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Abstract
Woo Cahng KimModeling time series data is a fundamental challenge across various domains due to the intrinsic temporal dimension.
Despite significant strides in time series forecasting, high noise-to-signal ratio, non-normality, non-stationarity, and lack of data
continue challenging practitioners. To address these, we introduce a simple representation augmentation technique. Our augmented
representation acts as a statistical-space prior encoded at each time step. Accordingly, we term our method Statistical-space Augmented
Representation (SSAR). The underlying high-dimensional data-generating process inspires our representation augmentation. We
rigorously examine the empirical generalization performance on two data sets with two downstream temporal learning algorithms. Our
approach significantly beats all five up-to-date baselines. Furthermore, our approach’s modular design facilitates easy adaptation to
diverse settings. Lastly, we provide comprehensive theoretical insights throughout the paper to underpin our methodology with a clear
and rigorous understanding.
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1. Introduction
Time series forecasting is crucial across multiple domains
such as finance [1], meteorology [2], and manufacturing [3].
Simple time series that are less stochastic and dependent on
a tractable number of variables exist. Research primarily tar-
gets time series with complex, high-dimensional dependen-
cies. Often, the true set of causal factors, 𝒳 , is intractable—
i.e., unknown or known but impractical to compute. On top
of this, complex time series structures, 𝑝(y ∈ 𝒴|x ∈ 𝒳 ),
often exhibit non-stationarity— challenging modeling.

Initially, methods like the vector autoregressive (VAR)
model [4, 5] dominated multivariate forecasting. Extensions
like the vector error correction model (VECM) [6] addressed
some limitations of VAR models, but assumptions like non-
stationarity still posed challenges. Despite their widespread
use, these statistical models have caveats, particularly vis-à-
vis their underlying statistical property assumptions. Thus,
any analysis using these models requires examination of
these assumptions—especially the non-stationary assump-
tion, potentially requiring transformations to the data.

In response, neural network-based sequential models
have become popular in the past decade. Their main ad-
vantage is that a universal function approximator flexibly
captures high-dimensional non-linear dependency struc-
tures [7]. The most widely tested and verified for time
series forecasting are Recurrent Neural Network (RNN) [8]
architectures—with flagship examples being Long Short-
Term Memory (LSTM) [9] and Gated Recurrent Unit (GRU)
[10]. Both LSTM and GRU are part of our baseline.

More recently, with the out-performance of attention
mechanism-based models like transformers in other sequen-
tial tasks such as natural language processing (NLP) [11] and
speech recognition [12], numerous transformer-based time
series forecasting models have been developed. Some sig-
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nificant examples include the FEDformer [13], Autoformer
[14], Informer [15], Pyraformer [16], and LogTrans [17]. De-
spite the research interest, a timely oral presentation at the
AAAI conference [18] showed strong evidence that Linear,
Normalization Linear (NLinear), and Decomposition Linear
(DLinear) architectures significantly outperform the afore-
mentioned transformer-based models. This study showed
robust multi-variate out-performance across Traffic, Elec-
tricity Transformer Temperature (ETT), Electricity, Weather,
Exchange Rate, and Influenza-like Illness (ILI) datasets. All
three [18]’s models are included in our baseline.

Despite the success of neural-network-based approaches,
we observed a lack of literature explicitly targeting the non-
stationary and stochastic nature through a simple, theoreti-
cally elegant approach.

In response, our contribution to the literature is summa-
rized as follows:

• Develop an easily reproducible augmented repre-
sentation technique, SSAR, that targets modeling
complex non-stationary time series

• Clear discussion of the theoretical need for augment-
ing the input space and why it works well against
baselines

• Theoretical discussion of the method’s inspiration—
the data-generating process of high-dimensional
time series structure

• To our knowledge, first to leverage (asymmetric)
information-theoretic measures in modeling the
statistical-space

• Out-sample improvement vis-à-vis performance and
stability against up-to-date baselines: (i) LSTM, (ii)
GRU, (iii) Linear, (iv) NLinear, (v) DLinear

• Out-sample empirical results tested on two data sets
and two downstream temporal graph learning algo-
rithms

• Present a theoretically unified view with related
work, suggesting that SSAR implicitly smooths
stochastic data
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Figure 1: 5 variable example (left: theoretical view, right: representational view)

2. Related Works
Our work is related to temporal graph learning algorithms
as our approach transforms a vector-based time series rep-
resentation into a graph-based one. Then, a downstream
graph learning algorithm is inducted to make predictions.
Fundamentally, multi-layer perceptrons (MLPs) are incom-
patible with graph representations. However, graphs nat-
urally represent various real-world phenomena [19]. E.g.,
social networks [20], chemical molecules [21], and traffic
systems [22] inherently possess graphical structures. Graph
Neural Networks (GNNs) bridge this gap, enabling learning
directly from graphical structures. Contrary to works with
predefined edge sets ℰ , we derive ℰ from historical vertex
values 𝒱 . The closest past work is [23], where they gen-
erate Pearson correlation-based ℰ with 𝒱 . However, their
ℰ specifically proxies inter-company relations, tailored to
their domain. Additionally, their 𝑒 ∈ ℰ are non-directed
and symmetric. In contrast, our approach is (i) domain-
agnostic, (ii) employs a simple representation augmentation
to surpass state-of-the-art, (iii) modular with broad algo-
rithm compatibility, (iv) incorporates directed asymmetric
measures for ℰ , and (v) emphasizes theoretical analysis of
the augmentation mechanism.

3. Preliminary: Complex Time Series
Modeling complex time series via neural networks presents
three key challenges: (i) incomplete modeling, (ii) non-
stationarity, and (iii) limited data-generating process access.

Let 𝑝(𝒴𝑡|𝒳 𝑡−𝑀 ) be the true probability structure we
want to learn. Here, 𝒴𝑡 is defined by the modeler as the
variables of interest. Unlike 𝒴𝑡, 𝒳 is intractable for com-
plex problems as (i) it is too large to be computed realisti-
cally, but more pressingly (ii) it is unknown a priori. There-
fore, we typically use heuristics or empirical evidence to
identify 𝒳̂ . Since we are forecasting, we use lagged val-
ues with 𝑀 indicating the temporal magnitude of the most
lagged value. Then, with a learner parameterized by 𝜃, via
maximum likelihood estimation we train for 𝑝̂𝜃(𝒴𝑡|𝒳̂ 𝑡−𝑀

)

where 𝑝̂𝜃(𝒴𝑡|𝒳̂ 𝑡−𝑀
) ≈ 𝑝(𝒴𝑡|𝒳̂ 𝑡−𝑀

). Often, due to 𝒳 ’s
intractability, in vector form, we set x̂[, :] := y[, :], using
output-space’s lagged values as input-space. We use this
heuristic in our study and explain why this is a reason-
able assumption in the Appendix. Since x̂ is a tractable
approximation to the true input-space, we face the partial
observation and incomplete modeling problem. This un-
derlies much of the stochasticity and poor performance in

forecasting high-dimensional structures. For domains that
aggregate information on the global-level—like financial
and climate time series, it is fair to assume that |𝒳 | −→ ∞,
dramatically raising the difficulty.

On top of this, we have a second, more pervasive
challenge—non-stationarity. Non-stationarity is defined
as 𝑝𝑡(𝒴|𝒳 ) ̸= 𝑝𝑡

′
(𝒴|𝒳 ) where 𝑡 ̸= 𝑡′. The cause of

non-stationarity could be from partial observability. Fig-
ure 1’s left diagram summarizes this problem. Note that
the distributions are 1-dimensional for a simplified visual
depiction. This poses a significant challenge to neural-
network-based approximators 𝑝̂𝜃(𝒴|𝒳 ) as MLPs—the build-
ing block—inherently work on stationary data sets.

The final challenge involves neural-network-based func-
tion approximators 𝐹𝜃 : 𝒳 ↦→ 𝒴 . The cost for a highly
flexible function approximator 𝐹𝜃 is the large |𝜃|. Con-
sequently, as |𝜃| rises, the size of the data set |𝒟| should
also rise, allowing 𝐹𝜃 to generalize out-sample better. I.e.,
better approximate 𝑝(𝒴|𝒳 ). Ideally, 𝜕|𝐷|

𝜕|𝜃| > 0, but rais-
ing |𝐷| arbitrary is often intractable for complex time se-
ries. There are cases where reasonable simulators exist for
the data-generating process 𝑝(𝒴|𝒳 ), especially when 𝒳 is
tractable and the transition function is well approximated
by rules. A representative example is physics simulators
in the robotics field [24], where the simulator models the
real-world, 𝑝𝑠𝑖𝑚(𝒴|𝒳 ) ≈ 𝑝(𝒴|𝒳 ). Correspondingly, we
require a world simulator for complex time series with an in-
tractably high-dimensional data-generating process. Since
we have no world simulator, raising |𝒟| requires time to
pass. Therefore, we are restricted with a finite, lacking 𝒟.

4. Methodology

4.1. Statistical-space Augmented
Representation

In response to these three challenges, we apply our method,
SSAR. We rigorously examine how SSAR overcomes each
challenge in Section 4.3. A high-level overview of SSAR in-
volves: (i) selecting a statistical measure, (ii) computing this
measure 𝑚(y|x, 𝑡, 𝑤𝑠) for each time 𝑡 with sliding window
𝑤𝑠, (iii) generate a graph 𝒢𝑡 where vertices 𝑛 ∈ 𝒱𝑡 repre-
sent variables at 𝑡, and weight of edges 𝑤(𝑒), where edges
𝑒 ∈ ℰ𝑡, represent 𝑚(y|x, 𝑡, 𝑤𝑠). Then, with spatiotemporal
graph 𝒢 :=

⋃︀
𝑡 𝒢

𝑡, any temporal graph learning algorithm
that makes temporal node prediction can be applied.

As seen in Figure 1, right, SSAR : 𝒟 ↦→ 𝒢 where the orig-
inal time series data𝒟 is in vector form d ∈ 𝒟. The per time



Algorithm 1 SSAR
1: Input: D𝑟𝑎𝑤 , 𝑚(·), 𝑤𝑠

2: Output: 𝒢 := {𝒢0, ...,𝒢𝑇−𝑤𝑠−1}
3: Function SSAR(D𝑟𝑎𝑤 , 𝑚(·), 𝑤𝑠):
4:
5: D𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ←− 𝐷𝑎𝑡𝑎𝑃𝑟𝑜𝑐𝑒𝑠𝑠(D𝑟𝑎𝑤)
6: ℱ ←− D𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑.𝑔𝑒𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑒𝑡()
7: 𝑇 ←− D𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑.𝑔𝑒𝑡_𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠()
8: 𝒢 ←− {}
9:

10: for 𝑡 ∈ 𝑇∖{0, ..., 𝑤𝑠 − 1} do
11: 𝒢𝑡 ←− 𝑑𝑖-𝐺𝑟𝑎𝑝ℎ()
12: for ∀𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛⟨𝑓𝑖, 𝑓𝑗⟩ ∈ ℱ do
13: if 𝑓𝑖 /∈ 𝒢𝑡.𝑛𝑜𝑑𝑒𝑠 then
14: 𝒢𝑡.𝑎𝑑𝑑_𝑛𝑜𝑑𝑒(𝑓𝑖)
15: end if
16: if 𝑓𝑗 /∈ 𝒢𝑡.𝑛𝑜𝑑𝑒𝑠 then
17: 𝒢𝑡.𝑎𝑑𝑑_𝑛𝑜𝑑𝑒(𝑓𝑗)
18: end if
19: 𝑤𝑒𝑖𝑔ℎ𝑡←− |𝑚(⟨𝑓𝑖, 𝑓𝑗⟩, 𝑤𝑠, 𝑡)|
20: if weight ̸= 0 then
21: 𝒢𝑡.𝑎𝑑𝑑_𝑒𝑑𝑔𝑒(𝑓𝑖 → 𝑓𝑗 , 𝑤𝑒𝑖𝑔ℎ𝑡)
22: end if
23: end for
24: 𝒢.𝑎𝑝𝑝𝑒𝑛𝑑(𝐺𝑡)
25: end for
26:
27: return 𝒢
28: End Function

step functional view would be 𝒢𝑡 ← SSAR(d[𝑡−𝑤𝑠:𝑡] ∈ 𝒟).
Algorithm 1 details the pseudo-code for SSAR(·). ∀𝑡 d𝑡

is transformed into a weighted, directed graph 𝒢𝑡 =
⟨𝒱, ℰ ,𝒲⟩ where 𝒱 is the set of nodes, |𝒱| = 𝑁 , ℰ is the
set of directed edges, |ℰ| = 𝑁2 − 𝑁 , and the weighted
adjacency matrix 𝒲 ∈ R𝑁×𝑁 . Here, each node 𝑛 ∈ 𝒱
represents a variable (scalar) in x̂ and y. Each 𝑒 ∈ ℰ is a
2-tuple denoted ⟨𝑛𝑖, 𝑛𝑗⟩, 𝑖 ̸= 𝑗, with each tuple correspond-
ing to a permutation pair of nodes. 𝒢𝑡’s |ℰ| = 𝑁2 − 𝑁
as each permutation pair corresponds to a single directed
edge, and nodes cannot direct to themselves. I.e., 𝒢𝑡 is ir-
reflexive. Given that the size of𝒲 is computed excluding
the diagonal elements, where 𝑤 ∈ 𝒲 , 𝑤 ≥ 0 ∈ R,𝒲 is
equivalent in size to ℰ as each 𝑒𝑖𝑗 maps to a single 𝑤𝑖𝑗 . I.e.,
𝑊 : ℰ ↦→ 𝒲 . Here, 𝑤𝑡(𝑛𝑗 → 𝑛𝑖)← 𝑚(𝑛𝑖|𝑛𝑗 , 𝑡, 𝑤𝑠). An
intuitive visualization is available in Figure 2.

4.2. Data-generating Process Meta-physics
SSAR is inspired by the meta-physics of the data-generating
process of complex time series. The data-generating process
refers to 𝑝(·). Access to 𝑝(·) allows for sampling data 𝐷 ∼
𝑝(·) and approximating 𝑝̂𝜃(·) through maximum likelihood
estimation based on 𝐷. On a different note, this abstracted
discussion aims to shed light on how a true 𝑝(·) is derived in
the real world. I.e., it aims to hypothesize on the mechanisms
underlying 𝑝(·), then describe how it inspires our approach.

Consider complex time series as described in the prelimi-
nary section.

Definition 4.1. Complex time series, causal in nature,
is defined as 𝑝(𝒴𝑡|𝒳 𝑡−𝑀 ) where 𝒳 is intractable—i.e.,
|𝒳 | −→ ∞.

Similar to the theoretical nature of 𝑝(·), the concept of

Figure 2: Sample 𝒢𝑡, 𝑁 := 3

𝒳 is also theoretical, given that its variables are human-
defined. This implies that an arbitrary degree of granularity
may describe 𝒳 . I.e., |𝒳 | can be arbitrarily raised larger
until we reach the smallest units of the physical world. For
instance, a high-level event like COVID-19 is an example
of 𝑥 ∈ 𝒳 , which can be further broken down into granular
events like patient zero’s contraction of the virus and so
forth. Given 𝑝(y𝑡|𝒳 𝑡−𝑀 ), consider 𝒳𝑚𝑒𝑎𝑠,𝒳𝑚𝑒𝑎𝑠′ ⊂ 𝒳 ,
where the former is digitally measured by humans in time
series format and the latter comprises the remaining ele-
ments. 𝒳𝑚𝑒𝑎𝑠 ∪ 𝒳𝑚𝑒𝑎𝑠′ ≡ 𝒳 and 𝒳𝑚𝑒𝑎𝑠 ∩ 𝒳𝑚𝑒𝑎𝑠′ = ∅.
In the case of learning algorithms that require numerical
input and output spaces, naturally, y𝑡 ∈ 𝒴 ⊆ 𝒳𝑚𝑒𝑎𝑠 and
x̂ ∈ 𝒳𝑚𝑒𝑎𝑠. Define any information transfer within 𝒳𝑚𝑒𝑎𝑠

as endogenous and any within 𝒳𝑚𝑒𝑎𝑠′ as exogenous to the
system. As not every real-world physical change is digitally
tracked, each endogenous change has its roots in some ex-
ogenous change. With this backdrop, all numerical variables
available to us digitally is a system that absorbs an arbitrary
amount of exogenous shocks ∀𝑡.

Let 𝑥𝑚𝑒𝑎𝑠′ ∈ 𝒳𝑚𝑒𝑎𝑠′ , and 𝑥𝑚𝑒𝑎𝑠 ∈ 𝒳𝑚𝑒𝑎𝑠. Then, a sim-
plified view of the data-generating process can be visualized
in Figure 3. Each node at the top of the diagram represents
𝑥𝑚𝑒𝑎𝑠′ ∈ 𝒳𝑚𝑒𝑎𝑠′ while each node at the bottom represents
𝑥𝑚𝑒𝑎𝑠 ∈ 𝒳𝑚𝑒𝑎𝑠. Within the diagram, |𝒳𝑚𝑒𝑎𝑠′ | −→ ∞ is
indicated via "...". Blue and purple edges show causal chains
in the real physical world. Each dotted edge represents an ex-
ogenous shock to the endogenous system. Non-dotted green
and red edges at each time step represent 𝑝(y𝑡

𝑚𝑒𝑎𝑠|x
𝑡−1
𝑚𝑒𝑎𝑠).

However, since ∃𝑝(x𝑡
𝑚𝑒𝑎𝑠|x𝑡−1

𝑚𝑒𝑎𝑠′) which is unknown,

𝑝(y𝑡
𝑚𝑒𝑎𝑠|x

𝑡−1
𝑚𝑒𝑎𝑠) = 𝑝(y𝑡

𝑚𝑒𝑎𝑠|𝑝(x
𝑡−1
𝑚𝑒𝑎𝑠|x𝑡−2

𝑚𝑒𝑎𝑠′)). (1)

Under this view, all complex time series are inherently
non-stationary and, consequently, incompatible with mod-
els assuming stationarity. Consequently, for models that
require stationary data, we require some tractable function
𝑓(·), 𝑠.𝑡.,

𝑓(·) ≈ 𝑝(x𝑡−1
𝑚𝑒𝑎𝑠|x𝑡−2

𝑚𝑒𝑎𝑠′). (2)

The next section draws inspiration from the inherently di-
rected graphical nature of the data-generating process, as
illustrated in Figure 3, to theoretically unpack our method.



Figure 3: Real-world causal chains

4.3. Prior Encoding: Theoretical View
By the universal approximation theorem [25, 26], any sta-
tionary mapping can be approximated by neural networks.
MLPs and their subsequent architectural innovations im-
plicitly model high-dimensional statistical spaces.

O0 := 𝛼(W𝑇
0 X + b0),

O1 := 𝛼(W𝑇
1 O0 + b1),

O2 := 𝜎(W𝑇
2 O1 + b2), (3)

where 𝜃 = {
⋃︀

W,
⋃︀

b}, X is the input tensor, and 𝛼, 𝜎 are
non-linear activations. Given that neural networks are di-
rected graphs, the explicit representation by SSAR (Figures
1 and 2) can be implicitly captured by (3). Despite this, we
opt for an explicit representation encoded as a Bayesian
prior 𝑝(𝜃). Under the Bayesian view of learning from data,

𝑝(𝜃|𝒟) := 𝑝(𝒟|𝜃)𝑝(𝜃)
𝑝(𝒟) . (4)

This inductive bias—if accurate, can be helpful for general-
ized performance when |𝒟| ≪ ∞. As noted earlier, com-
plex time series feature finite 𝒟, making it challenging to
increase its size.

Our prior encoding ∀𝑡, as visualized in Figure 1, left,
aids learning via overcoming non-stationarity. Since we
are learning the distribution 𝑝̂𝜃(𝒴𝑡|𝒳̂ 𝑡−𝑀

), to capture the
non-stationarity, a natural approach would be to add a sec-
ond parameter, a regime vector r , resulting in learning
𝑝̂𝜃(𝒴𝑡|𝒳̂ 𝑡−𝑀

, r ← 𝑟(𝒴𝑡|𝒳̂ 𝑡−𝑀
)). This involves learning

𝑟𝜃𝑟 (·). In this case,

𝑝̂𝜃(𝒴
𝑡|𝒳̂ 𝑡−𝑀

, r ← 𝑟𝜃𝑟 (𝒴
𝑡|𝒳̂ 𝑡−𝑀

)), (5)

∴ 𝜃𝑡𝑜𝑡 := 𝜃 ∪ 𝜃𝑟, ⇒ |𝜃𝑡𝑜𝑡| > |𝜃| ∵ |𝜃𝑟| ̸= ∅. (6)

Given the small size of 𝒟 relative to 𝒳 , increasing degrees
of freedom without further sampling 𝒟 ∼ 𝑝(·) is not ideal.

An ideal alternative is letting a statistical-space re-
lationship at 𝑡 proxy for 𝑟(·)—i.e., 𝑚(y𝑡 ∈ 𝒴𝑡|x̂ ∈

𝒳̂ 𝑡−𝑀
, 𝑡, 𝑤𝑠) ≈ 𝑟(y𝑡 ∈ 𝒴𝑡|x̂ ∈ 𝒳̂ 𝑡−𝑀

). But, like 𝑟(y𝑡|x̂),
𝑚(y𝑡|x̂, 𝑡, 𝑤𝑠) is unknown a priori. In this case, like 𝑟𝜃𝑟 (·),
we would require a learned approximation 𝑚𝜃𝑚(·), raising
the size of aggregate parameters.

A reasonable and tractable approximation known a priori
that does not raise the parameter count is,

𝑚(y𝑡−1|x̂, 𝑡− 1, 𝑤𝑠) ≈ 𝑚(y𝑡|x̂, 𝑡, 𝑤𝑠) ≈ 𝑟(y𝑡|x̂). (7)

Assuming sufficient granularity in time steps 𝑡,
𝑚(y𝑡−1|x̂, 𝑡− 1, 𝑤𝑠) closely approximates 𝑚(y𝑡|x̂, 𝑡, 𝑤𝑠).
We hypothesize that the trade-off between parameter count
and approximation via 𝑡−1 is advantageous to the learning
system.

Despite identifying a feasible regime-changing approxi-
mator, another problem remains. Representing and passing
𝑚(y𝑡−1|x̂, 𝑡− 1, 𝑤𝑠) via Euclidean geometry significantly
reduces the spatial information inherent to 𝑚(y𝑡−1|x̂, 𝑡−
1, 𝑤𝑠). A natural representation is graphical, like Figure 3—
therefore, we approximate (8) with (9) via (10), (11), and (12).
This transformation, which augments the representation,
theoretically encapsulates SSAR.

𝑝̂𝜃(y
𝑡|x̂, r ← 𝑟(y𝑡|x̂)) ≈ (8)

𝑝̂𝜃(v
𝑡 ∈ 𝒱|v𝑡−𝑀 ∈ 𝒱, e𝑡−𝑀 ∈ ℰ), (9)

v𝑡 := y𝑡, (10)

v𝑡−𝑀 := x̂, (11)

e𝑡−𝑀 ≈ r̂ ≈ r,

where e𝑡−𝑀 ← 𝑚(y𝑡−1|x̂, 𝑡− 1, 𝑤𝑠). (12)

4.4. Statistical-space Measures
Six methods are used to compute 𝑚(y𝑡−1|x̂, 𝑡 − 1, 𝑤𝑠).
The set of measures and corresponding abbreviationℳ :=
{Pearson correlation: Pearson, Spearman rank correlation:
Spearman, Kendall rank correlation: Kendall, Granger
causality: GC, Mutual information: MI, Transfer entropy:
TE}. This set can be divided into correlation-basedℳ𝑠𝑦𝑚

and causal-basedℳ𝑎𝑠𝑦𝑚 measures, which are symmetric
and asymmetric, respectively. ℳ𝑠𝑦𝑚 := {Pearson, Spear-
man, Kendall} ⊂ ℳ, ℳ𝑎𝑠𝑦𝑚 := {GC, MI, TE} ⊂ ℳ,
ℳ𝑠𝑦𝑚 ∪ ℳ𝑎𝑠𝑦𝑚 ≡ ℳ, ℳ𝑠𝑦𝑚 ∩ ℳ𝑎𝑠𝑦𝑚 = ∅. Sym-
metric measure refer to 𝑚(𝑛𝑗 |𝑛𝑖) = 𝑚(𝑛𝑖|𝑛𝑗) ∀⟨𝑖, 𝑗⟩ ∈
ℰ , 𝑖 ̸= 𝑗. Asymmetric refers to the case where 𝑚(𝑛𝑗 |𝑛𝑖) ̸=
𝑚(𝑛𝑖|𝑛𝑗). The asymmetric case is most appropriate for our
use case, as it uses only lagged values, making them a proxy
for causal effects. Embedding 𝑚𝑎𝑠𝑦𝑚(·) fromℳ𝑎𝑠𝑦𝑚 as
weights is more natural as 𝑚𝑎𝑠𝑦𝑚 : 𝒳 × 𝒴 ↦→ R≥0. On
the other hand, 𝑚𝑠𝑦𝑚 : 𝒳 × 𝒴 ↦→ [−1, 1], therefore, we
let 𝑚𝑠𝑦𝑚 ← |𝑚𝑠𝑦𝑚|. We empirically test all six.

The hyperparameter 𝑤𝑠 is inherent to SSAR, as it is re-
quired to compute 𝑚(·). An additional hyperparameter
∃∀ downstream algorithms—𝑀 . Scalar 𝑀 represents the
number of previous time steps fed into the model. In our
case, 𝑀 represents the number of historic graphs as ∃𝒢𝑡 ∀𝑡.
Attaching SSAR with a downstream algorithm involves two
sliding windows: 𝑤𝑠 and 𝑀 . An intuitive visualization is
provided in Figure 4. The computational details ∀𝑚(·) ∈ℳ
are available in the Appendix.



Figure 4: Sliding windows

5. Empirical Study

5.1. Data
To empirically test SSAR, we identify representative data
sets that fit the definition of complex time series. We chose
financial time series, known for their high stochasticity, non-
normality, and non-stationarity [27, 28, 29]. Consequently,
we sourced two data sets: (i) Inter-category and (ii) Intra-
category variables. Inter- and Intra-category data sets ex-
haustively represent most financial time series. Henceforth,
we refer to these data sets as Data Set 1 and 2, respectively.
Sourced based on the largest international trading volumes,
both data sets serve as representative benchmarks applicable
to practitioners. The data sourcing and processing methods
are detailed in the Appendix. Notably, extensive preliminary
statistical tests, detailed in the Appendix, validate the time
series’ complexity.

5.2. Experiment Setting
We first apply SSAR to each data set. To examine the sen-
sitivity to the hyperparameter 𝑤𝑠 we apply SSAR ∀𝑤𝑠 ∈
w𝑠 := {20, 30, 40, 50, 60, 70, 80}. A minimum 𝑤𝑠 of 20 en-
sures stability in information-theoretic measures. Data sets
are split into training, validation, and test sets—0.5× 0.7,
0.5× 0.3, and 0.5, respectively for Data Set 1, and 0.6, 0.2,
and 0.2, respectively for the Data Set 2. These splits simulate
potential real-world scenarios.

Five established baselines are included: (i) GRU, (ii) LSTM,
(iii) Linear, (iv) NLinear, (v) DLinear, where (iii), (iv), (v)
have shown to outperform all state-of-the-art transformer-
based architectures. The 𝑤𝑠 for baselines corresponds to the
temporal dimension size of the input vector. Next, to test
the augmented representation, we select two well-known
spatio-temporal GNNs—(i) [30]’s Temporal Graph Diffusion
Convolution Network (diffusion t-GCN), (ii) [31]’s Tempo-
ral Graph Convolution Network (t-GCN). Notably, SSAR
works with any downstream models that support spatio-
temporal data with directed edges and dynamic weights.
The number of compatible downstream models is very large.
We arbitrarily let diffusion t-GCN be the downstream model
for Data Set 1, and t-GCN for Data Set 2.

For ease of replication, we present the tensor operations
of diffusion t-GCN for our representation in the Appendix.
We do not diverge from the original method proposed by
the authors for both downstream models. All experimental
design choices, such as splits, downstream models, and sam-

ple sizes, were chosen a priori and were not changed after
inference. Also, each empirical sample is independently
trained from a random seed. I.e., no two test samples result
from an inference of the same model 𝜃̂.

The objective function 𝐽 is the mean squared error
(MSE) of the prediction of 𝑡 given [𝑡-1 : 𝑡-𝑀 ]. For a fair
empirical study, we systematically tune hyperparameters
ℎ ∈ ℋ ∀⟨𝑤𝑠, method, Data Set⟩ in the train and valida-
tion set. Rigorous details of the training, validation, and
inference process are provided in the Appendix.

5.3. Results and Ablation
We observe highly encouraging results, summarized in Fig-
ure 5 and Table 1. In Table 1, each column represents a
method, and each row represents the 𝑤𝑠. Sample sizes are
one for Data Set 1 and 50 for Data Set 2 for each ⟨method,
𝑤𝑠⟩ pair. Note that the sample size for the Constant column
does not conform to this pattern as Constant weighted edges
are not associated with a 𝑤𝑠. However, to match the sample
size for each approach, the Constant column presents the
7-sample and 50-sample mean±1𝜎 results in Data Sets 1
and 2, respectively.

The approaches are divided into (i) SSAR, ours, (ii) base-
lines, and (iii) ablation. The ablation, Constant, is where
edge weights are constant in place of a statistical measure.
This setup assesses the utility of graphical structures inde-
pendent of statistical measures. In Data Set 1, ∀𝑤𝑠 SSAR
achieved the best results. Notably, a significant improve-
ment from baselines→ ablation, and another significant
improvement from ablation→ SSAR. Moreover, across 42-
sample results for all six SSAR approaches and 𝑤𝑠, all 35-
samples of baselines are beaten with a 100% beat rate.

For Data Set 2, each 50-sample ⟨method, 𝑤𝑠⟩ combination
enables box-and-whisker plot analysis in Figure 5. Each box-
and-whisker aggregates across 𝑤𝑠, i.e., they each represent
7 · 50 = 350 samples. We observe a dramatic improvement
in accuracy across SSAR-based approaches. The box-and-
whisker plot follows the standard, minimum, quartile-1,
median, quartile-3, maximum value. The x-axis is inten-
tionally not scaled to include Linear, NLinear, and DLinear
outliers. Scaling would significantly reduce legibility. An
enlarged version of Figure 5 is in the Appendix.

6. Discussion

6.1. Statistical Analysis
In aggregate, 7 · 12 (row · column) = 84 random seed out-
sample results are available for Data Set 1, and 7 · 11 · 50
(row · column · sample-size) = 3850 results are available
for SSAR and baselines for Data Set 2. An additional 50
samples for the ablation leads to 3900 result samples for
Data Set 2.

The statistical analysis is highly encouraging. First, we
examine in aggregate whether the mean of SSARs beats
the aggregate mean of the baselines. Data Set 1’s results
are 0.7141 ± 0.0253 (42-samples) and 0.8346 ± 0.0179
(35-samples) for SSARs and baselines, respectively. The
T-statistic is -23.9022 (P-val −→ 0). Data Set 2’s results
are 0.8652± 0.0022 (2100-samples) and 1.2740± 1.9097
(1750-samples) for SSARs and baselines, respectively. The
T-statistic is -9.8117 (P-val −→ 0).



Table 1
Test Set Results (MSE)

Data Set 1
𝑤𝑠 Pearson* Spearman* Kendall* GC* MI* TE* Constant‡ GRU† LSTM† Linear† NLinear† DLinear†

20 0.6621 0.6796 0.6646 0.7160 0.7209 0.7169 0.7519 0.8166 0.8154 0.8392 0.8775 0.8338
30 0.7149 0.6939 0.668 0.7237 0.7069 0.713 ± 0.8154 0.8143 0.8355 0.8616 0.8370
40 0.7286 0.6698 0.7274 0.7361 0.7168 0.7055 0.0329 0.8161 0.8140 0.8376 0.8548 0.8368
50 0.7047 0.7082 0.7303 0.7237 0.6966 0.7411 (±1𝜎) 0.8150 0.8128 0.8388 0.8540 0.8426
60 0.8144 0.7205 0.7321 0.7077 0.7092 0.7079 — 0.8167 0.8165 0.8451 0.8545 0.8435
70 0.7200 0.7529 0.7289 0.7051 0.7207 0.7098 — 0.8154 0.8133 0.8468 0.8519 0.8519
80 0.7246 0.7162 0.7144 0.7173 0.7194 0.7038 — 0.8191 0.8141 0.8477 0.8535 0.8525

Data Set 2 (±1𝜎)

𝑤𝑠 Pearson* Spearman* Kendall* GC* MI* TE*

20 0.865570± 0.000001 0.869217± 0.000007 0.864707± 0.000000 0.864074±0.000000 0.867186± 0.000004 0.864379± 0.000000
30 0.864372±0.000000 0.865704± 0.000001 0.867756± 0.000004 0.864863± 0.000000 0.864390± 0.000000 0.865536± 0.000001
40 0.864416± 0.000000 0.864535± 0.000000 0.865272± 0.000000 0.864074±0.000000 0.864431± 0.000000 0.864167± 0.000000
50 0.865261± 0.000001 0.865146± 0.000000 0.864197±0.000000 0.865573± 0.000000 0.864614± 0.000000 0.864126±0.000000
60 0.864692± 0.000000 0.864584± 0.000000 0.866039± 0.000002 0.864528± 0.000000 0.864271±0.000000 0.864383± 0.000000
70 0.865183± 0.000001 0.864387± 0.000000 0.868527± 0.000004 0.867677± 0.000006 0.864294±0.000000 0.864967± 0.000001
80 0.864420± 0.000000 0.864216± 0.000000 0.865633± 0.000002 0.864100±0.000000 0.866500± 0.000002 0.864747± 0.000000

𝑤𝑠 Constant‡ GRU† LSTM† Linear† NLinear† DLinear†

20 0.867078±0.000002 1.073429± 0.001211 1.072995± 0.000342 1.085739±0.001977 1.141603± 0.000039 1.185543± 0.165922
30 — 1.073149±0.000304 1.072988±0.000395 1.088698± 0.002433 1.126325± 0.000044 1.088895±0.000072
40 — 1.073579± 0.000669 1.073082± 0.000406 1.092317± 0.001307 1.121533± 0.000045 1.094266± 0.005221
50 — 1.073659± 0.000514 1.073188± 0.000435 1.997715± 2.352422 1.120787± 0.000056 1.115725± 0.055661
60 — 1.075270± 0.001245 1.073747± 0.001143 1.100661± 0.006975 3.021245± 5.255515 4.500515± 9.036276
70 — 1.073497± 0.000584 1.073129± 0.000399 1.102755± 0.007010 1.120726± 0.000061 1.101896± 0.005430
80 — 1.073587± 0.000489 1.073001± 0.000308 1.127654± 0.019237 1.120486±0.000057 1.107615± 0.012696

*SSAR: Non-Euclidean input-space, †Baseline: Euclidean input-space, ‡Ablaftion
Bold represents the best result across row, and italicized represents the best result across column
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Figure 5: Data Set 2 results (Box-and-Whisker, MSE)

We identify the best-performing baseline to assess SSAR
more rigorously. Across both datasets, LSTM shows the best
mean performance. In Data Set 1, SSARs against LSTM,
the T-statistic is -10.3886 (P-val −→ 0). The T-statistic
corresponding to Data Set 2 is -1,770 (P-val −→ 0). The |
T-statistic | rises in Data Set 2 as the variance of LSTM is
significantly lower than the baselines’ aggregate.
Two ablation studies further examine our contributions.

The first study, the constant weighted edge case, has been
previously introduced. In Data Set 1, the aggregate mean
results going from baselines → Constant → SSARs is
0.8346± 0.0179→ 0.7519± 0.0329→ 0.7141± 0.0253.
This corresponds to a 9.91% reduction in MSE from baselines
to Constant and a 5.02% reduction from Constant to SSARs.
From baselines to SSARs, a 14.43% reduction is observed.

In Data Set 2, going from baselines→Constant→ SSARs
is 1.2740±1.9097→ 0.8671±0.0027→ 0.8652±0.0022.

This corresponds to a 31.94% reduction in MSE from base-
lines to Constant and a 0.22% reduction from Constant to
SSARs. From baselines to SSARs, a 32.09% reduction is
observed. Additional study on larger 𝑤𝑠 values, with details
in the Appendix, shows that statistical significance remains
robust.

The second study focuses on adverse outliers in state-
of-the-art methods (Linear, NLinear, DLinear). For robust-
ness, we re-examine statistical results after excluding these
models’ adverse outliers. The results are detailed in the
Appendix—and the statistical findings remain unchanged.
This observation of significant adverse outliers bodes poorly
for the baselines and contrarily emphasizes the stability of
our proposed approach. By examining the F-Test on base-
lines and SSARs, we observe an F-static of 764,534 and
a corresponding one-tail F-Critical of 1.08 (P-val −→ 0).
The evidence indicates a significant fall in the variance of
SSARs.

Finally, we discuss the implications of setting 𝑤𝑠. A
naïve interpretation might attribute SSAR’s improved per-
formance to a larger implicit 𝑤𝑠 (based on Figure 4), but
this is contradicted by the lack of a significant relationship
between 𝑤𝑠 and 𝑀𝑆𝐸𝑡𝑒𝑠𝑡 (Figure 6). Moreoever, if this
was true, 𝜕𝑀𝑆𝐸𝑡𝑒𝑠𝑡

𝜕𝑤𝑠
< 0. On the contrary, there seems to

be no meaningful relationship between 𝑤𝑠 and 𝑀𝑆𝐸𝑡𝑒𝑠𝑡

for the baselines. We present two histograms that summa-
rize 𝑝(𝑚𝑖𝑛(𝑀𝑆𝐸𝑡𝑒𝑠𝑡)|𝑤𝑠, 𝐵 ∨𝑆), where 𝐵 ∨𝑆 denotes a
boolean with some abuse of notation—true: Baseline, false:
SSAR.

6.2. Theoretical Implications
Initially, the performance improvement in the Constant
ablation case appears surprising. Based on the theoretical
discussion provided by [32], we show that SSAR is not only
helpful in modeling the shifting underlying distribution
but also implicitly smooths highly stochastic data. These
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Figure 6: Histogram of minimum MSE given 𝑤𝑠 (both data sets)

effects are visually summarized in Figure 7. [32] shows that
when the causal structure is very high-dimensional and
therefore highly stochastic, augmenting the training data
via smoothing techniques is helpful when noise-to-signal
is high. The authors use exponential moving averages to
smooth the input and target space. We show that SSAR
paired with a temporal graph learning algorithm implicitly
makes the same augmentations—explaining the improved
performance in the Constant ablation case.

Temporal weighted graph learning algorithms for node
prediction aggregate neighbouring weights and nodes each
node. Afterwards, this new encoding is fed into some neural
network with a sequential encoding (e.g., RNNs, Transform-
ers). In this context, 𝑤(·) represents edge weights, and 𝜃 the
learning system’s parameters. In its theoretically simplest
form, without loss of generality, it aggregates the weights of
edges incident to the node,

∀𝑛𝑜𝑑𝑒𝑠, 𝑛̂𝑖 := 𝑛𝑖 +

⎡⎣∑︁
𝑒∈ℐ𝑖

𝑤(𝑒)𝜃𝑖(𝑒)

⎤⎦ , (13)

where 𝑛̂𝑖 is the post-encoding node embedding, ℐ𝑖 is the
set of edges incident to 𝑛𝑖, and 𝜃𝑖 is the learned weight
parameter. First, we know that 𝑤(·) ≥ 0, and

∑︀
𝑒 𝑤(𝑒) > 0

for both the Constant and SSAR case. Then, whether 𝑛̂𝑖 >
𝑛𝑖 or 𝑛̂𝑖 < 𝑛𝑖, and magnitude |𝑛̂𝑖 − 𝑛𝑖| is only dependant
on parameter 𝜃𝑖(𝑒). This implies, 𝜃𝑖(𝑒) can learn to de-noise
the highly stochastic data. De-noising high noise-to-signal
series improves results significantly [32]. Essentially, as
long as the Constant weight,

𝑤(·) := 𝑐 ∈ R̸=0, (14)

⇒ 𝜃𝑖 can implicitly learn to de-noise the input and target
space, resulting in improved out-sample performance. This
explains why adding no statistical-space prior, but a simple
augmented representation with fixed 𝑤(·) := 𝑐 > 0, ∀𝑤(·)
resulted in improved performance.

This implicit de-noising partially explains the superior
performance of SSAR. Remaining improvements are due
to approximating Equation (8) with (9). In short, SSAR
can be decomposed into two effects: (i) SS: statistical-space
encoding, which tracks the underlying distribution shift,
and (ii) AR: augmented representation, which allows for a
learnable function approximator to implicitly de-noise the
stochastic data.

Figure 7: Two effects

Decomposing SSAR into SS and AR, unlike the clear-
cut effects in Figure 7, is challenging. As seen in Equation
(13), 𝜃𝑖(𝑒) could not only learn to de-noise the data but also

implicitly learn the r ← 𝑟𝜃𝑟 (𝒴𝑡|𝒳̂ 𝑡−𝑀
)) in Equation (5).

Also when providng prior 𝑝(𝜃) in Equation (4) via e ∈ ℰ , in
which it passed through Equation (13), there is no clear way
of decomposing the two effects. Thus, while the ablation
study aids understanding of SSAR’s mechanisms, it is not
a rigorous method to quantify the two effects.

6.3. Future Works
Our work, which compares SSAR and Euclidean input-
space-based state-of-the-art models, can be viewed as two
ends of the extreme. Euclidean input-space-based models
must learn the underlying non-stationary distribution im-
plicitly, while SSAR takes a more deliberate approach.

SSAR explicitly provides a statistical-space approxima-
tion ∀𝑡, resulting in (i) allowing the neural network to use
an approximated regime-vector, and further learn the dis-
tribution shift, and (ii) bootstrap the neural network with
priors, given that our data is limited. However, in cases
where we have access to 𝒟 ∼ 𝑝(·), or |𝒟| is already suffi-
ciently large, we can hypothesize that a learned statistical
space may be beneficial. I.e., implement Equation (5) instead
of Equation (9). In this case, the statistical space could be
learned implicitly via 𝜃 : · · · × ⟨𝑛𝑖 → 𝑛𝑗⟩ × · · · ↦→ R,
𝑖 ̸= 𝑗 where edge weights are initialized 𝑤𝑖𝑛𝑖𝑡(𝑒) :̸= 0,
in Equation (13). Under the Bayesian view in Equation (4),
this would correspond to the prior being a uniform distri-
bution, 𝑝(𝜃) := 𝑈(·). Contrarily, the statistical space could
be learned explicitly where the weights of the edges are
learned explicitly, 𝑤𝜃 : · · · × ⟨𝑛𝑖 → 𝑛𝑗⟩ × · · · ↦→ R≥0,
𝑖 ̸= 𝑗. This would closely mimic the attention mechanism
in transformers.

We encourage future research to explore these middle-
ground approaches within the solution space spectrum pre-
sented here. A more nuanced study could theoretically and
empirically study which method in the spectrum is most
ideal under specific degrees of access to 𝑝(·), equivalently,
the amount of data 𝒟 available.
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A. Assumption: x̂ [,:] := y [,:]

The assumption that the input-space features are equivalent
to the output-space features is highly reasonable. Essentially,
when training to predict y, since |𝒟| ≫ 0⇒ y[:,] ≫ 0 ∴
∃x̂[:,] ≫ 0. Even if x̂[,:] ̸= y[,:], the method and implications
presented in this work hold with trivial modifications in the
learning system.

B. Data Source
We use two representative data sets for financial markets.
The first is an array of major macroeconomic exchange-
traded funds (ETFs) and variables, available in Table 2. These
variables are representative as they have been chosen based
on the largest worldwide trading volumes. This data set
examines the effectiveness of our approach across many
financial categories (inter-asset-class). The second data set
is an array of major commodity futures available in Table 3.
Again, these features are chosen beforehand based on the
largest worldwide trading volume. This data set examines
the effectiveness of our approach within a financial category
(intra-asset-class)—commodity futures market.

Table 2
Data Set 1 Description

Variable Abbreviation Category

SPDR Gold Trust GLD Commodity
U.S. Oil Fund USO Commodity

U.S. Dollar Index USD Currency
U.S. IG Corporate Bond LQD Fixed Income

3M Treasury Yield 3M Interest Rate
2Y Treasury Yield 2Y Interest Rate
10Y Treasury Yield 10Y Interest Rate

Fed Funds Effective Rate FFEOR Interest Rate
10Y-3M Spread 10Y-3M Rate Spread
10Y-2Y Spread 10Y-2Y Rate Spread

U.S. Real Estate IYR Real Estate
CBOE Volatility Index VIX Risk

Bull-Bear Spread BULL_BEAR_SPREAD Sentiment

Table 3
Data Set 2 Description

Variable Category

Wheat Futures Commodity
Corn Futures Commodity

Copper Futures Commodity
Silver Futures Commodity
Gold Futures Commodity

Platinum Futures Commodity
Crude Oil Futures Commodity

Heating Oil Futures Commodity

Both data sets are easily attainable via public sources.
However, we source the data from S&P Capital IQ and
Bloomberg for high-quality data that is not adjusted later—
to concretely prevent any look-ahead bias. The Bull-Bear
Spread is sourced separately from the Investor Sentiment
Index of the American Association of Individual Investors
(AAII).

The initial time step is set to the date where ∃ valid data
points ∀ variable. Data Set 1’s date spans from 2006-04-11
to 2022-07-08 in daily units. Data Set 2’s date spans from
1990-01-01 to 2023-06-26 in daily units.

C. Data Processing
The only data processing done from raw data is transform-
ing price data into return (change) data, and pre-processing
non-available (nan) data points. We transform market vari-
ables to log return, as typical practice in the financial domain.
Log return is used instead of regular difference as log al-
lows for computational convenience. Other data points are
transformed to the regular difference approach as their data
points are much smaller in magnitude, and require higher
levels of precision. The pseudo-code for the data processing
is available in Algorithm 2.

D. Computing statistical
dependencies

Given n𝑖 := {𝑖𝑡−1, ..., 𝑖𝑡−1−𝑤𝑠} and n𝑗 :=
{𝑗𝑡−1, ..., 𝑗𝑡−1−𝑤𝑠}, the six measures are computed
as follows. We remove the superscript 𝑡 for improved
legibility and let 𝜌n𝑖,n𝑗 , 𝜌𝑟n𝑖 ,𝑟n𝑗 , 𝜏𝑟n𝑖 ,𝑟n𝑗 , denotes Pearson
correlation, Spearman rank correlation, and Kendell rank
correlation, respectively. 𝑟n𝑖 denotes rank for time series
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Algorithm 2 Data Process
1: Input: D𝑟𝑎𝑤

2: Output: D𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑

3: Function DataProcess(D𝑟𝑎𝑤):
4: 𝑖𝑛𝑖𝑡 D𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑

5: ℱ ←− D𝑟𝑎𝑤.𝑔𝑒𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑒𝑡()
6:
7: for 𝑓 ∈ ℱ do
8: if 𝑓 is 𝑀𝑎𝑟𝑘𝑒𝑡𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 then
9: ∀D𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑[𝑓 ].𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡[𝑖]←− 𝑙𝑜𝑔(D𝑟𝑎𝑤[𝑓 ].𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡[𝑖]/D𝑟𝑎𝑤[𝑓 ].𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡[𝑖− 1])

10: else if 𝑓.𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠 ̸= 𝑛𝑎𝑛 then
11: ∀D𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑[𝑓 ].𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡[𝑖]←− D𝑟𝑎𝑤[𝑓 ].𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡[𝑖]− D𝑟𝑎𝑤[𝑓 ].𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡[𝑖− 1]
12: else
13: ∀D𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑[𝑓 ].𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡[𝑖]←− D𝑟𝑎𝑤[𝑓 ].𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡[𝑖]− D𝑟𝑎𝑤[𝑓 ].𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡[𝑚𝑜𝑠𝑡_𝑟𝑒𝑐𝑒𝑛𝑡_𝑛𝑜𝑛_𝑛𝑎𝑛_𝑖 < 𝑖]
14: end if
15: end for
16:
17: D𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑[ℱ ].𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡[0].𝑑𝑟𝑜𝑝_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝()
18: return D𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑

19: End Function

n𝑖. Then, define each correlation as (15), (16), and (17).

𝜌n𝑖,n𝑗 :=
Σ𝑡(𝑛

𝑡
𝑖 − n𝑖̄)(𝑛

𝑡
𝑗 − n𝑗̄)√︀

Σ𝑡(𝑛𝑡
𝑖 − n𝑖̄)2

√︁
Σ𝑡(𝑛𝑡

𝑗 − n𝑗̄)2
, (15)

𝜌𝑟n𝑖 ,𝑟n𝑗 :=
𝑐𝑜𝑣(𝑟n𝑖 , 𝑟n𝑗 )

𝜎𝑟n𝑖
𝜎𝑟n𝑗

, (16)

𝜏𝑟n𝑖 ,𝑟n𝑗 :=
𝑐− 𝑑

1
2
𝑤𝑠(𝑤𝑠 − 1)

, (17)

where n𝑖̄ denotes the mean of series n𝑖, 𝑐 is the num-
ber of concordant pairs, and 𝑑 is the number of discor-
dant pairs. A pair ⟨𝑛𝑡,𝑎

𝑖 , 𝑛𝑡,𝑎
𝑗 ⟩,⟨𝑛

𝑡,𝑏
𝑖 , 𝑛𝑡,𝑏

𝑗 ⟩ is concordant if
the ranks for both elements agree in their order: (𝑛𝑡,𝑎

𝑖 −
𝑛𝑡,𝑏
𝑖 )(𝑛𝑡,𝑎

𝑗 − 𝑛𝑡,𝑏
𝑗 ) > 0, and discordant if they disagree

(𝑛𝑡,𝑎
𝑖 − 𝑛𝑡,𝑏

𝑖 )(𝑛𝑡,𝑎
𝑗 − 𝑛𝑡,𝑏

𝑗 ) < 0.
We used Granger causality [4] based on Geweke’s method

[33]. Geweke’s Granger causality (GC) is a frequency-
domain approach to Granger causality. Geweke’s Granger
causality from n𝑖 to n𝑗 is computed by:

𝐺𝐶n𝑖−→n𝑗 := ln

(︂
𝑆n𝑗n𝑗 (𝑓)

𝑆n𝑗n𝑗 |n𝑖(𝑓)

)︂
, (18)

where 𝑆n𝑗n𝑗 (𝑓) is the spectral density of n𝑗 and 𝑆n𝑗n𝑗 |n𝑖(𝑓)
is the spectral density of n𝑗 given n𝑖. We use Welch’s
method to estimate spectral density as it improves over
periodograms in estimating the power spectral density of a
signal [34].

We used two information-theoretic measures: Mutual
information and Transfer entropy. Mutual information (MI)
represents the shared information between two variables,
indicating their statistical interdependence [35]. In informa-
tion theory, the behavior of system n𝑖 can be characterized
by the probability distribution 𝑝(n𝑖) or log 𝑝(n𝑖). This mea-
sure is equivalent to the Pearson correlation coefficient if
both have a normal distribution. To compute MI between
two variables, we need to know the information entropy,
which is formulated as follows:

𝐻(n𝑖) := −
∑︁
n𝑖∈n𝑖

𝑝(n𝑖) log2 𝑝(n𝑖). (19)

Shannon entropy quantifies the information required to
select random values from a discrete distribution. The joint
(information) entropy can be expressed as:

𝐻(n𝑖,n𝑗) := −
∑︁

n𝑖∈n𝑖,n𝑗∈n𝑗

𝑝(n𝑖, n𝑗) log2 𝑝(n𝑖, n𝑗). (20)

Finally, we can define MI as the quantity of identifying the
interaction between subsystems.

𝑀𝐼(n𝑖,n𝑗) := 𝐻(n𝑖) +𝐻(n𝑗)−𝐻(n𝑖,n𝑗). (21)

Following Kvålseth (2017), we use normalized MI (NMI)
with range [0, 1] to ensure consistency across measures.
The computation is as follows:

𝑁𝑀𝐼(n𝑖,n𝑗) :=
𝑀𝐼(n𝑖;n𝑗)

min(𝐻(n𝑖), 𝐻(n𝑗))
. (22)

Transfer entropy (TE) is a non-parametric metric lever-
aging Shannon’s entropy, quantifying the amount of in-
formation transfer between two variables [36]. Based on
conditional MI in Equation (23), we can define the general
form of (𝑘, 𝑙)-history TE between two sequences n𝑖 and n𝑗

for n(𝑘)
𝑖,𝑡 = (n𝑖,𝑡, .,n𝑖,𝑡−𝑘+1) and n(𝑙)

𝑗,𝑡 = (n𝑗,𝑡, .,n𝑗,𝑡−𝑙+1).
It is computed as Equation (24):

𝐻(n𝑗 |n𝑖) := −
∑︁

n𝑗∈n𝑗 ,n𝑖∈n𝑖

𝑝(n𝑖, n𝑗) log2
𝑝(n𝑖, n𝑗)
𝑝(n𝑖)

. (23)

𝑇𝐸(𝑘,𝑙)
n𝑖,𝑡−→n𝑗,𝑡(𝑡) :=∑︁

Ω

𝑝(n𝑗,𝑡+1, n
(𝑘)
𝑖,𝑡 , n

(𝑙)
𝑗,𝑡) log2

𝑝(n𝑗,𝑡+1|n(𝑘)𝑖,𝑡 , n
(𝑙)
𝑗,𝑡)

𝑝(n𝑗,𝑡+1|n(𝑙)𝑗,𝑡)
, (24)

where Ω := {n𝑗,𝑡+1, n
(𝑘)
𝑖,𝑡 , n

(𝑙)
𝑗,𝑡}, which represents the pos-

sible sets of those three values. 𝑇𝐸(𝑘,𝑙)
n𝑖,𝑡−→n𝑗,𝑡(𝑡) is the in-

formation about the future state of n𝑗,𝑡 which is retrieved
by subtracting information retrieved from only n(𝑙)

𝑗,𝑡, and

from information gathered from n(𝑘)
𝑖,𝑡 and n(𝑙)

𝑗,𝑡. We set 𝑘
and 𝑙 to 1. Under these conditions, the equation for TE with
(1, 1)-history can be computed as

𝑇𝐸(1,1)
n𝑖,𝑡−→n𝑗,𝑡(𝑡) =



Table 4
Descriptive Statistics (Data Set 1)

Statistic GLD USO USD LQD 3M 2Y 10Y

Mean, 𝜇 0.0003 -0.0003 0.0001 0 -0.0002 -0.0002 -0.0001
Standard deviation, 𝜎 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156

Skewness -0.334 -1.1831 -0.2533 -0.5572 -0.8177 -0.0971 -0.1188
Kurtosis 6.3099 14.8191 4.0016 67.8462 77.2192 11.4556 3.507

𝑄0 -0.1255 -0.1912 -0.1394 -0.2696 -0.2663 -0.1529 -0.1432
𝑄1 -0.0071 -0.0078 -0.0083 -0.006 -0.0033 -0.0068 -0.0084
𝑄2 0.0007 0.0005 0.0003 0.0009 0 0 0
𝑄3 0.0083 0.0079 0.0088 0.0066 0.0033 0.0068 0.0084
𝑄4 0.1461 0.101 0.0883 0.263 0.2498 0.1291 0.0814

Statistic FFEOR 10Y-3M 10Y-2Y IYR VIX BULL_BEAR_SPREAD

Mean, 𝜇 -0.0002 0 0 0.0001 0 -0.0001
Standard deviation, 𝜎 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156

Skewness -0.4796 0.3396 -0.0493 -0.6986 1.0469 -0.0633
Kurtosis 88.5722 13.4647 3.6125 18.3742 5.9128 0.317

𝑄0 -0.2175 -0.1226 -0.1122 -0.1889 -0.0705 -0.0538
𝑄1 0 -0.0074 -0.008 -0.0051 -0.0088 -0.0102
𝑄2 0 0 0 0.0006 -0.0013 0.0002
𝑄3 0 0.0074 0.008 0.0059 0.0071 0.0107
𝑄4 0.2404 0.1744 0.0841 0.1238 0.1546 0.0561

∑︁
Ω

𝑝(n𝑗,𝑡+1, n𝑗,𝑡, n𝑖,𝑡) log2
𝑝(n𝑗,𝑡+1, n𝑖,𝑡, n𝑗,𝑡)𝑝(n𝑗,𝑡)
𝑝(n𝑗,𝑡+1, n𝑗,𝑡)𝑝(n𝑖,𝑡, n𝑗,𝑡)

,

(25)
where Ω = {n𝑗,𝑡+1,n𝑖,𝑡,n𝑗,𝑡}.

This measure can be perceived as conditional mutual in-
formation, considering a variable’s influence as a condition.
Also, analogous to the established relationship between the
Pearson correlation coefficient and mutual information, an
equivalent association can be identified when the two vari-
ables comply with the premises of normal distribution [37].
TE measures information flow via uncertainty reduction.
"TE from 𝑌 to 𝑋 ," translates to the extent 𝑌 clarifies the
future of 𝑋 beyond what 𝑋 can clarify about its own future.
Conditional entropy quantifies the requisite information
to derive the outcome of a random variable 𝑋 , given that
the value of another random variable 𝑌 is known. It is
computed as [38]:

E. Descriptive Statistics and
Statistical Properties

Tables 4, 5, 6, and 7 summarize the time series’s descrip-
tive statistics and statistical property tests. The means and
standard deviations clearly indicate the high noise-to-signal
ratio—𝜇 ≈ 0 and 𝜎 >> |𝜇|.

All eight normality statistics strongly indicate non-
normality. Most features are non-auto-correlated, and all
features are non-stationary. “***” denotes rejection of the
null hypothesis of statistical tests at the 0.01 level of signifi-
cance, “**” at the 0.05 level, and “*” at the 0.1 level.

F. Graph Diffusion Convolutional
Network

We implement a t-GCN powered by diffusion convolutional
recurrent neural networks (DCRNN) to learn SSAR’s spatial
and temporal dependency structure [39]. DCRNN shows
state-of-the-art performance in modeling traffic dynamics

with a spatial and temporal dimension—represented graphi-
cally.

The graph signal 𝒳 ∈ R𝑁×1 as each node has a single
feature. With 𝒳 𝑡 representing the signal observed at time 𝑡,
the diffusion t-GCN learns a function 𝑔(·):

[𝒳 𝑡−𝑀 , . . . ,𝒳 𝑡−1;𝒢] 𝑔(·)−−→ [𝒳 𝑡]. (26)

The diffusion process explicitly captures the spatial dimen-
sion and its stochastic features. The diffusion process in
generative modeling works by encoding information via
increasing noise through a Markov process while decoding
information via reversing the noise process [40]. The dif-
fusion mechanism here is characterized by a random walk
on 𝒢 with restart probability 𝛼 ∈ [0, 1], and state transition
matrix D−1

𝑂 𝒲 , where D𝑂 = 𝑑𝑖𝑎𝑔(𝒲1) is the out-degree
diagonal matrix, and 1 ∈ R𝑁 is the all-one vector. The
stationary distribution 𝒫 ∈ R𝑁×𝑁 of the diffusion process
can be computed via the closed form:

𝒫 :=

𝐾=∞∑︁
𝑘=0

𝛼(1− 𝛼)𝑘(D−1
𝑂 𝒲)𝑘. (27)

After sufficient time steps, as represented by the summation
to infinity, the Markov process converges to𝒫 . The intuition
is as follows. 𝒫𝑖,: ∈ R𝑁 represents the diffusion probability
from 𝑛𝑖, i.e., it quantifies the proximity with respect to the
node. 𝑘 denotes the diffusion steps, and 𝐾 is typically set
to a finite natural number as each step is analogous to the
filter size in convolution.

As a result, the diffusion convolution over our 𝒳 and a
filter 𝑓𝜃 is described by:

𝒳:,1 ⋆𝐺 𝑓𝜃 :=

𝐾−1∑︁
𝑘=0

(𝜃𝑘,1(D−1
𝑂 𝒲)𝑘+𝜃𝑘,2(D−1

𝐼 𝒲
𝑇 )𝑘)𝒳:,1,

(28)
where 𝜃 ∈ R𝐾×2 are filter parameters andD−1

𝑂 𝒲 , D−1
𝐼 𝒲

𝑇

are the diffusion process transition matrices with the latter
representing the reverse process. A diffusion convolution
layer within a neural network architecture would map the



Table 5
Statistical Tests (Data Set 1)

Test Type GLD USO USD LQD 3M

Shapiro-Wilk Normality 0.9412*** 0.9106*** 0.9674*** 0.7205*** 0.5102***
D’Agostino K-squared Normality 611.7238*** 1504.0233*** 421.8482*** 1671.8988*** 1886.876***

Lilliefors Normality 0.0711*** 0.0694*** 0.0494*** 0.1092*** 0.2776***
Jarque-Bera Normality 6834.6006*** 38241.7946*** 2761.1181*** 781940.6002*** 1013102.2671***

Kolmogorov–Smirnov Normality 0.4771*** 0.4764*** 0.4761*** 0.4783*** 0.4758***
Anderson-Darling Normality 44.797*** 49.312*** 22.4254*** 143.6918*** 527.6964***
Cramér–von Mises Normality 327.3755*** 327.6465*** 327.0075*** 329.5083*** 332.1592***

Omnibus Normality 611.7238*** 1504.0233*** 421.8482*** 1671.8988*** 1886.876***
Bruesch-Godfrey (5d) Autocorrelation 0.6548 1.8472 1.8339 1.7377 15.8475***

Ljung-Box (5d) Autocorrelation 0.6468 1.8631 1.8317 1.7303 16.0909***
Augmented Dicky-Fuller Stationarity -64.3747*** -9.0878*** -63.4386*** -12.0401*** -10.498***

Zivot-Andrews Stationarity -64.4844*** -9.5335*** -63.5556*** -12.7633*** -11.4003***
Phillips-Perron Stationarity -64.7455*** -64.5927*** -63.4453*** -64.147*** -52.8798***

Statistic Type 2Y 10Y FFEOR 10Y-3M 10Y-2Y

Shapiro-Wilk Normality 0.8738*** 0.9706*** 0.3504*** 0.8904*** 0.9594***
D’Agostino K-squared Normality 783.0878*** 347.5444*** 1720.7889*** 918.375*** 348.7078***

Lilliefors Normality 0.1361*** 0.0678*** 0.3541*** 0.09*** 0.0969***
Jarque-Bera Normality 1332463.2869*** 30862.2392*** 2216.2285*** 22288.2101*** 2096.6655***

Kolmogorov–Smirnov Normality 0.474*** 0.4772*** 0.4764*** 0.4753*** 0.4765***
Anderson-Darling Normality 116.837*** 22.8665*** 894.9531*** 60.1568*** 38.2637***
Cramér–von Mises Normality 328.2026*** 326.93*** 334.2273*** 327.8856*** 327.0914***

Omnibus Normality 783.0878*** 347.5444*** 1720.7889*** 918.375*** 348.7078***
Bruesch-Godfrey (5d) Autocorrelation 19.2069*** 1.947 44.1751*** 20.4973*** 4.4516

Ljung-Box (5d) Autocorrelation 18.6156*** 1.9235 45.6069*** 20.3085*** 4.4324
Augmented Dicky-Fuller Stationarity -9.294*** -13.635*** -11.2644*** -9.8368*** -47.7222***

Zivot-Andrews Stationarity -10.9044*** -47.8802*** -10.7794*** -14.2945*** -11.688***
Phillips-Perron Stationarity -67.0877*** -64.7715*** -74.8074*** -59.8906*** -63.198***

Test Type IYR VIX BULL_BEAR_SPREAD

Shapiro-Wilk Normality 0.8043*** 0.936*** 0.9975***
D’Agostino K-squared Normality 1247.5579*** 1034.8942*** 15.9253***

Lilliefors Normality 0.1303*** 0.0785*** 0.0166***
Jarque-Bera Normality 57660.7643*** 6680.5179*** 19.6321***

Kolmogorov–Smirnov Normality 0.4713*** 0.4784*** 0.4797***
Anderson-Darling Normality 175.1698*** 49.7635*** 1.8623***
Cramér–von Mises Normality 328.9962*** 327.3539*** 326.375***

Omnibus Normality 1247.5579*** 1034.8942*** 15.9253***
Bruesch-Godfrey (5d) Autocorrelation 5.7178 8.9025 90.8848***

Ljung-Box (5d) Autocorrelation 5.7007 8.969 84.6422***
Augmented Dicky-Fuller Stationarity -11.7587*** -26.8927*** -16.958***

Zivot-Andrews Stationarity -13.299*** -26.9875*** -16.9997***
Phillips-Perron Stationarity -76.062*** -75.9458*** -17.7063***

Table 6
Descriptive Statistics (Data Set 2)

Test Wheat Corn Copper Silver Gold Platinum Crude Oil Heating Oil

Mean 0.0001 0.0001 0.0002 0.0002 0.0002 0.0001 0.0002 0.0001
Standard deviation 0.0196 0.0171 0.0164 0.0184 0.0102 0.0149 0.0259 0.0239

Skewness -0.2386 -1.1802 -0.2838 -0.7025 -0.2434 -0.9835 -0.4843 -1.3415
Kurtosis 12.7754 20.1985 4.392 7.324 7.4048 17.7037 20.1242 17.3938

𝑄0 -0.2861 -0.2762 -0.1171 -0.1955 -0.0982 -0.2719 -0.4005 -0.3909
𝑄1 -0.0111 -0.0085 -0.0083 -0.0079 -0.0044 -0.074 -0.012 -0.0114
𝑄2 0 0 0 0.0005 0.0002 0.0005 0.0006 0.0006
𝑄3 0.0107 0.0089 0.0088 0.0091 0.0052 0.008 0.0129 0.0124
𝑄4 0.233 0.1276 0.1164 0.122 0.0889 0.1272 0.3196 0.1399

signal’s feature size to an output of dimension 𝒬. As we
are working with a single feature, we denote a parameter
tensor as Θ ∈ R𝑄×1×𝐾×2 = [𝜃]𝑞,1. The parameters for
the 𝑞th output is Θ𝑞,1 ∈ R𝐾×2. In short, the diffusion

convolutional layer is described as:

ℋ:,𝑞 := 𝑎(𝒳:,1 ⋆𝐺 𝑓Θ𝑞,1,:,:), 𝑓𝑜𝑟 𝑞 ∈ {1, . . . ,𝒬}. (29)

Where input 𝒳 ∈ R𝑁 is mapped to output ℋ ∈ R𝑁×𝒬,
and 𝑎(·) is an activation function. With this GCN structure,
we can train the network parameters via stochastic gradient



Table 7
Statistical Tests (Data Set 2)

Test Type Wheat Corn Copper Silver

Shapiro-Wilk Normality 0.9389*** 0.9174*** 0.9552*** 0.9241***
D’Agostino K-squared Normality 1752.8365*** 3332.3089*** 944.7587*** 1783.9423***

Lilliefors Normality 0.0455*** 0.0637*** 0.0542*** 0.0845***
Jarque-Bera Normality 57149.8899*** 144614.381*** 6856.3562*** 19445.8744***

Kolmogorov–Smirnov Normality 0.472*** 0.4738*** 0.4748*** 0.4723***
Anderson-Darling Normality 49.7856*** 89.5722*** 67.6838*** 127.1812***
Cramér–von Mises Normality 666.284*** 671.1711*** 671.5948*** 669.1654***

Omnibus Normality 1752.8365*** 3332.3089*** 944.7587*** 1783.9423***
Bruesch-Godfrey (5d) Autocorrelation 3.1197 1.0919 0.8877 7.1119

Ljung-Box (5d) Autocorrelation 3.0741 1.0829 0.8948 7.1953
Augmented Dicky-Fuller Stationarity -20.5887*** -88.3374*** -24.3989*** -30.846***

Zivot-Andrews Stationarity -20.7714*** -88.3823*** -24.5412*** -31.0458***
Phillips-Perron Stationarity -92.3386*** -88.3095*** -96.4925*** -93.9752***

Test Type Gold Platinum Crude Oil Heating Oil

Shapiro-Wilk Normality 0.9289*** 0.928*** 0.8887*** 0.9089***
D’Agostino K-squared Normality 1305.4712*** 2923.7298*** 2357.3219*** 3450.6279***

Lilliefors Normality 0.0803*** 0.0631*** 0.0715*** 0.0691***
Jarque-Bera Normality 19253.8825*** 110951.6968*** 141944.7626*** 108313.6979***

Kolmogorov–Smirnov Normality 0.4826*** 0.4781*** 0.4646*** 0.4664***
Anderson-Darling Normality 114.6614*** 80.9492*** 120.7886*** 97.4767***
Cramér–von Mises Normality 682.8616*** 674.6513*** 657.7334*** 660.199***

Omnibus Normality 1305.4712*** 2923.7298*** 2357.3219*** 3450.6279***
Bruesch-Godfrey (5d) Autocorrelation 3.6289 7.7309 16.502*** 5.2739

Ljung-Box (5d) Autocorrelation 3.5897 7.73 16.9965*** 5.3533
Augmented Dicky-Fuller Stationarity -36.1101*** -15.4566*** -15.5826*** -24.3777***

Zivot-Andrews Stationarity -36.3411*** -15.801*** -15.7147*** -24.4921***
Phillips-Perron Stationarity -92.7712*** -89.3201*** -92.1408*** -93.4847***

descent.

G. Diffusion Convolutional Gated
Recurrent Unit

Next, the temporal dimension is modeled via a GRU, a vari-
ant of RNNs that better captures longer-term dependencies.
Diffusion convolution replaces standard matrix multiplica-
tion in the GRU architecture:

r𝑡 := 𝜎(Θ𝑟 ⋆𝐺 [𝒳 𝑡,ℋ𝑡−1] + b𝑟), (30)

u𝑡 := 𝜎(Θ𝑢 ⋆𝐺 [𝒳 𝑡,ℋ𝑡−1] + b𝑢), (31)

ℋ𝑡 := u𝑡 ⊙ℋ𝑡−1 + (1− u𝑡)⊙ 𝒞𝑡, (32)

𝒞𝑡 := tanh(Θ𝒞 ⋆𝒢 [𝒳 𝑡, (r𝑡 ⊙ℋ𝑡−1)] + b𝑐), (33)

where in time step 𝑡, r𝑡, u𝑡, 𝒳 𝑡,ℋ𝑡 represent the reset gate,
update gate, input tensor, and output tensor, respectively.
Θ𝑟 , Θ𝑢, Θ𝒞 represent the corresponding filter parameters
[30].

H. Training And Inference Method
The pseudo-code for the training and inference pipeline
is available in Algorithms 3, 4, 5, and 6. The
𝑅𝑎𝑛𝑑𝑜𝑚𝐺𝑟𝑖𝑑𝑆𝑒𝑎𝑟𝑐ℎ(·) in Algorithm 3 is done with 260
random seed trials with 13 parallel CPU cores.

Theℋ𝑠𝑒𝑎𝑟𝑐ℎ𝑠𝑝𝑎𝑐𝑒 for the GCNs are as follows.

• Input Size: [8, 9, ..., 30]
• Hidden Layer Size: [8, 16, ..., 120]
• Learning Rate: [1𝑒−1, 1𝑒−2, ..., 1𝑒−6]

• Epochs: [2, 3, ..., 30]
• 𝑘: [1, 2, ..., 6] (only for linear measures)

The ℋ𝑠𝑒𝑎𝑟𝑐ℎ𝑠𝑝𝑎𝑐𝑒 for all baselines are as follows. The
input size does not need tuning as they are 𝑤𝑠.

• Hidden Layers Size: [8, 16, ..., 128] (nonapplicable to
Linear, NLinear, DLinear)

• Learning Rate: [1𝑒−1, 1𝑒−2, ..., 1𝑒−6]

• Epochs: [5, 10, ..., 30]

The tuned hyperparameters for each data set are pre-
sented in Tables 8, 9, 10, and 11.

The diffusion t-GCN has five hyperparameters: (i) input
vector size 𝑀 , (ii) hidden layer size, (iii) diffusion steps
(filter size), 𝑘 (iv) learning rate, and (v) training epochs. The
𝑘 for the set of non-linear causal measures,ℳ𝑎𝑠𝑦𝑚, is set to
1 as the sparsity in 𝑤(𝑒) > 0 causes computational errors.
This makes the hyperparameter count for 𝑚(·) ∈ℳ𝑎𝑠𝑦𝑚,
four. The output vector size is set to one as the network
predicts one time step in the future. The hyperparameters
are equivalently optimized ∀⟨𝑚(·), 𝑤𝑠⟩ combination. The
same approach is taken for t-GCN but excludes the hyper-
parameter 𝑘 as it is not part of the model.

I. Data Set 2 Test Set Quartile Results
The results in Table 12 are for 𝑤𝑠 ∈ {20, ..., 80} in aggre-
gate, corresponding to the main text’s Figure 5. Figure 8 is
Figure 5 of the main text enlarged for better legibility. We
note that the Constant case is excluded as its smaller sample
size does not allow for fair statistical comparison.



Algorithm 3 Training t-GCNs

1: Input: 𝒢, ℳ := {𝑚0(·), ...,𝑚𝐾(·)}, 𝒲 := {𝑤0
𝑠 , ..., 𝑤

𝐿
𝑠 }, ℋ𝑠𝑒𝑎𝑟𝑐ℎ𝑠𝑝𝑎𝑐𝑒, 𝑠𝑝𝑙𝑖𝑡_𝑟𝑎𝑡𝑖𝑜, 𝑡𝑒𝑠𝑡_𝑠𝑎𝑚𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡,

𝑡𝑢𝑖𝑛𝑖𝑛𝑔_𝑠𝑎𝑚𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡
2: Output: 𝜃
3: Function TrainGCN(𝒢,ℳ,𝒲 ,ℋ𝑠𝑒𝑎𝑟𝑐ℎ𝑠𝑝𝑎𝑐𝑒, 𝑠𝑝𝑙𝑖𝑡_𝑟𝑎𝑡𝑖𝑜, 𝑡𝑒𝑠𝑡_𝑠𝑎𝑚𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡, 𝑡𝑢𝑖𝑛𝑖𝑛𝑔_𝑠𝑎𝑚𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡):
4:
5: 𝒢𝑡𝑟𝑎𝑖𝑛,𝒢𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,𝒢𝑡𝑒𝑠𝑡 ←− 𝑠𝑝𝑙𝑖𝑡_𝑟𝑎𝑡𝑖𝑜(𝒢)
6:
7: for ∀𝑚𝑘(·) ∈ℳ do
8: for ∀𝑤𝑙

𝑠 ∈ 𝒲 do
9: 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑙𝑘 ←− 𝑅𝑎𝑛𝑑𝑜𝑚𝐺𝑟𝑖𝑑𝑆𝑒𝑎𝑟𝑐ℎ(ℋ𝑠𝑒𝑎𝑟𝑐ℎ𝑠𝑝𝑎𝑐𝑒,𝒢𝑡𝑟𝑎𝑖𝑛,𝒢𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,𝑚𝑘(·), 𝑤𝑙

𝑠, 𝑡𝑢𝑖𝑛𝑖𝑛𝑔_𝑠𝑎𝑚𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡)
10: ℋ̂ ←− 𝑎𝑟𝑔_𝑚𝑖𝑛(𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑙𝑘.𝑀𝑆𝐸𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛)
11: 𝒢𝑡𝑟𝑎𝑖𝑛 ←− 𝐶𝑜𝑛𝑐𝑎𝑡(𝒢𝑡𝑟𝑎𝑖𝑛,𝒢𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛)
12: for 0, 1, ..., 𝑡𝑒𝑠𝑡_𝑠𝑎𝑚𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡− 1 do
13: 𝜃̂ ←− 𝑇𝑟𝑎𝑖𝑛𝑀𝑜𝑑𝑒𝑙(𝒢𝑡𝑟𝑎𝑖𝑛, ℋ̂, 𝐴𝑑𝑎𝑚𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟)

14: 𝜃.𝑎𝑑𝑑(𝜃̂,𝑚(·)𝑘, 𝑤𝑙
𝑠)

15: end for
16: end for
17: end for
18:
19: return 𝜃
20: End Function

Algorithm 4 Training Baselines

Input: D𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑, 𝜆 := {𝑀𝑜𝑑𝑒𝑙0(·), ...,𝑀𝑜𝑑𝑒𝑙𝑀 (·)}, 𝒲 := {𝑤0
𝑠 , ..., 𝑤

𝐿
𝑠 }, ℋ𝑠𝑒𝑎𝑟𝑐ℎ𝑠𝑝𝑎𝑐𝑒,

𝑠𝑝𝑙𝑖𝑡_𝑟𝑎𝑡𝑖𝑜, 𝑡𝑒𝑠𝑡_𝑠𝑎𝑚𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡
Output: 𝜃
Function TrainBaselines(D𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑, 𝜆,𝒲 ,ℋ𝑠𝑒𝑎𝑟𝑐ℎ𝑠𝑝𝑎𝑐𝑒, 𝑠𝑝𝑙𝑖𝑡_𝑟𝑎𝑡𝑖𝑜, 𝑡𝑒𝑠𝑡_𝑠𝑎𝑚𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡):

D𝑡𝑟𝑎𝑖𝑛,D𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,D𝑡𝑒𝑠𝑡 ←− 𝑠𝑝𝑙𝑖𝑡_𝑟𝑎𝑡𝑖𝑜(D𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑)

for ∀𝑀𝑜𝑑𝑒𝑙𝑚(·) ∈ 𝜆 do
for ∀𝑤𝑙

𝑠 ∈ 𝒲 do
𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑙𝑘 ←− 𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(ℋ𝑠𝑒𝑎𝑟𝑐ℎ𝑠𝑝𝑎𝑐𝑒,D𝑡𝑟𝑎𝑖𝑛,D𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,𝑀𝑜𝑑𝑒𝑙𝑚, 𝑤𝑙

𝑠)
ℋ̂ ←− 𝑎𝑟𝑔_𝑚𝑖𝑛(𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑙𝑘.𝑀𝑆𝐸𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛)
D𝑡𝑟𝑎𝑖𝑛 ←− 𝐶𝑜𝑛𝑐𝑎𝑡(D𝑡𝑟𝑎𝑖𝑛,D𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛)
for 0, 1, ..., 𝑡𝑒𝑠𝑡_𝑠𝑎𝑚𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡− 1 do

𝜃̂ ←− 𝑇𝑟𝑎𝑖𝑛𝑀𝑜𝑑𝑒𝑙(D𝑡𝑟𝑎𝑖𝑛, ℋ̂, 𝐴𝑑𝑎𝑚𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟)

𝜃.𝑎𝑑𝑑(𝜃̂,𝑀𝑜𝑑𝑒𝑙𝑚, 𝑤𝑙
𝑠)

end for
end for

end for

return 𝜃
End Function

Algorithm 5 t-GCN Inference

Input: 𝒢,ℳ := {𝑚0(·), ...,𝑚𝐾(·)},𝒲 := {𝑤0
𝑠 , ..., 𝑤

𝐿
𝑠 }, 𝜃, 𝑠𝑝𝑙𝑖𝑡_𝑟𝑎𝑡𝑖𝑜, 𝑡𝑒𝑠𝑡_𝑠𝑎𝑚𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡

Output: MSE𝑡𝑒𝑠𝑡

Function InferenceGCN(𝒢,ℳ,𝒲 , 𝜃, 𝑠𝑝𝑙𝑖𝑡_𝑟𝑎𝑡𝑖𝑜, 𝑡𝑒𝑠𝑡_𝑠𝑎𝑚𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡):

𝒢𝑡𝑟𝑎𝑖𝑛,𝒢𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,𝒢𝑡𝑒𝑠𝑡 ←− 𝑠𝑝𝑙𝑖𝑡_𝑟𝑎𝑡𝑖𝑜(𝒢)

for ∀𝑚(·)𝑘 ∈ℳ do
for ∀𝑤𝑙

𝑠 ∈ 𝒲 do
for 0, 1, ..., 𝑡𝑒𝑠𝑡_𝑠𝑎𝑚𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡− 1 do

𝑀𝑆𝐸𝑡𝑒𝑠𝑡 ←− 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝒢𝑡𝑒𝑠𝑡,𝜃)
MSE𝑡𝑒𝑠𝑡.𝑎𝑑𝑑(𝑀𝑆𝐸𝑡𝑒𝑠𝑡,𝑚(·)𝑘, 𝑤𝑙

𝑠)
end for

end for
end for

return MSE𝑡𝑒𝑠𝑡 End Function



Table 8
Data Set 1 Tuned Hyperparameters, ℋ̂

Epochs
𝑤𝑠 Pearson* Spearman* Kendall* GC* MI* TE* Constant‡ GRU† LSTM† Linear† NLinear† DLinear†

20 28 16 24 5 2 4 29 5 5 10 20 10
30 14 20 16 3 27 27 6 5 5 10 10 5
40 21 21 22 9 9 27 7 5 5 5 10 5
50 20 29 23 6 14 4 10 5 5 10 10 5
60 8 5 29 26 23 12 17 5 5 10 10 5
70 15 4 2 7 4 3 5 5 5 10 10 5
80 3 12 4 10 12 2 7 5 5 10 10 5

Learning Rate
𝑤𝑠 Pearson* Spearman* Kendall* GC* MI* TE* Constant‡ GRU† LSTM† Linear† NLinear† DLinear†

20 1𝑒−06 1𝑒−05 1𝑒−05 0.001 0.01 0.001 1𝑒−06 0.001 0.001 0.01 0.1 0.001
30 0.0001 1𝑒−05 1𝑒−06 0.01 0.1 0.1 0.01 0.001 0.001 0.001 0.01 0.001
40 0.0001 1𝑒−05 0.0001 1𝑒−06 1𝑒−06 0.1 1𝑒−06 0.001 0.001 0.001 0.01 0.001
50 0.1 0.1 0.01 1𝑒−06 1𝑒−06 1𝑒−06 1𝑒−06 0.001 0.001 0.001 0.001 0.001
60 1𝑒−06 1𝑒−06 0.1 0.1 0.1 0.1 0.1 0.001 0.001 0.001 0.001 0.001
70 0.01 0.01 1𝑒−06 1𝑒−06 0.01 1𝑒−06 1𝑒−06 0.001 0.001 0.001 0.001 0.001
80 0.01 0.01 0.01 0.01 0.01 0.1 1𝑒−06 0.001 0.001 0.001 0.001 0.001

Hidden Layer(s) Size
𝑤𝑠 Pearson* Spearman* Kendall* GC* MI* TE* Constant‡ GRU† LSTM† Linear† NLinear† DLinear†

20 120 96 72 88 16 120 16 128 64 — — —
30 112 112 56 32 16 8 16 128 64 — — —
40 72 32 40 32 80 8 48 64 128 — — —
50 32 16 8 96 24 80 64 32 64 — — —
60 80 96 8 16 16 8 16 32 128 — — —
70 16 112 80 80 16 72 24 128 64 — — —
80 16 8 24 56 8 24 16 32 128 — — —

*SSAR: Non-Euclidean input-space, †Baseline: Euclidean input-space, ‡Ablation

Table 9
Data Set 1 Tuned Hyperparameters, ℋ̂ (t-GCN-only)

Input Size
𝑤𝑠 Pearson Spearman Kendall GC MI TE Constant

20 27 30 28 29 30 27 29
30 30 30 27 21 30 28 17
40 30 27 30 28 29 23 27
50 19 13 14 18 19 17 24
60 24 30 30 30 29 29 29
70 30 30 25 28 30 29 25
80 25 27 30 28 29 29 18

𝑘

𝑤𝑠 Pearson Spearman Kendall GC MI TE Constant

20 2 2 3 — — — —
30 2 2 3 — — — —
40 2 2 2 — — — —
50 1 1 1 — — — —
60 4 3 1 — — — —
70 2 2 5 — — — —
80 1 1 1 — — — —

J. Larger 𝑤𝑠

The statistical analysis for larger 𝑤𝑠 is equally encouraging.
In reference to Table 13, first, we examine in aggregate
whether SSARs beats the baselines. The aggregate 𝜇 ±
1𝜎 for Data Set 2 are 0.8664 ± 0.0060 (600-samples) and
2.0326 ± 9.0136 (500-samples) for SSARs and baselines,
respectively. The T-statistic is -3.1695, corresponding to a
one-sided p-value of 0.0008.

To rigorously assess SSAR, we identify the best-
performing baseline. Here, GRU performs best when taking
the mean value. The T-statistic performance against GRU

is -344.66 (P-val −→ 0). |T-statistic| rises as the variance of
GRU is significantly lower than the aggregate. In conclusion,
the results hold even when raising the 𝑤𝑠.

K. Second Ablation
Data Set 1 has no outliers due to the lower sample size.
Therefore, we analyze the results after controlling for out-
liers in Data Set 2. First, we identify outliers as 𝑄3 + 3 ·
𝐼𝑄𝑅 > 𝑀𝑆𝐸𝑖, 𝑄1− 3 · 𝐼𝑄𝑅 < 𝑀𝑆𝐸𝑖, where 𝑄𝑛 repre-
sents the 𝑛th quartile, IQR represents Inter Quartile Range,



Table 10
Data Set 2 Tuned Hyperparameters, ℋ̂

Epochs
𝑤𝑠 Pearson* Spearman* Kendall* GC* MI* TE* Constant‡ GRU† LSTM† Linear† NLinear† DLinear†

20 20 16 24 5 2 4 29 10 30 20 10 30
30 19 20 16 3 27 27 6 10 30 20 10 10
40 28 21 22 9 9 27 7 20 10 20 10 30
50 8 29 23 6 14 4 10 10 10 30 10 20
60 29 5 29 26 23 12 17 5 30 20 20 30
70 9 4 2 7 4 3 5 10 10 20 10 20
80 30 12 4 10 12 2 7 20 20 30 10 20

Learning Rate
𝑤𝑠 Pearson* Spearman* Kendall* GC* MI* TE* Constant‡ GRU† LSTM† Linear† NLinear† DLinear†

20 1𝑒−06 1𝑒−05 1𝑒−05 0.001 0.01 0.001 1𝑒−06 0.01 0.0001 0.001 0.001 0.1
30 1𝑒−06 1𝑒−05 1𝑒−06 0.01 0.1 0.1 0.1 0.0001 0.0001 0.001 0.001 0.001
40 1𝑒−06 1𝑒−05 0.0001 1𝑒−06 1𝑒−06 0.1 1𝑒−06 0.0001 0.0001 0.001 0.001 0.001
50 1𝑒−06 0.1 0.01 1𝑒−06 1𝑒−06 1𝑒−06 1𝑒−06 0.0001 0.01 0.1 0.001 0.01
60 1𝑒−06 1𝑒−06 0.1 0.1 0.1 0.1 0.1 0.001 0.01 0.001 0.1 0.1
70 1𝑒−06 0.01 1𝑒−06 1𝑒−06 0.01 1𝑒−06 1𝑒−06 0.0001 0.0001 0.001 0.001 0.1
80 1𝑒−06 0.01 0.01 0.01 0.01 0.1 1𝑒−06 0.0001 0.0001 0.0001 0.001 0.001

Hidden Layer(s) Size
𝑤𝑠 Pearson* Spearman* Kendall* GC* MI* TE* Constant‡ GRU† LSTM† Linear† NLinear† DLinear†

20 56 96 72 88 16 120 16 32 16 — — —
30 96 112 56 32 16 8 16 128 32 — — —
40 112 32 40 32 80 8 48 32 16 — — —
50 88 16 8 96 24 80 64 32 128 — — —
60 64 96 8 16 16 8 16 16 8 — — —
70 96 112 80 80 16 72 24 32 32 — — —
80 96 8 24 56 8 24 16 32 32 — — —

*SSAR: Non-Euclidean input-space, †Baseline: Euclidean input-space, ‡Ablation

Table 11
Data Set 2 Tuned Hyperparameters, ℋ̂ (t-GCN-only)

Input Size
𝑤𝑠 Pearson Spearman Kendall GC MI TE Constant

20 16 30 28 29 30 27 29
30 16 30 27 21 30 28 17
40 16 27 30 28 29 23 27
50 16 13 14 18 19 17 24
60 17 30 30 30 29 29 29
70 16 30 25 28 30 29 25
80 16 27 30 28 29 29 18

and 𝑀𝑆𝐸𝑖 is a MSE data point. We observe that all outliers
are adverse, i.e., 𝑄3 + 3 · 𝐼𝑄𝑅 > 𝑀𝑆𝐸𝑖. This is expected,
as a low MSE outlier would be numerically impossible since
MSE > 0. Therefore, all outliers worsen performance and
sharply reduce the stability of the learning system. The out-
lier study is done, including larger 𝑤𝑠 tested in Appendix J.
We summarize the identified outliers in Table 14.

We examine the results post-outlier-removal in Table 15.

First, we examine in aggregate whether SSARs beats the
baselines. The aggregate 𝜇± 1𝜎 is 0.8654± 0.0023 (2700-
samples) and 1.1025 ± 0.0320 (2250-samples) for SSARs
and baselines, respectively. The T-statistic is -383.82 (P-val
−→ 0).

To more rigorously assess the out-performance of our
approach, we identify the best-performing baseline. Here,
LSTM performs best when taking the mean MSE. Against

Table 12
Test Set Result Quartiles (MSE)

Data Set 2
Quartiles Pearson* Spearman* Kendall* GC* MI* TE* GRU† LSTM† Linear† NLinear† DLinear†

𝑄0 0.8627 0.8630 0.8627 0.8629 0.8632 0.8630 1.0716 1.0722 1.0852 1.1196 1.0857
𝑄1 0.8642 0.8642 0.8643 0.8640 0.8642 0.8640 1.0731 1.0729 1.0882 1.1207 1.0923
𝑄2 0.8645 0.8647 0.8651 0.8645 0.8645 0.8643 1.0735 1.0730 1.0966 1.1215 1.0973
𝑄3 0.8653 0.8655 0.8662 0.8653 0.8651 0.8649 1.0740 1.0734 1.1012 1.1263 1.1030
𝑄4 0.8716 0.8819 0.8808 0.8810 0.8789 0.8718 1.0799 1.0777 9.4546 20.5654 33.3744

*SSAR: Non-Euclidean input-space, †Baseline: Euclidean input-space



Algorithm 6 Baselines Inference

Input: D𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑, 𝜆 := {𝑀𝑜𝑑𝑒𝑙0(·), ...,𝑀𝑜𝑑𝑒𝑙𝑀 (·)},𝒲 := {𝑤0
𝑠 , ..., 𝑤

𝐿
𝑠 }, 𝜃, 𝑠𝑝𝑙𝑖𝑡_𝑟𝑎𝑡𝑖𝑜, 𝑡𝑒𝑠𝑡_𝑠𝑎𝑚𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡

Output: MSE𝑡𝑒𝑠𝑡

Function InferenceBaselines(D𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑, 𝜆,𝒲 , 𝜃, 𝑠𝑝𝑙𝑖𝑡_𝑟𝑎𝑡𝑖𝑜, 𝑡𝑒𝑠𝑡_𝑠𝑎𝑚𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡):

D𝑡𝑟𝑎𝑖𝑛,D𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,D𝑡𝑒𝑠𝑡 ←− 𝑠𝑝𝑙𝑖𝑡_𝑟𝑎𝑡𝑖𝑜(D𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑)

for ∀𝑀𝑜𝑑𝑒𝑙𝑚(·) ∈ 𝜆 do
for ∀𝑤𝑙

𝑠 ∈ 𝒲 do
for 0, 1, ..., 𝑡𝑒𝑠𝑡_𝑠𝑎𝑚𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡− 1 do

𝑀𝑆𝐸𝑡𝑒𝑠𝑡 ←− 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒(D𝑡𝑒𝑠𝑡,𝜃)
MSE𝑡𝑒𝑠𝑡.𝑎𝑑𝑑(𝑀𝑆𝐸𝑡𝑒𝑠𝑡,𝑀𝑜𝑑𝑒𝑙𝑚, 𝑤𝑙

𝑠)
end for

end for
end for

return MSE𝑡𝑒𝑠𝑡 End Function
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Figure 8: Data Set 2 Test Set (Box-and-Whisker, MSE)

LSTM, the T-statistic is -1,905 (P-val −→ 0). Correspond-
ingly, we conclude that the results hold even when the ad-
verse outliers in the baselines are removed.

L. Complexity and Scalability
The complexity of our representation can be described in
two steps: computing the (i) Statistical-space matrix and
then (ii) generating the graph. Consistent with the main

Table 13
Random-seed Test Set Results (MSE)

Data Set 2 (±1𝜎)

𝑤𝑠 Pearson* Spearman* Kendall* GC* MI* TE*

90 0.8741± 0.0000 0.8768± 0.0000 0.8643± 0.0000 0.8648± 0.0000 0.8648± 0.0000 0.8643±0.0000
100 0.8644± 0.0000 0.8648± 0.0000 0.8649± 0.0000 0.8651± 0.0000 0.8647± 0.0000 0.8641±0.0000
𝑤𝑠 Constant‡ GRU† LSTM† Linear† NLinear† DLinear†

90 0.8671±0.0000 1.0734± 0.0005 1.0750± 0.0058 1.1320± 0.1128 1.1229± 0.0015 1.1084± 0.0040
100 — 1.0736± 0.0006 1.0740± 0.0011 10.4293± 27.3390 1.1255± 0.0001 1.1121± 0.0100

*SSAR: Non-Euclidean input-space, †Baseline: Euclidean input-space, ‡Ablation
Bold represents the best result across row



Table 14
Outliers

Model 𝑤𝑠 Count Mean MSE

Linear 50 6 8.0023
Linear 100 7 67.2112

NLinear 60 7 14.4714
DLinear 60 8 22.2426

Table 15
Random-seed Test Set Results, Excluding Outliers (MSE)

Data Set 2 (±1𝜎)

𝑤𝑠 Pearson* Spearman* Kendall* GC* MI* TE*

20 0.865570± 0.000001 0.869217± 0.000007 0.864707± 0.000000 0.864074±0.000000 0.867186± 0.000004 0.864379± 0.000000
30 0.864372±0.000000 0.865704± 0.000001 0.867756± 0.000004 0.864863± 0.000000 0.864390± 0.000000 0.865536± 0.000001
40 0.864416± 0.000000 0.864535± 0.000000 0.865272± 0.000000 0.864074±0.000000 0.864431± 0.000000 0.864167± 0.0000000
50 0.865261± 0.000001 0.865146± 0.000000 0.864197±0.000000 0.865573± 0.000000 0.864614± 0.000000 0.864126±0.000000
60 0.864692± 0.000000 0.864584± 0.000000 0.866039± 0.000002 0.864528± 0.000000 0.864271±0.000000 0.864383± 0.000000
70 0.865183± 0.000001 0.864387± 0.000000 0.868527± 0.000004 0.867677± 0.000006 0.864294±0.000000 0.864967± 0.000001
80 0.864420± 0.000000 0.864216±0.000000 0.865633± 0.000002 0.864100±0.000000 0.866500± 0.000002 0.864747± 0.000000
90 0.874072± 0.000025 0.876404± 0.000038 0.864294± 0.000000 0.864844± 0.000001 0.864818± 0.000000 0.864264±0.000000
100 0.864424± 0.000000 0.864796± 0.000000 0.864930± 0.000000 0.865146± 0.000000 0.864677± 0.000000 0.864123± 0.000000
𝑤𝑠 Constant‡ GRU† LSTM† Linear† NLinear† DLinear†

20 0.867078±0.000002 1.073429± 0.001211 1.072995± 0.000342 1.085739± 0.001977 1.141603± 0.000039 1.185543± 0.165922
30 — 1.073149±0.000304 1.072988±0.000395 1.088698± 0.002433 1.126325± 0.000044 1.088895± 0.000072
40 — 1.073579± 0.000669 1.073082± 0.000406 1.092317± 0.001307 1.121533± 0.000045 1.094266± 0.005221
50 — 1.073659± 0.000514 1.073188± 0.000435 1.178907± 0.212394 1.120787± 0.000056 1.115725± 0.055661
60 — 1.075270± 0.001245 1.073747± 0.001143 1.100661± 0.006975 1.157271± 0.101624 1.121063± 0.052763
70 — 1.073497± 0.000584 1.073129± 0.000399 1.102755± 0.007010 1.120726± 0.000061 1.101896± 0.005430
80 — 1.073587± 0.000489 1.073001± 0.000308 1.127654± 0.019237 1.120486± 0.000057 1.107615± 0.012696
90 — 1.073363± 0.000518 1.075029± 0.005778 1.132033± 0.112828 1.122947± 0.001541 1.108393± 0.003993
100 — 1.073579± 0.000604 1.073994± 0.001135 1.185696± 0.254091 1.125477± 0.000060 1.112132± 0.009970

*SSAR: Non-Euclidean input-space, †Baseline: Euclidean input-space, ‡Ablation
Bold represents the best result across row, and italicized represents the best result across column

text, 𝑁 denotes the number of features, and 𝑇 denotes total
samples, i.e., time steps. 𝑘 denotes the number of bins for MI
and TE. Table 16 summarizes the time and space complexity
for step (i). Each complexity value is multiplied by 𝑁2

corresponding to each edge, i.e., the directed pair.
The time complexity of generating the temporal graph

representation is 𝑂(𝑇 × 𝑁2). The corresponding space
complexity is 𝑂(𝑇 ×𝑁2) if stored in an adjacency matrix
and 𝑂(𝑇 × (𝑁 + |𝐸|)) if stored in an adjacency list, where
|𝐸| is the size of the directed edge list. SSAR is highly scal-
able in both the temporal and feature dimensions, given
that the computed measures are provided. By using a finer
discrete time step, 𝑇 can easily rise. However, the com-
plexity rises linearly 𝑤.𝑟.𝑡. 𝑇 for both the time and space
complexity. Despite rising non-linearly, 𝑁2 𝑤.𝑟.𝑡. 𝑁 we
note that 𝑁 ≪ 𝑇 . This pattern will hold when scaling to
larger data sets to avoid overfitting.

We used Nvidia GTX 4070 Ti and Nvidia GTX 2080 Ti as
our GPUs for the baselines that can leverage high-core count
parallel computing. We always used a single GPU system for
each computational task. We used commonly available 6 to
32 virtual CPU core systems. Lastly, we used systems with
30 to 32 GB of RAM. Despite a total of 5084 random seed
(ablations and baselines included) training and inference
experiments, our total time spent running experiments was
within two weeks. We approximate that with five parallel
systems, each with 5 CPU cores for the GCNs and 5 CPU
cores and a CUDA-enabled GPU for baselines, all empirical
studies can be conservatively replicated within ten days. We
expect our implementation to have no scaling challenges in
modern AI clusters.



Table 16
Computational Complexity of Measures

Measure, 𝑚(·) Time Complexity Space Complexity

Pearson Correlation 𝑂(𝑇 ×𝑁2) 𝑂(𝑇 ×𝑁2)
Spearman Rank Correlation 𝑂(𝑇 𝑙𝑜𝑔𝑇 ×𝑁2) 𝑂(𝑇 ×𝑁2)
Kendall Rank Correlation 𝑂(𝑇 𝑙𝑜𝑔𝑇 ×𝑁2) 𝑂(𝑇 ×𝑁2)
Mutual Information 𝑂(𝑇 𝑙𝑜𝑔𝑇 ×𝑁2) 𝑂(𝑘2 ×𝑁2)
Granger Causality 𝑂(𝑇 2𝑙𝑜𝑔𝑇 ×𝑁2) 𝑂(𝑇 ×𝑁2)
Transfer Entropy 𝑂(𝑇 3 ×𝑁2) 𝑂(𝑘2 ×𝑁2)
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