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Abstract 

Air quality prediction is a complex system engineering. How to fully consider the impact of 

meteorological, spatial and temporal factors on air quality is the core problem. To address this 

central conundrum, in an elaborate encoder-decoder architecture, we propose a new air quality 

prediction method based on multi-granularity spatiotemporal graph network. At the encoder, firstly, 

we use multi granularity graph and the well-known HYSPLIT model to build spatial relationship and 

dynamic edge relationship between nodes, respectively, while meteorological, temporal and 

topographic characteristics are used to build node features and LSTM (Long Short Term Memory) is 

used to learn the time-series relationship of pollutant concentration. At the decoder, secondly, we 

use the attention mechanism LSTM for decoding and forecasting of pollutant concentration. The 

proposed model is capable of tracking different influences on prediction resulting from the changes 

of air quality. On a project-based dataset, we validate the effectiveness of the proposed model and 

examine its abilities of capturing both fine-grained and long-term influences in pollutant process. 

We also compare the proposed model with the state-of-the-art air quality forecasting methods on 

the dataset of Yangtze River Delta city group, the experimental results show the appealing 

performance of our model over competitive baselines. 
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1. INTRODUCTION 

Air quality which is closely related to human public 

health, has been a common research hotspot focused 

by scholars all over the world. At present, many air 

quality monitoring stations (stations for short) have 

been built in major cities to monitor the concentration 

of air pollutants (PM2.5, PM10, O3, etc.) and 

meteorological parameters (temperature, pressure, 

wind speed, wind direction, humidity, etc.). However, 

these stations only can monitor real-time air quality, 

and fail to provide air quality prediction (AQP) and 

auxiliary support for urban intelligent decision-making 

or activity planning. How to construct an AQP model 

using a large amount of historical monitoring data has 

become a hot research topic in the field of environment 

engineering. Unfortunately, AQP is an extremely 

complex system engineering. On the one hand, air 

quality is related to pollutant emission, which is a type 

of time sequence and has periodicity; On the other 

hand, there exist physical and chemical changes of 

pollutants in the air, such as diffusion and deposition, 

which are greatly affected by meteorological and 

geographical locations; Finally, air quality also has 

certain probability, such as unexpected pollution 

leakage events will lead to a sharp decline in air quality. 

The commonly used types of AQP include 

mechanism model (MM) and machine learning (ML) 

methods. The MM method [1-6], also known as 

numerical model, uses atmospheric physical and 

chemical reactions to model the emission and diffusion 

process of air pollutants, and then carries out AQP. For 

example, Gaussian diffusion models of AERMOD and 

ADMS, Lagrange models of CALPUFF and HYSPLIT can 

be applied to small-scale and medium AQP [1]; and the 

third-generation air quality models [2] such as CMAQ, 

CAMX, WRF-CHEM, NAQPMS, and so on can be applied 

to predict large-scale air quality. However, most of MM 

methods require many empirical parameters and 

assumptions, which are prone to be reliable for a 

specific environment but not for all urban environments 

[6]. For example, AERMOD is an empirical model which 

is mainly applicable to small-scale air diffusion 

simulation and pollutant forecasting. And the 

third-generation air quality model needs 

comprehensive and accurate source list and 

meteorological field data as input to predict, and its 

application is limited.  

With the development of deep learning, AQP 

methods based on ML have attracted more attention [6, 

7, 15, 16]. The AQP method based on ML takes 

advantage of large historical observation data for 

training and testing, finding out the change law of 

pollutant concentration, and then predicts the air 

quality, which include linear statistical models [8], 

fitting optimization techniques [9], and deep learning 

methods [10]. Since deep learning has a powerful 

function to automatically extract nonlinear features, 

recent literatures about AQP often rely on deep 

learning models. Zhang et al [12] proposed a deep 

learning AQP method combining CNN (Convolutional 

Neural Network) and LSTM (Long Short Term Memory), 

which achieved good results and made scholars see the 

dawn of the application of deep learning in AQP. 

Subsequently, Du et al. [13] used one-dimensional CNN 

to capture local time trend and bidirectional LSTM to 

extract long-term time series features, and then to 

construct a hybrid neural network for AQP. Liang et al. 

[14] proposed a GeoMAN based on LSTM and 

encoder-decoder architecture for AQP, and took 

advantage of the attention mechanism to capture the 

spatial impact relationship among different stations. 

The above methods captured temporal correlation well 

by LSTM, but their capture of spatial relationship was 

obviously insufficient. Although CNN can be used to 

establish spatial relationships, it is a static spatial 

relationship, and the distance among stations is fixed. 

Due to the influence of weather and terrain, the spatial 

relationship among stations is not a simple static 

distance relationship, but a dynamic. In addition, the 

stations in the city are unevenly distributed and sparse, 

so interpolation is required in the construction of CNN, 

resulting in many virtual stations, which will affect the 

forecasting results. 

In contrast, graph-based models naturally sidestep 

the above issue since they shape the concentration 

values into graph nodes and keep their original 

distributions in graph structures. Because graph can 

construct non-Euclidean entity distribution, it can 

capture spatial relationships well. Thus, to compensate 

for the lack of spatial relationship learning in the above 

methods, the methods based on GNN (Graph Neural 

Network) are applied to AQP. Qi et al. [17] used GNN to 

learn the spatial relationship among stations, and LSTM 

to learn the time correlation of stations, so as to build a 

comprehensive forecasting model GC-LSTM. Lin et al. 

[18] used diffusion convolution operation to replace 

matrix multiplication in GRU (Gate Recurrent Unit) for 

sequence modeling, and combined with graph 

convolution operation to build GC-DCRNN for AQP. Xu 

et al. [19] proposed ST-MFGCN for AQP. Its main 

innovation is to obtain the spatiotemporal variation law 



of vehicle emissions by building a graph structure traffic 

network, and then predict traffic pollution emissions. 

Xu et al [20] proposed HighAir, i.e., a hierarchical graph 

neural network-based AQP method, which adopted an 

encoder-decoder architecture and considered complex 

air quality influencing factors, e.g., weather and land 

usage. 

The above methods based on GNN use graph 

structure to effectively construct the spatial 

relationship among stations, but they fail to fully 

construct the edges in the graph structure. For example, 

literature [20] simply used distance and wind direction 

similarity to construct edge weights. In order to better 

build the edge relationship, Wang et al [21] identified a 

set of critical domain knowledge for PM2.5 forecasting 

and developed a novel graph based model PM2.5-GNN，

they used domain knowledge（wind speed and direction，

distance，advection coefficient） to construct edge 

weights. Although they make use of domain knowledge, 

they simply list some impact factors, which is not 

enough. The pollution impact relationship among 

stations is comprehensively determined by 

meteorological conditions and landform. It is a complex 

process and needs to be analyzed by using professional 

models. 

In this paper, we use LSTM to learn the cycle and 

season of pollutant concentration, and use GNN to 

learn the spatial relationship of pollutants among 

stations, and thus building a multi granularity 

spatiotemporal graph neural network model, called 

MGST−GNN. In order to better capture the mutation of 

pollutant concentration and its impact on air diffusion 

and deposition, the mechanism model HYSLPLIT is used 

to dynamically construct the adjacency matrix and edge 

relation of the spatiotemporal graph.  

The main contributions of this paper include:  

•We innovatively propose a dynamic 

spatiotemporal graph model combining mechanism 

model and graph neural network. The adjacency matrix 

and edge weight vector of dynamic graph are 

constructed based on the simulation results of diffusion, 

transport and deposition of polluted air mass by 

mechanism model, so that the architecture learns the 

spatial influence relationship among multi granularity 

stations.  

•We propose to add time characteristic attributes 

of quarter, month, week, hour and holiday to each 

node in the encoder, use LSTM based on attention 

mechanism for temporal learning in the decoder to 

enhance MGST-GNN. 

2. PRELIMINARY 

2.1. Related concepts and definition 

Definition 1 Region and Stations: we set 

 = ,1aR r a N  as a set of N regions ，

 ,1aL l a N=   as a location set of N regions，

 , ,1a a i aS s i S=    as a set of stations in region ar ，

 , ,1a a i al i S=    as a location set of stations in 

region ar . Where, 
,a il is composed of longitude and 

latitude of a station, and al  is the mean value of 
,a il

in a .  

Definition 2 Time Feature (TF): TF includes five 

features: quarter, month, week, hour and holiday. We 

represent the quarter by using one-hot encoding 

adopted for 4-bit binary representation, as shown in 

Table 1. 

Table.1 

Quarter feature representing method 

 Spring summer fall winter 

Spring season 1 0 0 0 

summertime 0 1 0 0 

autumn 0 0 1 0 

wintertime 0 0 0 1 

Similarly, the month is represented with 12-bit 

binary by one-hot encoding; week is represented with 

7-bit binary by one-hot encoding; Hour is represented 

with 24-bit binary by one-hot coding; Holiday is 

represented with 2-bit binary by one-hot coding (0 

means non-holidays, 1 means holiday). 

Definition 3 Geomorphic Feature (GF): GF contains 

the topography and land usage information of a station, 

which consider the altitude and five land usage 

categories: residential area, park, mountain, water 

(river or pool), and industry. Where, the altitude is 

divided into four categories: very high (more than 

1300m), high (1000-1300m), medium (500-1000m) and 

low (less than 500m), and the corresponding categories 

javascript:;
javascript:;


are represented by the numbers 1, 2, 3 and 4; The land 

usage type is determined by the number of major land 

use types within 10km around the station. For example, 

the altitude of 
,a is  is 800 meters, and there is one 

residential area, two park, one mountain, three pool, 

and two industrial facilities within the perception radius 

10 kilometers of 
,a is . Thus, the GF vector 

,a igf can be 

represented as [3, 1, 2, 1, 3, 2]. 

Definition 4 Weather Data (WD): The WD of region 

ar and stations 
,a is  at time slot t  is represented as 

a vector t

awd and ,

t

a iwd , including temperature, 

humidity, rainfall, wind speed, wind direction, and air 
pressure. 

Definition 5 Pollutant Concentration Data: The 

pollutant concentration data includes the 

concentrations of six major pollutants such as PM2.5, 

PM10, SO2, CO2, CO and O3. Among them, PM2.5 and 

O3 are the most concerned at present. Therefore, the 

later experiments focus on the concentration 

forecasting of these two pollutants. 

Definition 6 HYSPLIT: HYSPLIT [5, 22] is a complete 

system for computing simple air parcel trajectories, as 

well as complex transport, dispersion, chemical 

transformation, and deposition simulations. A common 

application is a back trajectory analysis to determine 

the origin of air masses and establish source-receptor 

relationships. HYSPLIT has also been used in a variety of 

simulations describing the atmospheric transport, 

dispersion, and deposition of pollutants and hazardous 

materials. 

In this paper, HYSPLIT is used to establish the 

source-receptor relationship among nodes by trajectory 

analysis. When HYSPLIT is used for trajectory analysis, it 

only needs to input the meteorological data of the 

simulation area and the coordinate information of the 

initial point of the simulation. The meteorological data 

can be downloaded from the official website of Air 

Resources Laboratory (ARL) 2  for free. Figure 1 

describes an example of trajectory analysis using 

HYSPLIT. The example takes Beijing Center (116 ° 20 ', 

39 ° 56') as the starting point and 10:00 on May 6, 2022 

as the starting time to predict the air mass trajectory in 

the next 48 hours. It can be seen from the figure that 

the location and time of each track can be obtained by 

HYSPLIT. 

 
2 https://nomads.ncep.noaa.gov/pub/data/nccf/com/hysplit 

 

Figure.1: trajectory analysis chart (Different colored 

lines in the figure represent trajectories of different 

heights.) 

2.2. Problem statement 

AQP task: Given region locations L , station locations 

, geomorphic feature 
,a igf , in hours of pollutant 

concentration data con , in out +  hours of 

weather data wd , and the AQP task aims to forecast 

the pollutant concentrations of stations for the next 

out  hours, where in  denotes the length of 

historical time window and out  denotes forecasting 

horizon. 

3. METHODOLOGY 

3.1. AQP model framework 

Existing AQP methods based on GNN [13, 18] mostly 

simulate the spatial relations among stations by 

constructing a flat static graph. In order to overcome 

the shortcomings of flat static graphs, we build an 

encoder-decoder architecture based on dynamic 

multi-granularity spatiotemporal graph by referring to 

literature [21], as shown in figure 2. In the encoding 

stage, multi-granularity graph network is used to learn 

the spatial relationship among stations and LSTM 
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network is used to learn its temporal relationship. In 

the decoding stage, auxiliary data and attention 

mechanism are used to enhance LSTM forecasting 

learning and decode the future pollutant concentration 

value. This framework fully considers three key factors 

affecting air quality, namely, meteorology, space and 

time. Among them, the multi-granularity 

spatiotemporal graph neural network (as shown in 

figure 3) is the focus. 

 
Figure.2: Framework diagram of AQP model 

 

 

Figure.3: Multi-granularity spatiotemporal graph neural network 



3.2. Spatiotemporal graph construction 

We propose a multi-granularity spatiotemporal graph 

network (MGST_GNN) by referring to reference [20]. 

Assume that V  is the set of nodes, E  is the set of 

connected edges among nodes, and u  is the global 

attribute of a station-level partial subgraph. MGST_GNN 

can be divided into global and partial granularity graph 

structures. Global graph and partial subgraph interact 

through message passing mechanism. Partial 

subgraph’s information is upper delivery to the global 

graph; the global graph’s information lower updating to 

the partial subgraph. In each time period, MGST_GNN 

will calculate the attribute of each global node and use 

it to update the corresponding partial node attribute. 

For each region of the partial subgraph, we calculate 

the overall air quality information representation of the 

regions at each time slot, forming a sequence sent to 

the LSTM to get the representations of current and 

historical pollutant concentration. 

Taking the AQP of all stations in a city as an example, 

all stations in the city are clustered according to their 

longitude and latitude information to obtain N  
categories, that is, N  regions are clustered. Therefore, 

each region can be used as a node in the global graph, 

and each station in the region can be used as a node in 

the partial subgraph. A graph composed of region-level 

nodes is called a global graph, while a graph composed 

of station-level nodes is called a partial subgraph. From 

this, a multi-granularity graph network can be 

constructed. 

1. Attribute definitions of graph node 

To the node in the global graph, its attribute is the 

pollutant concentration value of the node region. To 

the node in partial subgraph, its attribute is composed 

of the pollutant concentration value of the node station, 

GF and TF. 

2. Edge and attribute definitions of graphs 

Wind speed, wind direction, rainfall and other 

meteorological data have a decisive influence on the 

horizontal transmission of pollutants. To make use of 

this domain knowledge, we adopt the air quality model 

HYSPLIT to learn the relationship among nodes and 

build dynamic connection edges. Taking the edge 

calculation of global graph as an example, the city is 

divided into grids according to the clustered regions, so 

that each region falls into a unique grid. For each region 

(node av ), HYSPLIT is used to calculate all trajectories 

starting from av  and stepping in hours within the 

next time t. Track the time when each trajectories 

crosses the grid where the node is located, and record 

the number of pass trajectories and crossing time of the 

grid from other nodes except av , and dynamically 

construct the global connection edge and its attribute 

vector. Repeat these steps until each station is analyzed 

as a starting point. For example, taking 1v  as the 

starting point, using HYSPLIT to calculate that there are 

5 trajectories passing through 2v  in the following 48 

hours, and the time interval is 1 hour, 3 hours, 4 hours, 

8 hours and 48 hours in the future, then the edge 

relationship between node 1v  and 2v  is formed, 

and its attribute vector is: 12e

=[1,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]. From 12e , we can 

get the specific impact time of node 1v  to 2v . It is a 

dynamic, specific and accurate edge attribute, which is 

calculated by the mechanism model according to the 

meteorological conditions and geographical location. 

Station-level partial subgraph edge and attribute 

calculation are similar.  

3.3. Modeling of spatial dependencies 

MGST_GNN can model spatial dependencies with 

different granularities by message passing mechanism, 

which mainly includes message aggregation and 

description updating. Message aggregation is shown as 

follows: 

( ) ,
N( )

, ,a s a a s
s a

M x x e


=  (1) 

( )a am M
 

(2) 

where，
aM  denotes the set of all the messages 

passed to node av ; ax is the attribute of node av ; 

sx  is the attribute of a neighbor node; ,a se  is the 

edge attribute; ( )a denotes the neighbor node set of 

node av  (Dynamically determined by HYSPLIT 



trajectory)； am  is the aggregation vector of node 

av ;  （） denotes aggregate function. 

Description updating is shown below： 

( )

( )

1

, 2 , ,

, ,

, , ,

a a a

a i a i a i a

x m x

in global graph

x m x u

in partial graph





 



 




 (3) 

where， 1 2and  denote update function; ,a im  is the 

aggregation vector of node ,a iv  in the a - th  partial 

subgraph; ,a ix  is the attribute of node ,a iv  in the 

a - th  partial subgraph; 
au is the global attribute of 

a - th  partial subgraph; the 1 2and  can be 

implemented using different FNNs. 

The specific message aggregation method is from 

the partial subgraph to the global graph. The 

information transmitted from the partial subgraph 

includes the current and historical pollutant 

concentration values, and the average method is 

adopted to aggregate the information transmitted from 

the partial subgraph: 

a

t

ia

t

a Siconmeancon = 1),( ,
 (4) 

where, 
t

acon  denotes the aggregate value at time 

t  of node av  in the global graph; 
t

iacon ,
 

denotes the pollutant concentration value at time 

t  of node 
,a iv ; 

aS  is the number of nodes of 

the a - th  partial subgraph. To node in the global 

graph, message aggregation is used to calculate the 

global representation of pollutant concentration in each 

time slot, thus forming a series of sequences:

 Naconconcon t

a

t

a

t

a
inin 
+−+−

1|,,,
21 

 

These sequences are then fed into the global LSTM to 

learn the current and historical representations. 

The specific description updating method is to 

update the partial subgraph using the global graph. The 

information transmitted from the global graph includes 

the historical pollutant concentration values of all 

regions. At each time slot, the output of the global 

graph is fed into the FNN to obtain a downward update 

vector, which is used to update the global attribute u  

of the partial subgraph. The u  include meteorological 

parameters and downward update vector, which are 

used in the partial subgraph by message passing. 

Therefore, the nodes in the station-level partial 

subgraph can make use of the historical information of 

neighbor nodes in the region-level global graph. 

3.4. Modeling of temporal dependencies 

In order to capture the temporal dependence, we adopt 

an encoder-decoder architecture, as shown in figure 1. 

In each time slot, node attributes in the partial 

subgraph form a sequence 

 1 2

, , , ,, , , |1 ,1in int t t

a i a i a i a i aX x x x a N i S
 − + − +

=     . That is, each 

time slot in the historical has a corresponding node 

attribute. The LSTM in the encoder uses 
iaX ,

 as the 

input and the final state of the LSTM as the input of the 

decoder. The input of the LSTM in the decoder includes 

not only the output of the encoder, but also the node 

attribute in the partial subgraph. The output of LSTM in 

the decoder is used as the input of FNN, and FNN 

outputs the predicted pollutant concentration value in 

the future out  time slot. 

To make better use of temporal characteristics, 

temporal attention mechanism is introduced in the 

decoding stage to learn the dynamic temporal 

correlation between future time and historical time. 

Give the hidden state −

1th  and cell state −


1tc  of the 

LSTM in the decoder at time  −1t , then at time t , the 

attention weight of the hidden state th  output by the 

encoder is calculated as follows: 

( )   − −
  = + + 1 1tanh ;t T

t t t tv W h c Uh b  (5) 

( )
( )










=

=

 1

exp

exp

t

tt

t T t

tt

 (6) 

where，
t

t  is the attention weight; , , ,v b W U are 

the parameters to be learned. Through the above 

formula (5) and (6), the attention weight of all historical 



hidden states in the encoder can be calculated, and 

then, the hidden state th  is weighted and summed to 

obtain the time context vector c ： 

1

T t

t t tt
c h =
=  (7) 

The output result −1
ˆ
to  at time 1t−  of 

decoder, the meteorological data twd   at time t , 

the time feature ttf   and the time context vector tc   

are connected as the input for the LSTM of the decoder 

at time t , and it is used to update the hidden state 

th : 

 ( )     − −
 = 1 1

ˆLSTM h , ; ; ;t t t t t th o wd tf c (8) 

4. EXPERIMENTS 

4.1. Experimental datasets 

Jinan database (JN)：JN is a city-level data set collected 

by us in projects. Jinan is located in the middle of 

Shandong Province, China. There are 130 air monitoring 

stations in Jinan. Each station outputs the 

concentration values of pollutants (PM2.5, PM10, SO2, 

CO2, Co, O3) and meteorological parameters (rainfall, 

surface pressure, temperature, humidity, wind speed 

and wind direction) every hour. We collected the 

historical monitoring data of 130 stations in Jinan from 

January 1st, 2019, to January 1st, 2022, as the training 

and test set. 

We divide the 130 stations into 13 regions, and the 

global graph consists of 13 regions. Each region is used 

as a global node in the global graph. The stations in 

each region form a partial subgraph, and the stations in 

the region are the nodes of the partial subgraph. 

Yangtze River Delta city group database (YRD): The 

city group contains ten cities: Shanghai, Hangzhou, 

Suzhou, Ningbo, Shaoxing, Jiaxing, Wuxi, Zhoushan, 

Nantong, and Huzhou. We used air pollution prediction 

system3 to collect historical pollutant concentration 

values and meteorological parameters of corresponding 

stations, and the time span was from January 1th, 2019, 

to December 31th, 2022. Therefore, we collected 3 

years of historical monitoring data as the training and 

test set. Each city in the Yangtze River Delta city group 

 
3 http://airprediction.urban-computing.com 

is a global graph node, and each station in the city is a 

node of the corresponding partial subgraph.  

Geographic features and weather forecast data are 

obtained by: Geographic features are collected from 

the map engine of AMAP4.The perception radius is set 

to 1000 m. 

Weather forecast data are collected from the Air 

Resources Laboratory （ ARL ） 5 .This website can 

download the meteorological forecast data for the 

following 26 days at most, with an accuracy of 0.25
0.25 degrees, which can be updated four times a day. 

4.2. Experimental settings 

We split the dataset into training data, validation data, 

and test data by the radio of 0.7:0.1:0.2. We choose 

Adam [23] as the optimizer in the training phase. During 

the training phase, the batch size is set to 128 and the 

epoch size is set to 500, and use RMSprop [19] for 50 

epochs with learning rate as 5−4. The hidden size of 

GNNs is set to 32, and the hidden state size of LSTMs is 

set to 64.  

We implement our method by PyTorch [24], 

constructing GNNs with PyTorch geometric library [25] 

and implement HYSPLIT trajectory analysis and edge 

weight construction with PySplit [22]. The code is 

released on GitHub. A server with one CPU 

(Intel®Xeon®Platinum), and one GPU (NVIDIA Tesla T4) 

accomplishes all computing tasks. 

We introduce two metrics: mean absolute error 

(MAE) and symmetric mean absolute percentage error 

(SMAPE) to evaluate the performances of methods. In 

the experiments, we utilize previous 48-hour 

observations and select the results of 1 hour, 6 hours, 

12 hours, 18 hours, 24 hours, 36 hours and 48 hours 

ahead forecasting to report. All experiments are 

repeated 5 times to avoid contingency. Figure 4 depicts 

the predicted PM 2.5 and O3 concentrations and their 

corresponding real values of a station in Jinan city from 

00:00 on January 2nd, 2021 to 23:00 on January 3rd, 

2021 for consecutive 48 hours. From figure 4, we can 

see that it is easier to predict O3 concentration than 

PM2.5, because O3 has more periodic regularity and 

stability than PM2.5. Therefore, the subsequent 

experiments were carried out with the forecasting of 

PM2.5 concentration. 

 

 
4 https://lbs.amap.com/api/webservice/guide/api/search/ 

5 https://nomads.ncep.noaa.gov/pub/data/ 



 

（a）PM2.5 

    

（b）O3 

Figure.4: 48 - hour predicted value versus true value 

4.3. Multi-source factor evaluation 

To verify the effectiveness of multiple factors, we 
compare MGST_GNN with three variants, each of which 
removes one kind of factors. Specifically, MGST_GNN 

w/o wdf  removes meteorological forecast data; 

MGST_GNN w/o tf  removes time feature and 

MGST_GNN w/o gf  removes geomorphic feature. 

The performances of MGST_GNN and its variants 

are given in Table 2, as can be seen from the table: 

MGST_GNN outperforms the other three variants, 

indicating that all factors can improve the performance 

of AQP. The rank of the effectiveness of factors is WD > 

TF> GF. The result shows that air quality is mostly 

impacted by weather conditions. 

4.4. Model Component Evaluation 

To explore the effectiveness of different components, 

we compare MGST_GNN with three variants:  

MGST_GNN w/o multi granularity, which removes 

the global graph and the corresponding interactions, i.e., 

the region representation is removed from the global 

attributes of the partial subgraphs; 

MGST_GNN w/o HYSPLIT, which removes dynamic 

edge weight vector by HYSPLIT and use vector of wind 

direction and distance instead; 

MGST_GNN w/o taLSTM, which removes temporal 

attention mechanism based LSTM at the decoder, and 

directly use LSTM instead.  

The performances of MGST_GNN and its variants 

are given in Table 3, as can be seen from the table: 

MGST_GNN outperforms MGST_GNN w/o multi 

granularity in all metrics. The result indicates that the 

air quality of adjacent regions is beneficial, which can 
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be used to model the diffusion processes of air 

pollutants from adjacent regions. 

MGST_GNN outperforms MGST_GNN w/o HYSPLIT. 

The result indicates that compared with taking wind 

direction and distance as the edge weight vector, using 

HYSPLIT to dynamically adjust the weights of edges is a 

more effective strategy, which can model the effect 

patterns of wind direction on air pollutant diffusion 

with domain knowledge. 

The attention mechanism based LSTM at the 

decoder is helpful for longer-term forecasting, but for 

short-term forecasting. 

Table.2 

the results of factor evaluation based on JN database 

method Metric 1h 6h 12h 18h 24h 36h 48h 

MGST_GNN 

MAE 6.15 15.24 20.56 25.62 34.83 43.98 52.06 

SMAPE 0.07 0.10 0.14 0.19 0.26 0.33 0.46 

w/o wdf  

MAE 7.06 17.17 23.68 29.33 38.56 46.70 53.78 

SMAPE 0.07 0.11 0.16 0.21 0.28 0.35 0.47 

w/o tf  

MAE 6.76 17.16 23.56 28.45 34.96 45.55 52.01 

SMAPE 0.07 0.11 0.16 0.20 0.26 0.34 0.46 

w/o gf  

MAE 6.71 16.78 22.56 28.64 34.95 46.56 52.11 

SMAPE 0.07 0.11 0.15 0.20 0.26 0.35 0.46 

Table.3 

the results of model component evaluation based on JN database 

method Metric 1h 6h 12h 18h 24h 36h 48h 

MGST_GNN MAE 6.15 15.24 20.56 25.62 34.83 43.98 52.06 

SMAPE 0.07 0.10 0.14 0.19 0.26 0.33 0.46 

w/o multi 

granularity 

MAE 7.12 17.10 23.59 28.02 34.95 48.02 53.58 

SMAPE 0.08 0.12 0.16 0.21 0.26 0.36 0.47 

w/o HYSPLIT 

MAE 7.16 18.06 23.59 28.16 34.76 48.35 53.02 

SMAPE 0.08 0.13 0.16 0.21 0.26 0.36 0.47 

w/o taLSTM 

MAE 6.15 15.85 21.56 28.64 34.96 43.16 52.25 

SMAPE 0.07 0.10 0.15 0.21 0.26 0.33 0.46 

 



4.5. Comparison with other prediction 

methods 

To verify the advanced nature of our method, we 

compare MGST_GNN with the methods HighAir[20], 

PM2.5-GNN[21], GC-DCRNN[18], GC-LSTM[17], 

ST-UNet[26], and STA-LSTM[7]. 

The performances of MGST_GNN and other 

prediction methods are given in Table 4 and 5, as can 

be seen from the table: 

MGST_GNN outperforms GC-DCRNN, GC-LSTM and 

ST_UNet, especially in long-term forecasting. It 

indicates that a multi-granularity structure can model 

spatial dependencies more effectively than a flat 

structure. The reason is that the multi granularity graph 

not only considers the local impact of neighboring 

stations on the prediction station, but also the global 

impact of different regions on the prediction station, 

which makes the mining of spatial relationships more 

sufficient.  

MGST_GNN outperforms HighAir. This is because in 

the aspect of spatial relationship learning, MGST_GNN 

uses the professional HYSPLIT model to build edge 

weight vector. It comprehensively uses meteorological 

and topographical conditions to calculate the influence 

relationship among nodes and the specific influence 

time, making the construction of spatial relationship 

more accurate and delicate. HighAir simply uses wind 

direction and distance to construct rough edge weight 

vector. In terms of temporal relation learning, 

MGST_GNN adds time feature, and uses the attention 

mechanism based LSTM in decoder. HighAir simply uses 

LSTM to build temporal relationships.  

MGST_GNN outperforms PM2.5-GNN. This is 

because MGST_GNN uses a multi-granularity 

spatiotemporal graph network and combines 

meteorological data, topographic features, time 

features and professional models to construct node and 

edge attributes. However, PM2.5-GNN is only a 

single-granularity spatiotemporal graph network. In the 

construction of edge attributes, although they make 

use of domain knowledge, they simply list part of the 

influencing factors, which is still insufficient. When 

building node attributes, they only use meteorological 

data.  

Table.4 

Model comparison results based on JN database 

method Metric 1h 6h 12h 18h 24h 36h 48h 

MGST_GNN MAE 9.23 19.37 23.87 30.81 39.52 47.69 56.13 

 SMAPE 0.09 0.13 0.15 0.22 0.32 0.35 0.49 

HighAir MAE 9.18 19.89 24.57 30.59 41.77 50.36 57.38 

 SMAPE 0.09 0.13 0.16 0.22 0.33 0.36 0.50 

PM2.5-GNN MAE 9.86 20.12 25.54 32.57 10.96 51.09 58.34 

 SMAPE 0.09 0.14 0.16 0.23 0.32 0.37 0.50 

GC-DCRNN MAE 9.56 20.56 26.88 33.47 46.56 54.24 61.82 

 SMAPE 0.09 0.14 0.17 0.24 0.35 0.39 0.52 

GC-LSTM MAE 10.05 21.35 26.53 34.68 45.59 54.98 60.76 

 SMAPE 0.10 0.15 0.17 0.24 0.35 0.39 0.51 

ST-UNet MAE 9.86 21.69 25.94 30.87 43.54 54.87 59.25 

 SMAPE 0.09 0.15 0.16 0.22 0.34 0.39 0.51 



STA-LSTM MAE 10.14 22.08 26.76 34.96 45.67 53.78 62.08 

 SMAPE 0.10 0.16 0.17 0.25 0.35 0.38 0.52 

 

Table.5 

Model comparison results based on YRD database 

method Metric 1h 6h 12h 18h 24h 36h 48h 

MGST_GNN MAE 7.16 17.29 21.25 27.92 36.97 45.28 54.73 

SMAPE 0.08 0.12 0.14 0.20 0.27 0.34 0.48 

HighAir 

MAE 7.12 17.83 22.65 27.49 38.85 48.36 55.68 

SMAPE 0.08 0.12 0.15 0.20 0.29 0.36 0.49 

PM2.5-GNN 

MAE 7.15 18.09 23.14 29.57 37.96 48.99 56.12 

SMAPE 0.08 0.13 0.15 0.21 0.28 0.36 0.50 

GC-DCRNN 

MAE 7.56 18.56 24.88 30.67 43.26 51.84 60.02 

SMAPE 0.08 0.13 0.17 0.22 0.33 0.45 0.53 

GC-LSTM 

MAE 8.13 18.97 24.53 31.52 42.51 51.98 58.96 

SMAPE 0.09 0.13 0.17 0.22 0.33 0.45 0.52 

ST-UNet 

MAE 7.22 18.69 23.36 27.86 40.16 51.97 57.85 

SMAPE 0.08 0.13 0.16 0.20 0.32 0.45 0.51 

STA-LSTM 

MAE 8.15 19.21 24.62 31.96 42.87 50.68 60.37 

SMAPE 0.09 0.14 0.17 0.23 0.33 0.37 0.53 

 

5. CONCLUSION 

In this paper, the influence of meteorological, spatial 

and temporal factors on AQP is fully considered, and an 

encoder-decoder architecture based on 

multi-granularity spatiotemporal graph network is 

proposed to predict pollutant concentration over a long 

period of time. Compared with the existing models, the 

striking characteristic of this paper is that the 

meteorological, spatial terrain and time factors are 

considered comprehensively through the professional 

air quality model, while other models take the 

influencing factors as the splitting parameter input.  

That is, the model in this paper integrates the 

advantages of mechanism model and machine learning, 

and namely it is a comprehensive model. The 

experimental results show that the proposed model is 

of progressiveness and has good applicability. 
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APPENDIX 

A.1 DATA AUGMENTATION AND 

EXPERIMENTATION 
Aiming at the difficulty of collecting training samples for 

air quality prediction, we use the method of data 

augmentation to reconstruct samples. Due to the 

distribution difference between real weather data and 

forecast weather data, Gaussian noise is introduced to 

the meteorological data in the sample to enhance the 

data and improve the generalization ability of the 

model. In addition, due to the influence of monitoring 

instruments, environment and other factors, the 

pollutant concentration values collected may be biased. 

Therefore, the pollutant concentration values of 

samples are disturbed up and down by 1 metric to 

enhance the number of samples and improve the 

model generalization ability. Therefore, Gaussian noise 

is introduced into meteorological data and random 

perturbation is for pollutant concentration data to 

enhance the samples by three times. The specific 

augmentation methods are shown in Table 5. Finally, 

26136 samples were obtained from JN and YRD 

respectively. 

In order to verify the data augmentation effect, we 

conduct a comparison experiment between data 

augmentation and non-data augmentation, as shown in 

Table 6, where w/o DA indicates that data 

augmentation technology is not used. As seen from 

Table 6: using our data augmentation method, the 

effect is effectively improved. 

A.2 ABLATION STUDY AND 

EXPERIMENTATION 
In this paper, we are the first to use the professional 

model HYSPLIT to build the graph dynamically. 

Therefore, this appendix section will demonstrate the 

effectiveness of using HYSPLIT to construction graph 

dynamically through ablation experiments. Specifically, 

the ablation experiment was conducted based on the 

current advanced spatiotemporal graph neural network 

HighAir and PM2.5-GNN. In HighAir, it uses the distance 

among nodes to statically construct the edge of the 

graph, and uses the wind direction information 

between nodes to calculate the edge attribute vector. 

Therefore, we use HYSPLIT instead of the graph 

construction method in HighAir. In PM2.5-GNN, it uses 

the distance between nodes and the altitude of the 

position to statically construct the edge of the graph, 

and uses the parameter of domain knowledge between 

nodes to calculate the edge attribute vector. Therefore, 

we use HYSPLIT instead of the graph construction 

method in PM2.5-GNN. The experimental results are 

shown in Table 7, where HighAir_HYSPLIT and 

PM2.5-GNN_HYSPLIT respectively indicate that HYSPLIT 

is used to replace the original graph construction. As 

can be seen from the table, HYSPLIT builds dynamic 

graphs better than static graphs of HighAir and 

PM2.5-GNN.  

In order to further verify the effectiveness of using 

HYSPLIT to dynamically construct graph, especially its 

advantages for air quality prediction in complex 

scenarios such as abrupt change in pollutant 

concentration. We develop a Dataset-mini, where we 

focus on heating season (November to February). 

Dataset-mini is more challenging for two reasons. Firstly, 

during winters, heating emissions can dramatically 

increase the frequency of air pollution occurrence. 

Secondly, the direction of prevailing wind is north or 

northwest, which contributes to pollutant’s 

long-distance transport from North China to South 

China. The results in Table 9 show that using HYSPLIT to 

dynamically construct graph can significantly improve 

the accuracy of the model's air quality prediction on 

sudden changes in pollution and regional impacts 

caused by strong winds. This method eliminates the 

construction process of specially designed auxiliary 

network to learn the edges of graph and provides a new 

way for the construction of graph neural network, 

which can be easily extended to other spatiotemporal 

forecasting tasks. For example, in water quality 

prediction, a professional hydrodynamic model (MIKE) 

can be used to dynamically construct the graph 

structure, so as to better learn the influence of water 

quality in different regions on the prediction points. 
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Table.5 

List of sample augmentation 

Sample type             Augmentation  type Meteorological data 

plus noise 

Concentration value 

disturbance 

The original sample - - 

Sample 1 √ - 

Sample 2 - √ 

Sample 3 √ √ 

Table.6 

the MAE results of data augmentation evaluation based on JN database 

method Pollutant 

category 

1h 6h 12h 18h 24h 36h 48h 

MGST_GNN 

pm2.5 6.15 15.24 20.56 25.62 34.83 43.98 52.06 

O3 5.06 13.36 17.14 22.16 29.90 37.93 44.61 

w/o DA 

pm2.5 6.25 16.97 22.18 28.23 36.96 46.31 54.69 

O3 5.11 14.84 18.86 23.72 30.78 39.19 48.07 

Table.7 

ablation experiment result based on YRD database 

method Metric 1h 6h 12h 18h 24h 36h 48h 

HighAir 

MAE 7.12 17.83 22.65 27.49 38.85 48.36 55.68 

SMAPE 0.08 0.12 0.15 0.20 0.29 0.36 0.49 

HighAir_HYSPLIT 

MAE 7.12 17.26 21.18 27.50 37.65 46.58 54.75 

SMAPE 0.08 0.12 0.14 0.20 0.28 0.35 0.48 

PM2.5-GNN 

MAE 7.15 18.09 23.14 29.57 37.96 49.21 56.12 

SMAPE 0.08 0.13 0.15 0.21 0.28 0.37 0.50 

PM2.5-GNN_HYSPLIT 

MAE 7.13 18.01 22.79 29.05 36.97 47.95 55.52 

SMAPE 0.08 0.13 0.15 0.21 0.27 0.35 0.49 



Table.8 

ablation experiment result based on Data-mini 

method Metric 1h 6h 12h 18h 24h 36h 48h 

HighAir 

MAE 8.02 20.14 27.55 35.27 44.18 56.46 65.47 

SMAPE 0.08 0.14 0.20 0.27 0.33 0.50 0.59 

HighAir_HYSPLIT 

MAE 7.86 18.73 25.17 32.94 40.49 50.97 56.17 

SMAPE 0.08 0.13 0.18 0.25 0.30 0.37 0.51 

PM2.5-GNN 

MAE 8.11 21.30 27.96 34.66 43.88 57.69 67.08 

SMAPE 0.09 0.14 0.20 0.27 0.33 0.51 0.60 

PM2.5-GNN_HYSPLIT 

MAE 7.95 19.06 26.14 32.99 40.85 50.89 55.78 

SMAPE 0.08 0.13 0.19 0.25 0.30 0.37 0.51 

 


