However, recent stud-
ies highlight their shortcomings in the spatial reasoning
abilities of in multi-hop reasoning over text [12, 13, 14] in
many downstream applications [3, 15] which calls for more
attention to this topic.

In this paper, we address the issue of spatial reasoning
in LMs and their difficulty in obtaining the abstractions re-
quired for generalizability in unobserved complex situations
employing a generic neuro-symbolic framework. We pro-
pose to fine-tune the LMs with a neuro-symbolic technique
that exploits the spatial logical rules to guide the level of
abstraction captured during training. In particular, we train
the models to minimize both the cross-entropy loss and
the violation from logical constraints. We demonstrate the
effectiveness of our proposed framework in both encoder-
based and generative language models. For evaluation, we
use three Spatial Question Answering (SQA) benchmarks,
SpartQA-HUMAN [16], ReSQ [17], and StepGame [18].

The results show that our proposed method benefits both
LM types, especially when multiple hops of reasoning are
required. The performance improvements over multiple
domains confirm our hypothesis about the effectiveness of
neuro-symbolic training on generalizability.

2. Training with Spatial Logic
The spatial logical rules used in our framework are based
on the developed spatial logical knowledge base in [17].
Examples of such rules are given in the Figure 1. To clarify,
Converse rules,𝐴𝑏𝑜𝑣𝑒(𝑋,𝑌 ) ⇒ 𝐵𝑒𝑙𝑜𝑤(𝑌,𝑋), represents
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Figure 1: An example of the chain of reasoning questions, 𝑄-
𝑐ℎ𝑎𝑖𝑛. The factual sentences will turn: The initial and intermedi-
ate facts will turn to questions like "Is triangle below square?"

q1: Box above 
triangle q2: Square is in box 

q3: Triangle 
below box

q4: Box contain 
square

T: Triangle below 
Square

Target

Intermediate

Initial facts

+

Converse: 
Above(X, Y) => 

Below(Y, X) 

Topological: 
Below(X, Y) /\ Contain(Y, Z) => 

Below(X, Z) 

Converse: 
CoveredBy(X, Y) => 

Contain(Y, X) 

R1 R2

R3

Rules Constraints in YN
𝑅1 𝐴𝑛𝑠𝑌 𝑁(𝑞1) ⇒ 𝐴𝑛𝑠𝑌 𝑁(𝑞3)
𝑅2 𝐴𝑛𝑠𝑌 𝑁(𝑞2) ⇒ 𝐴𝑛𝑠𝑌 𝑁(𝑞4)
𝑅3 𝐴𝑛𝑠𝑌 𝑁(𝑞3) ∧𝐴𝑛𝑠𝑌 𝑁(𝑞4) ⇒ 𝐴𝑛𝑠𝑌 𝑁(𝑡)

Rules Constraints in FR
𝑅1 𝐴𝑛𝑠𝐹𝑅(𝑞1, 𝑎𝑏𝑜𝑣𝑒) ⇒ 𝐴𝑛𝑠𝐹𝑅(𝑞3, 𝑏𝑒𝑙𝑜𝑤)
𝑅2 𝐴𝑛𝑠𝐹𝑅(𝑞2, 𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑏𝑦) ⇒ 𝐴𝑛𝑠𝐹𝑅(𝑞4, 𝑐𝑜𝑛𝑡𝑎𝑖𝑛)
𝑅3 𝐴𝑛𝑠𝐹𝑅(𝑞3, 𝑏𝑒𝑙𝑜𝑤) ∧𝐴𝑛𝑠𝐹𝑅(𝑞4, 𝑐𝑜𝑛𝑡𝑎𝑖𝑛) ⇒ 𝐴𝑛𝑠𝐹𝑅(𝑡, 𝑏𝑒𝑙𝑜𝑤)

Table 1
Logical constraints generated based on the 𝑄-𝑐ℎ𝑎𝑖𝑛 of the ex-
ample in Figure 1. 𝑅𝑖 refer to rule 𝑖 used in the example. Define
AnsYN and AnsFR

that if an object 𝑋 is above object 𝑌 , therefore, object 𝑌 is
below object 𝑋 . The rest of the rules use a similar notation.

To apply training with Spatial Logic, we follow three
steps. Firstly, we create example-specific rules based on the
given Spatial Logic. This process is explained in the example
of Figure 1.

We use the resolution tree, which provides the logical
implication steps, to infer the answer to the final query
from the input context. Note that our synthetic training
data (e.g., SpaRTUN) provides the logical representation of
the context. We start creating the tree using initial facts in
the given context and a forward chaining approach to find
the applicable rules. In this way, we obtain the intermediate
inferred facts. We denote fact 𝑖 as 𝑞𝑖 and the sequence of all
derived intermediate facts, including the target question, as
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Table 2
Accuracy of SPARTQA-Human and ReSQ with various models. For ReSQ, 𝑘 is the number of the reasoning steps required to
answer the questions. Unclassified indicates the cases in which 𝑘 was a challenge for human annotators to decide.

SPARTQA-Human ReSQ
Model Ver.1 Ver.2 k=1 k=2 unclassified All Line
BERT 54.54 53.57 70.67 56.85 60.66 60.98 1
BERT-T 55.94 58.03 76.00 54.79 61.18 61.15 2
BERT-T+𝑄-𝐶ℎ𝑎𝑖𝑛 (Our) 59.44 58.92 72.00 58.90 59.90 61.31 3
Flan-T5 54.54 60.71 74.67 56.16 61.44 61.80 4
Flan-T5-T 49.65 57.14 81.33 54.79 61.44 62.30 5
Flan-T5-T+𝑄-𝐶ℎ𝑎𝑖𝑛 (Our) 55.94 61.61 81.33 57.53 63.75 64.43 6
GPT3.5 (zero-shot) 58.04 58.03 74.67 60.95 66.58 66.22 7
GPT3.5 (few-shot) 62.23 58.92 84.00 68.49 68.12 70.16 8
GPT3.5 (CoT) 65.73 71.43 86.67 67.12 68.64 70.49 9
GPT-4 (zero-shot) 77.62 68.75 84.00 73.97 76.86 77.05 10
Llama-3 (zero-shot) 61.54 50.89 80.00 64.38 67.35 68.20 11
Llama-3 (few-shot) 62.94 60.71 82.67 69.86 71.46 72.46 12
Llama-3 (CoT) 67.83 70.54 82.76 76.03 67.10 71.15 13

Table 3
Accuracy of StepGame on several models including results of GPT3 reported in [13].

Model k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
BERT 98.51 95.53 91.68 66.71 49.11 41.47 41.47 32.09 28.94 28.16
BERT-T 98.50 95.32 93.26 76.78 66.36 58.76 53.70 46.27 42.71 40.12

BERT-T+𝑄-𝑐ℎ𝑎𝑖𝑛 (Our) 98.70 96.45 93.03 74.58 64.95 59.04 54.38 49.23 45.36 44.05

GPT3 (few-shot) 55.00 37.00 25.00 30.00 32.00 29.00 21.00 22.00 34.00 31.00
GPT3 (CoT) 61.00 45.00 30.00 35.00 35.00 27.00 22.00 24.00 23.00 25.00

Llama-3 (few-shot) 38.01 27.87 24.15 21.27 19.75 18.03 16.88 15.52 15.17 14.70

𝑄-𝐶ℎ𝑎𝑖𝑛.
Secondly, we generate the consistency constraints be-

tween 𝑞𝑖s given the 𝑄-𝐶ℎ𝑎𝑖𝑛. To explain the consistency
constraints between questions, we denote the answer to
the YN questions as 𝐴𝑛𝑠𝑌 𝑁(𝑞𝑖), which will be True if
the answer to 𝑞𝑖 is True. We denote the answer to the
FR questions as 𝐴𝑛𝑠𝐹𝑅(𝑞𝑖, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛), which will be True
if the specified relation exists in the set of answers to 𝑞𝑖.
We obtain a set of consistency rules per training example,
as shown in Table 1. For example, in Figure 1, if 𝑞1: box
above the square," is True, then 𝑞3: "triangle below box,"
should be True. The corresponding constraints for YN will
be 𝐴𝑛𝑠𝑌 𝑁(𝑞1) ⇒ 𝐴𝑛𝑠𝑌 𝑁(𝑞3), and for the FR case, will
be 𝐴𝑛𝑠𝐹𝑅(𝑞1, 𝑎𝑏𝑜𝑣𝑒) ⇒ 𝐴𝑛𝑠𝐹𝑅(𝑞3, 𝑏𝑒𝑙𝑜𝑤).

Lastly, after obtaining the consistency constraints, we
minimize the violation of the model from these constraints
by adding a corresponding term in the loss function ob-
jective. However, we need to obtain a differential form of
logic as a surrogate of the original logical constraints vio-
lation to do this. We follow the previous research for this
goal [19, 20, 21] and use the DomiKnowS framework for
the actual implementation [22]. To implement this prob-
lem using the DomiKnowS declarative language, we must
declare a graph of concepts and relationships and add the
logical rules/constraints between them. DomiKnowS offers
a Python library and a specific syntax to express the graph
and logic. An example of concepts, a symmetric relation,
and a constraint using symmetric relation is as follows,

1 story = Concept(name="story")
2 question = Concept(name="question")
3 story_contain, = story.contains(question)
4 answer_class = question(name="answer_class",

ConceptClass=EnumConcept,→˓

5 values=["yes", "no"])
6 symmetric = Concept(name="symmetric")

7 s_quest1, s_quest2 =
symmetric.has_a(arg1=question,
arg2=question)

→˓

→˓

8 ifL(andL(answer_class.yes('x'),
existsL(symmetric('s', path=('x',
symmetric)))),

→˓

→˓

9 answer_class.yes(path=('s', s_quest2)))

We refer the reader to DoinKnowS documentation about
the syntax and the semantics of the code 1. Our main hy-
pothesis is that providing supervision from high-level logi-
cal knowledge enables the model to capture higher levels
of abstraction, improving generalization to other domains.
The advantage of our proposed approach is that it does not
require full access to logical knowledge. Any partially avail-
able knowledge can be exploited during training without
further requirement at inference time. This is crucial since
inference-time symbolic reasoning can be time-consuming
for real-time applications.

3. Experimental Results
We conduct two sets of experiments on realistic (ReSQ)
and synthetic datasets (SpartQA, SpaRTUN, and StepGame).
With these experiments, we empirically evaluate the im-
pact of our proposed logic-based fine-tuning on small-scale
language models and compare them to very large language
models that merely use prompt engineering. We evaluate
the performance of our proposed method on two types of
language models, encoder-based and generative models. We
select BERT as the baseline encoder-based and Flan-T5 as
the baseline generative model.

We also report the results of basic fine-tuning with the

1https://hlr.github.io/domiknows



SpaRTUN dataset in two, so-called, BERT-T and Flan-T5-T
models.
Realistic Domain. ReSQ serves as the realistic SQA do-
main. As observed in Table 2, using the 𝑄-𝑐ℎ𝑎𝑖𝑛 is effective
for both models (BERT and Flan-T5) with a notable improve-
ment on Flan-T5. Particularly, Flan-T5-T+𝑄-𝑐ℎ𝑎𝑖𝑛 (line 6)
shows 2% improvement over Flan-T5-T (line 5).

For a deeper understanding of these results, we analyzed
the performances on different splits of ReSQ. There are three
splits based on the manually annotated depth of reasoning
required to answer questions in ReSQ. The first two splits
include questions that require one or two hops of reasoning,
denoted as 𝑘=1, and 𝑘=2. The last type is unclassified, which
covers questions where the depth of reasoning is difficult
to determine. Those questions require more of common-
sense knowledge. Our observations in Table 2 reveal that
our model consistently improves on 𝑘 = 2 but adversely
affects BERT’s performance on 𝑘 = 1 and the unclassified
categories. According to this result, we conclude that when
more hops of reasoning are required, logic-based tuning
demonstrates significant improvement. However, our pro-
posed tuning method is less effective in the unclassified class,
which requires commonsense knowledge.

On the other hand, LLMs show superior performance
on ReSQ compared to all fine-tuning results. The LLMs
consistently exhibit around 2% to 13% higher performance
compared to Flan-T5+T+𝑄-𝑐ℎ𝑎𝑖𝑛 (lines 7 to 13). The per-
formance is much higher on the unclassified subset of the
dataset, which can be seen even with the zero-shot method.
This implies that LLM’s out-performance is mainly due to
their commonsense knowledge rather than their complex
reasoning capability, in contrast to our proposed method,
which deals with complex multi-hop reasoning.

Nevertheless, we observe that using logic-based fine-
tuning yields a higher improvement over Flan-T5 compared
to BERT on the unclassified subset. This indicates that the
𝑄-𝑐ℎ𝑎𝑖𝑛 approach can guide complex reasoning when ap-
plied to a model with more commonsense knowledge.
Synthetic DomainwithMore Complex Logical Reason-
ing. SpartQA-Human and StepGame are synthetic domains
used in our experiments. We consistently observe improve-
ment with our proposed 𝑄-𝑐ℎ𝑎𝑖𝑛 in this domain, which typ-
ically requires many more hops of reasoning. As observed in
Table 2, 𝑄-𝑐ℎ𝑎𝑖𝑛 consistently shows improvement in Flan-
T and BERT compared to fine-tuning without it. Moreover,
the gap between small PLMs and LLMs is much smaller in
this dataset compared to the realistic domain (ReSQ). This
is expected since LLMs are better at commonsense than
complex reasoning as previously presented.

The result is further supported when assessing the pro-
posed method on StepGame. As can be observed in Table 3,
the fine-tuning method consistently demonstrates signifi-
cant positive differences in all reasoning steps compared to
LLMs. The struggle of GPT3 on reasoning over StepGame
is also investigated in [13]. The reported results from this
paper are in Table 3. Our proposed method consistently im-
proves by 1%—4% on a higher number of reasoning hops
(𝑘 = 6 to 𝑘 = 10), similar to the observation in ReSQ. These
results confirm our primary hypothesis that our proposed
method equips the models with a higher level of logical
abstraction to conduct higher reasoning steps.
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