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Abstract
While Gradient Boosted Trees (GBT) are generally preferred in predictive tasks with tabular data, they are unable to fully capture
spatial effects in geographically referenced data. Recent advancements prove that significant levels of spatial autocorrelation remain
present in the errors of these models. Residual spatial autocorrelation suggests the potential to gain predictive power by pushing the
model to better capture spatial relationships in the data. To address this, we propose MI-GBT, a novel framework that accounts for
spatial autocorrelation in GBT. Using the local variant of Moran’s I, the framework integrates spatial autocorrelation into the objective
function of GBT models so as to learn the spatial relationships of the data. An extensive evaluation of our proposed method on four
real-life spatial regression datasets demonstrates the predictive gains with respect to regular GBT models as well as competitive spatial
and deep learning baselines. Moreover, the residual spatial autocorrelation on a global as well as a local level is analyzed in-depth. With
this comprehensive assessment, we can conclude that the MI-GBT framework gains predictive power while reducing the amount of
residual spatial autocorrelation in a range of spatial regression tasks.
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1. Introduction
Geographically referenced data, crucial in fields like earth
science, urban informatics, and public health, is challenging
to model accurately due to its geospatial nature [1]. Conven-
tional statistical and machine learning methods struggle to
capture the spatial autocorrelation, leading to spatial bias [2].
Numerous spatial statistical methods, including spatial lag
models and Gaussian Process models, can address this bias
to some degree. However, with the rise of big data, there is
an increasing need for scalable machine learning solutions,
as spatial statistical models are typically computationally
intensive [1].

In this study, tabular geospatial data is considered for
geospatial regression tasks, where a continuous target is
modeled based on a set of variables and the location (X-Y
coordinates). Given the tabular nature of the data, related
literature predominantly focuses on tree-based ensembles
such as Random Forest (RF) and Gradient Boosted Trees
(GBT) [3]. However, even though tree-based models such
as RF, enhanced with spatial features, are considerably re-
ducing prediction errors, they continue to have difficulties
in capturing spatial bias [4].

More recently, methods have been proposed to account
for spatial autocorrelation in the loss function of deep learn-
ing models [5, 6, 7]. This allows for a more direct approach
to learn spatial dependencies in the data and simultaneously
increase prediction accuracy [6]. Given that tree-based mod-
els outperform deep learning on tabular data, as has been
shown in literature and as our experiments will prove, we
extend this idea to Gradient Boosted Trees. Leveraging
a tailored loss function, we propose a framework that ac-
counts for spatial autocorrelation in GBT using Moran’s
I: MI-GBT1. Evaluating the proposed framework on four
real-life geospatial regression datasets, its performance is
quantified in terms of prediction accuracy but also residual
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spatial autocorrelation. Our contributions can be summa-
rized as follows:

• A novel GBT-based framework, MI-GBT, is proposed
that tailors the learning procedure to spatial depen-
dencies.

• We extend the traditional approach of evaluating
ML models with respect to their prediction error on
the test set towards a spatial evaluation in terms of
residual spatial autocorrelation.

• We demonstrate that the MI-GBT framework is able
to considerably improve predictive performance
while reducing the amount of spatial autocorrelation
in the residuals.

• We show that GBT models outperform common spa-
tial methods such as Gaussian Process Regression,
and state-of-the-art deep learning methods for spa-
tial data.

2. Related work
As defined in [1], there are three approaches for addressing
spatial dependencies in prediction methods: spatial feature
generation, spatial dependency in model structure, and spa-
tial regularization in the objective function. In this study,
we primarily focus on machine learning models in the con-
text of spatial regression. As for spatial feature generation,
distances to Points of Interest (POIs) are often used but also
buffer distances to other observations have been shown to
mimic kriging with Random Forests [8]. Spatial lags and
eigenvectors also improve performance of ML methods for
spatial prediction tasks, but accuracy gains can already be
realized by simply incorporating the X- and Y-coordinates
as features [4, 9].

Algorithmic improvements to solve the spatial depen-
dency problem consist in extending the Generalized Least
Square estimation for correlated data in linear models to-
wards RF [10] and GBT [11], ensembles of local RF [12] and
GBT [13] models, and a tailored tree learning algorithm
with flexible geospatial splits for X- and Y-coordinates [14].

The final category, comprising our study, pertains to ad-
justing the objective function of the learning algorithm
for spatial intricacies. In [15], a clustering tree model is
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proposed that evaluates candidate splits based on a linear
combination of variance reduction and spatial autocorrela-
tion, measured by Geary’s C. In [6], the authors propose a
deep learning-based method for COVID-19 forecasting with
a mean squared error (MSE) loss function adjusted with
Moran’s I. In the implementation of this loss function, the
global Moran’s I is calculated across batches and the MSE
of the Moran’s I is combined with the conventional MSE
of the predictions. Instead of an MSE-based loss function,
an entropy-based loss adjusted for spatial autocorrelation is
proposed in [5] for deep learning energy forecasting models.
As the entropy-based criteria measure dependence between
observations within a time window, spatial dependency is
included by weighting the contribution of observations by
their distance. Finally, in [7], the local Moran’s I is directly
included in the learning process of graph neural networks in
an auxiliary learning setting. The final loss function there-
fore consists of a combination of the loss of the main task
and the loss of the auxiliary task, i.e. the predicted local
Moran’s I. In this study, we extend this approach to GBT
models.

3. Methodology

3.1. MI-GBT
Gradient Boosted Trees (GBT) is an ensemble method con-
sisting of a sequence of ‘weak’ decision tree models that
try to improve the predictions of the previous model in the
sequence [16]. A Gradient Boosted Tree model with 𝑀
trees is essentially the sum of decision trees, expressed as
𝑓𝑀 (𝑥𝑖) =

∑︀𝑀
𝑚=1 𝜈 · 𝑇 (𝑥𝑖; 𝜃𝑚), with 𝜃 the tree structure

and 𝜈 the learning rate. The training procedure consists of
𝑀 iterations, where a new tree is added in each iteration
with respect to a loss function 𝐿(𝑦, 𝑓𝑀 (𝑥)). Given that the
model 𝑓𝑀 (𝑥) consists of a sequence of trees 𝑇 (𝑥; 𝜃), the
loss function is minimized to find the optimal tree structure
𝜃𝑚 in each iteration as follows:

𝜃𝑚 = argmin
𝜃

𝑁∑︁
𝑖=1

𝐿(𝑦𝑖, 𝑓𝑚(𝑥𝑖))

= argmin
𝜃

𝑁∑︁
𝑖=1

𝐿(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖) + 𝑇 (𝑥𝑖; 𝜃𝑚)).

In this way, GBT models considerably decrease prediction
bias. Similarly, this provides a way to account for spatial
bias. We propose to extend the loss function to not only
include the error with respect to the target but also the loss
with respect to the spatial autocorrelation of the target. The
total loss then becomes:

𝐿1(𝑦, 𝑦) + 𝜆 · 𝐿2(𝑆(𝑦), 𝑆(𝑦)),

with 𝐿1 and 𝐿2 any regression loss such as mean squared
error (MSE), 𝑦 the target variable, 𝑦 the predicted variable,
𝜆 the weighting scheme and 𝑆 a function of spatial auto-
correlation. The spatial autocorrelation is defined in this
context by the local indicator of spatial association (LISA),
as suggested in [17]. This is a local variant of the Moran’s I
statistic which quantifies the contribution of each observa-
tion to the global spatial autocorrelation. The local Moran’s
I is able to indicate spatial clusters, where the value of an
observation is highly similar to the values of its geographic

Table 1
Additional parameters for MI-GBT.

Parameter Meaning

𝜆 Weight of local Moran loss
𝑘 Number of nearest neighbors in spatial

weights matrix
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 Distance-based spatial weights matrix

if true binary spatial weights matrix if
false

𝑙𝑜𝑠𝑠 Type of local Moran loss (MSE or Huber
loss)

neighbors, and spatial outliers, where the value of an obser-
vation is highly dissimilar to the values of its geographic
neighbors. The local Moran’s I, LISA, 𝑆 of a variable 𝑥𝑖 is
defined as

𝑆(𝑥𝑖) = (𝑛− 1)
(𝑥𝑖 − �̄�)∑︀𝑛

𝑗=1(𝑥𝑗 − �̄�)2

𝑛∑︁
𝑗=1,𝑗 ̸=𝑖

𝑤𝑖,𝑗(𝑥𝑗 − �̄�),

with 𝑤𝑖,𝑗 an element in the spatial weights matrix 𝑤 which
determines the neighboring observations. In this study, a
k-nearest neighbors (kNN) matrix is employed with k as
a parameter of the model. The kNN matrix can be either
unweighted or weighted, resulting in a binary matrix in
the former case and a numerical matrix with inverse Haver-
sine distances in the latter case. In summary, the proposed
GBT with the Moran-adjusted loss function has four param-
eters in addition to GBT’s parameters as outlined in Table
1. We have abstracted from the specification of the base
GBT model, as the proposed methodology can be applied
to any GBT specification in theory. In what follows, the
LightGBM (LGBM) [18] and XGBoost [19] implementations
will be considered for the MI-GBT framework.

3.2. Experimental setup
3.2.1. Datasets

The proposed MI-GBT framework is evaluated on four real-
life datasets containing geographically referenced data. As
this study focuses on the spatial regression task, all datasets
contain a continuous target variable, location variables (X-
and Y-coordinates) and possibly other explanatory variables.
The following datasets are considered, with N indicating the
number of observations and m the number of explanatory
variables:

• Election: The election dataset contains the elec-
tion outcomes of 2016 in the different counties of
the US (N=3107) [20]. The election outcome can be
explained by socio-demographic variables such as
median household income, net migration rate, and
unemployment rate (m=9).

• Air temperature: The air temperature dataset com-
prises the mean temperature measured by 3076
weather stations positioned across the world [21].
In addition to temperature and X- and Y-coordinates,
this dataset also contains measurements of precipi-
tation (m=3).

• 3d road: The 3d road dataset is a three-
dimensional locational dataset containing X-, Y- and
Z-coordinates [22]. The elevation Z of roads in
North Jutland, Denmark is predicted based on the
X- and Y-coordinates (N=397 978, m=2).



• Housing: The housing dataset consists of house
prices of more than 250 000 homes in Flanders, Bel-
gium that were sold between 2015 and 2023. The
house prices can be explained by the housing char-
acteristics in addition to the location (m=15). This
dataset is proprietary.

The first three datasets are randomly split into 70% train-
ing, 15% validation, and 15% test data, while the housing
data is split out-of-time with approximately 60% training
data, 20% validation and 20% test data. As explained below,
the validation set is used for hyperparameter tuning and
the test set for reporting the results.

3.2.2. Methods

We compare the MI-GBT framework with LGBM and XG-
Boost as base models. Additionally, Gaussian Process Re-
gression, a common spatial prediction method, and PE-GNN,
a competitive graph neural network that accounts for spa-
tial autocorrelation [7], are included in the benchmark. For
GBT methods, a Bayesian search is performed using the val-
idation set to find the optimal set of parameters. For LGBM
and XGBoost, the number of estimators, learning rate, col-
umn sample size, maximum depth and subsample size are
tuned. The MI-GBT variants are tuned with respect to the
same parameters in addition to the 𝜆, 𝑘, 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑, and 𝑙𝑜𝑠𝑠
parameters (see Table 1). The PE-GNN model is specified
with GCN layers, is trained for 1000 epochs with learning
rate 0.001 and parameters lambda and embedding size are
tuned with a grid search. The final model is selected based
on the best validation MSE across epochs. For the Gaussian
Process model, an approximate specification is trained using
GPytorch [23] for 250 epochs with learning rate 0.01 and
the same procedure for selecting the final model.

In the next section, we evaluate the methods on the four
datasets using the prediction error on the test set and the
spatial autocorrelation in the residuals. We measure the spa-
tial autocorrelation in the residuals by the Global Moran’s I
and the LISA based on the optimal spatial weights matrix
for respectively the MI-LGBM model and the MI-XGBoost
model. Based on these spatial weights matrices, the spatial
autocorrelation in the ground truth data is compared to the
remaining level of spatial autocorrelation in the absolute
errors of the models. The global spatial autocorrelation
is quantified by the standardized Moran’s I which can be
compared across models. In addition, the percentage of
observations with a statistically significant LISA value is
investigated. The p-values are calculated based on 999 per-
mutations and a significance level of 0.05 is employed. Given
the randomness of permutations, the average value over 10
repeated calculations is presented for both the Moran’s I
and LISA.

4. Results and Discussion
The predictive performance of the models is evaluated using
the RMSE, MAE and 𝑅2 scores as presented in Table 2. The
MI-GBT models are compared against their GBT counterpart
as well as PE-GNN and GPR. From the election dataset, it is
apparent that MI-LGBM is superior to the base LGBM model
in terms of predictive power. On the contrary, the XGBoost
variant shows superiority over the MI-XGBoost model in
two out of four datasets. Surprisingly, the PE-GNN model
has great difficulty to capture the patterns in the election

dataset accurately, while GPR performs on par with the GBT
models and presents slight superiority in two metrics. A dif-
ferent storyline unfolds for the temperature dataset, where
all metrics indicate the advantage of the MI-GBT framework
over the base models with MI-LGBM having the upper hand
according to two out of three metrics. In contrast to the elec-
tion dataset, the PE-GNN model shows similar performance
to the GPR model on this dataset, but here both models
underperform with respect to GBT models. For the 3d road
data, neither GBT model differentiates between the stan-
dard loss function and the adjusted loss function in terms of
predictive power. Moreover, the XGBoost models perform
considerably better than LGBM for this dataset. Further,
it is apparent that for the 3d road dataset, the GPR model
performs much worse than all other models, including PE-
GNN. This indicates that for pure spatial interpolation tasks,
where only location and no other explanatory variables are
available, ML methods are preferable. Finally, in the hous-
ing case, the MI-LGBM model consistently presents higher
predictive power than the respective base model, while the
reverse is true for MI-XGBoost. Nevertheless, PE-GNN and
GPR are considerably outperformed by the GBT models and
the MI-LGBM model presents the best performance overall
for the housing dataset. In conclusion, all four datasets show
a considerable advantage in the MI-GBT framework across
GBT implementations, while only in two datasets the base
XGBoost model performs better without the adjusted loss
function. Moreover, GBT models generally outperform GPR
and PE-GNN for geospatial regression tasks.

In Table 3, the global and local spatial autocorrelation
in the ground truth data and in the absolute errors of the
models is reported. While it is clear that all GBT models dras-
tically reduce the level of spatial autocorrelation compared
to the original data, though still statistically significant, in-
teresting findings can be drawn from a comparison among
GBT and baseline models. As for LGBM, though the indica-
tors of spatial autocorrelation generally differ only slightly
between the MI-LGBM and base models across datasets, the
indicators are generally in favor of MI-LGBM. For the elec-
tion dataset, both the global and local indicator appoints
the MI-LGBM model to best capture spatial dependencies.
For the temperature and 3d road datasets, the same pattern
occurs in the Moran’s I, but PE-GNN and LGBM respectively
presents slightly less significant LISA values. The housing
dataset shows the ability to capture spatial effects of MI-
LGBM more convincingly, even presenting the least amount
of residual spatial autocorrelation overall. In XGBoost, the
adjusted loss function does not seem to push the model to
better capture spatial relationships in the housing dataset.
In contrast, the global and local Moran’s I indicates lower
spatial autocorrelation in the MI-XGBoost residuals for the
temperature and 3d road datasets, even more so than LGBM-
based models. While the 3d road dataset did not show any
distinction in predictive power between the MI-GBT mod-
els and their respective base models, the advantage of the
MI-GBT framework is underscored with less residual spatial
autocorrelation. In the election case, the Moran’s I does not
differentiate between the base XGBoost and MI-XGBoost
model, but the local indicator prefers the base model. While
in general the MI-GBT framework shows improvement in
the level of residual spatial autocorrelation, the base models
are close contenders in stark contrast to GPR and PE-GNN.
With the exception of the election dataset where XGBoost
is slightly in favor, the MI-GBT framework demonstrates
the least amount of residual spatial autocorrelation overall



Table 2
Prediction error metrics on the test set (RMSE, MAE and 𝑅2 scores) of the proposed methods and baselines, for four different
datasets. The best value according to each metric is underlined per group of models and highlighted in bold per column.

Election Temperature 3d Road Housing
Model RMSE MAE 𝑅2 RMSE MAE 𝑅2 RMSE MAE 𝑅2 RMSE MAE 𝑅2

LGBM 0.0383 0.0125 0.7631 0.0392 0.0255 0.9560 0.0297 0.0195 0.9530 0.0942 0.0684 0.4924
MI-LGBM 0.0381 0.0123 0.7662 0.0390 0.0254 0.9565 0.0297 0.0195 0.9529 0.0941 0.0683 0.4939
XGBoost 0.0321 0.0115 0.8343 0.0419 0.0242 0.9497 0.0263 0.0155 0.9631 0.0943 0.0685 0.4911

MI-XGBoost 0.0334 0.0133 0.8180 0.0391 0.0241 0.9562 0.0263 0.0155 0.9631 0.0945 0.0686 0.4894
PE-GNN 0.0630 0.0324 0.3620 0.0685 0.0468 0.8658 0.0509 0.0362 0.8616 0.1112 0.0830 0.2925

GPR 0.0317 0.0158 0.8389 0.0591 0.0446 0.8998 0.0781 0.0560 0.6746 0.1073 0.0801 0.3414

Table 3
Standardized Global Moran’s I and percentage of significant LISA
values (𝑝 < 0.05) from the ground truth data and residuals of the
proposed methods and baselines, for four different datasets. Two
groups are defined by different spatial weights matrices resulting
from the hyperparameter optimization of the two respective MI-
GBT models. The best value is underlined per group of models
and highlighted in bold per column.

Election Temp. 3d Road Housing
Model MI LISA MI LISA MI LISA MI LISA

Ground truth 61 53.5% 214 82.5% 1612 69.3% 288 23.1%
LGBM 35 34.0% 62 65.8% 1049 52.0% 39 7.2%

MI-LGBM 33 29.6% 59 63.7% 1024 52.4% 38 6.9%
PE-GNN 39 48.7% 62 62.5% 1167 59.1% 63 8.4%

GPR 55 53.1% 80 67.4% 1520 64.5% 87 9.3%
Ground truth 52 42.0% 79 39.0% 1058 48.5% 622 59.2%

XGBoost 24 15.7% 11 7.4% 787 12.6% 65 20.3%
MI-XGBoost 24 21.5% 11 7.2% 778 12.5% 68 20.6%

PE-GNN 31 31.8% 36 18.1% 806 32.1% 117 26.3%
GPR 43 39.2% 47 24.8% 1024 41.9% 177 31.6%

across spatial regression datasets.
Finally, we investigate the LISA values for the housing

data from the LGBM models visually in Figure 1. This fig-
ure contains the observations colored by the LISA values
in the ground truth data (Figure 1a), in the residuals of the
MI-LGBM model (Figure 1b), and in the residuals of the base
LGBM model (Figure 1c). The colors represent the catego-
rization of LISA values: spatial clusters of high values (red),
spatial clusters of low values (blue), spatial outliers with
high values surrounded by low-value neighbors (orange),
spatial outliers with low values surrounded by high-value
neighbors (light blue), and non-significant (grey). From Fig-
ure 1a, it is clear that the spatial clusters dominate, while
spatial outliers are less prevalent. High-value spatial clusters
are more common in urban areas, e.g. Brussels, Antwerp and
Ghent. Low-value clusters are scattered across the region,
and especially in rural areas in the west and east. These
patterns seem to correspond with the typical patterns of
house prices (high in urban areas, low in rural areas). More
striking is the difference with Figures 1b-1c, where signifi-
cant LISA values are much more sporadic. The LISA plots
suggest that both models are able to capture a large part of
the spatial effects indicated by the spatial clusters. For both
the MI-LGBM model and base model, the low-value spatial
clusters are the most common among the LISA categories.
This indicates clusters of observations where the models pre-
dict closely to the true value. The MI-LGBM model presents
approximately the same amount of low-value spatial clus-
ters than the LGBM model, whereas it has less high-value
spatial clusters. These findings suggest that while the MI-

(a) Ground truth

(b) MI-LGBM

(c) LGBM

Figure 1: LISA plots from housing data in the ground truth data
(a), MI-LGBM residuals (b), and LGBM residuals (c). Points with
significant local spatial autocorrelation (𝑝 < 0.05) are colored
red, orange or blue, points with insignificant LISA values are
colored grey.

LGBM model has as many clusters of small errors, it has
less clusters of large errors, boosting predictive power of
the proposed method. As for spatial outliers, high-value
spatial outliers are slightly more common in MI-LGBM than
the base model, while low-value spatial outliers are some-
what less common. However, it could be argued that spatial
outliers likely remain difficult to capture for any predictive
model. A visual investigation of the geographic location of
the significant LISA values in the residuals does not indicate
stark differences between the models.

5. Conclusion
As previous research has shown that ML models generally
present remaining spatial autocorrelation in the residuals,
indicating that although they outperform other models in
terms of predictive performance, spatial effects remain un-
captured. In deep learning methods, loss functions adjusted
for spatial dependencies have been demonstrated to improve
predictive performance. As we focus on the common task of
geospatial regression with tabular data, we propose a frame-
work that adjusts the loss function of Gradient Boosted
Trees (GBT) for spatial autocorrelation: MI-GBT. Specifi-



cally, the adjusted loss function is a linear combination of
the predicted target loss and the loss with respect to the
local Moran’s I of the target. MI-GBT provides the flexibility
to learn the optimal kNN-based spatial weights matrix, type
of local Moran loss and the importance of the latter with
respect to the conventional loss. The proposed framework is
evaluated on four real-life spatial regression datasets using
two common GBT implementations, XGBoost and Light-
GBM. A thorough experimental evaluation showed that the
MI-GBT models outperform the base models in all datasets
but the housing and election datasets where the advantage
is established in the MI-LGBM model while the MI-XGBoost
presents on par results. Strikingly, GBT models in general
performed considerably better than Gaussian Process Re-
gression, a common spatial prediction method, and PE-GNN,
a state-of-the-art deep learning method for geospatial data.
Secondly, we evaluated the residual spatial autocorrelation
in the models both globally and locally. While Gaussian
Process Regression and PE-GNN established consistently
higher levels of residual spatial autocorrelation, the MI-GBT
framework proved more efficient in capturing spatial re-
lationships than the respective base models evidenced by
lower Moran’s I and less significant LISA values.
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