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Abstract Cognitive Robotics, as described by Levesque and Reiter [1], is “the study of the knowledge rep-
resentation and reasoning problems faced by an autonomous robot (or agent) in a dynamic and incompletely
known world.” In general, it is concerned with endowing agents with a wide variety of higher level cognitive
functions that involve reasoning, for example, about goals, perception, actions, the mental states of other agents,
collaborative task execution. To achieve these objectives, cognitive robotics requires (re)integrating Artificial
Intelligence (AI) and thus hybrid methods. In this talk, I will give examples from four different cognitive robotics
applications to illustrate the need for (re)integrating spatial and temporal reasoning with robotics methods:
service robotics, digital forensics, manipulation planning, and robot construction problems.

Missing child scenario Consider a shopping mall where several service robots help people with their inquiries
and requests. Suppose that two parents are looking for their missing son in a shopping mall and request help
from a robot in a food court. The robot has received sightings of the child at the south or west of the pool, and
wants to find out the potential whereabouts of the child.

Once the robot receives the sightings of the child, they first check whether this information makes sense or not.
This can be done, e.g., by formulating the cardinal directional relations between spatial objects in the shopping
mall and the sightings of the child, as constraints in Cardinal Directional Calculus (CDC) [2, 3], and by checking
its inconsistency with a Qualitative Spatial Reasoning (QSR) system that supports CDC.

After the consistency of the gathered information is verified, the robot tries to find out the possible locations
of the child that make sense. For that, the robot also needs to consider relevant commonsense knowledge and
assumptions, like the following: “Children are generally around the ice-cream truck. The ice-cream truck is by
default in the free areas that are to the north, east or northeast of the movie theater.”

To represent such default relations about cardinal directions and to integrate reasoning about defaults with
qualitative spatial reasoning, we extend CDC by default CDC constraints (called nCDC) and build a QSR sys-
tem (called nCDC-ASP [4, 5]) on top of it, by utilizing the foundational and practical methods of Answer Set
Programming [6, 7, 8] that support nonmonotonic reasoning over defaults [9].

To be able to infer the relevant missing CDC relations and then to express the possible locations of the child to
the parents in an understandable way (like the following: “Your child might be to the southeast of the food court
and to the east of the park. That is, to the southeast of where you are now.”), we further extend nCDC by inferred
CDC constraints and introduce a method in nCDC-ASP to infer missing CDC relations.

This example illustrates the need to extend QSR [10] with nonmonotonic reasoning about defaults and inference
of relevant missing relations, in order to involve commonsense knowledge and reasoning.

Interrogation of suspects Suppose that a robotic investigator receives some camera images of the crime
scene, and the interrogation of the suspects by the police, like the following: “Suspect 2: ... I noticed a suitcase in
front of the table. There was a knife on the floor, to the right of the body, and in front of the phone.” Considering
the digital evidence and the relevant commonsense knowledge (e.g., the phone is generally on the table), the
robot wants to check whether Suspect 2 is truthful or not.

To be able to perform reasoning about cardinal directions in 3D, we extend nCDC and nCDC-ASP to 3D (called
3D-nCDC and 3D-nCDC-ASP respectively) [11] in the spirit of [12, 13]. Using the reasoner 3D-nCDC-ASP, the
robot can check whether the 3D-nCDC constraint network obtained from Suspect 2’s statement, digital evidence
and commonsense knowledge is consistent or not [14].

Suppose that 3D-nCDC-ASP finds Suspect 2’s statement inconsistent with respect to the digital evidence. The
investigator asks: Why? For that, we extend the capabilities of 3D-nCDC-ASP further so that it can generate
explanations for inconsistencies [11], like the following: “The knife cannot be both below and to the front of the
phone, as it is to the right of the body according to the digital evidence.”

This example illustrates the need to extend QSR with explanation generation, for trustworthiness.
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Manipulation planning Consider, for instance, a robot manipulator (as depicted in the figure below) that
aims to move an object from the right hand side of the table to the left hand side of the table, without colliding
with any obstacle. Once the pick and place actions are described in a planning language, a task plan can be found

by a planner as follows: first pick the object from the right hand side of the table (this action is possible since the
robot’s gripper is empty), and then place it on the left hand side of the table (this action is possible since the left
hand side of the table is clear). However, this plan is not feasible: if the robot proceeds with executing this plan
then it will collide with the obstacles above and the plan will fail.

We introduce a hybrid method [15, 16] to integrate task planning (where the actions are described in a discrete
state space) with feasibility checks (where the motions are described in a continuous configuration space), utilizing
ASP languages and solvers [17] that support semantic attachments [18] on the one hand and the state-of-the-art
feasibility checkers on the other hand. The idea is to embed feasibility checks in action descriptions by semantic
attachments (called external atoms, in ASP) so that the feasibility of actions can be checked externally and as
needed. In the example above, we embed reachability checks as external atoms in the preconditions of a placing
action, that call a motion planner to find out whether there is a collision-free continuous trajectory that the robot
can follow to reach the left hand side of the table from its current state (i.e., while holding the object).

We present soundness and completeness results for this hybrid planning method [19], under the connectivity
assumption that relates transitions in the discrete space with trajectories in the continuous space. We illustrate
the applicability and usefulness of this hybrid planning method in various robotic manipulation problems, ranging
from cognitive factories [20, 21] to housekeeping [22, 23, 19] and construction [24]. We extend this hybrid
reasoning methodology further to prediction, diagnostic reasoning, explanation generation, and replanning in
the context of execution monitoring of robotic plans under partial observability [25].

This example (and the applications mentioned above) illustrate the need to integrate temporal reasoning over
states and actions (like task planning), with feasibility checks (like reachability checks via motion planning), for
feasible and safe robotic plan execution.

Robotic construction Given an initial configuration of blocks of different sizes on a table, some goal conditions
(e.g., build a bridge) and an upper bound on a makespan, the robot construction problem asks for (i) a final stable
configuration of blocks stacked on each other that satisfy some specified goal conditions, and (ii) a feasible stack
rearrangement plan to obtain that final configuration from a specified initial configuration of the blocks. The
figure below illustrates an example [24, Scenario 13], where an initial state is given and a bridge (along with
a plan) is computed. Note that these problems ask for not only a feasible plan but also a feasible goal state.
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Therefore, they require not only reachability checks but also stability checks, and not only for preconditions of
pick and place actions but also for states. Also, these problems ask for plans that make sense in the spirit of [26],
e.g., that allows concurrency and subassembly construction and manipulation (instead of manipulating one block
at a time) and temporary counterweight and scaffolding (for stability of intermediate configurations).

We introduce a hybrid method to solve robotic construction problems [24] using ASP, that allows such complex
actions and embeds stability checks (by external atoms via physics engines) in the domain description. A wide
range of benchmark instances are also provided to further future studies in robotic construction, planning, and
kowledge representation.

These examples illustrate the need to extend temporal reasoning over states and actions to allow complex
but commonsensical actions, and to embed stability checks (via simulations by physics engines) in logic-based
representations of actions and change, for feasible and safe robotic construction.
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