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Abstract
When accidents, disasters, or other large-scale events occur, they significantly disrupt traffic, leading to congestion and reduced mobility.
To effectively address these issues, it is crucial to precisely detect the underlying causes of these disruptions through the analysis
of human mobility data. A common approach in anomaly detection is to employ dimensionality reduction techniques to compute
reconstruction errors. However, the reconstruction errors generated by traditional methods are influenced by the correlations among
features, which may obscure the true causes of anomalies. To overcome this limitation, we introduce an approach that calculates the
SHAP (SHapley Additive exPlanations) values associated with the reconstruction errors resulting from dimensionality reduction. We
conducted experiments using a dataset of human mobility patterns to evaluate the effectiveness of this method. The results demonstrate
that our approach provides a more accurate explanation of anomalies compared to conventional methods.
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1. Introduction
Anomaly detection in spatial-temporal population data has
gained significant attention in recent years due to its poten-
tial applications in urban planning, disaster management,
and public safety. Accurate identification of unusual pat-
terns in human mobility can help authorities respond more
effectively to disruptive events such as accidents and disas-
ters. However traditional anomaly detection methods often
face challenges in capturing the complex spatial and tempo-
ral dependencies in high dimensional population data.

Previous studies have explored various approaches to
anomaly detection in spatial temporal data. Ochiai et al.[1]
proposed a method that utilizes mesh-based population data
derived from mobile communication records to detect non-
designated evacuation centers during disasters. Their ap-
proach relies on significant reconstruction errors in anomaly
scenarios, which are trained only with data representing
normal conditions. While this method demonstrates poten-
tial, it may not effectively capture the underlying causes of
anomalies.

On the other hand, Takeishi[2] demonstrated the effec-
tiveness of using Shapley values to explain the causes of
anomalies in dimensionality reduction scenarios. By apply-
ing Shapley values to one-dimensional health data, such as
myocardial infarction and breast cancer records, Takeishi’s
method provides a more interpretable understanding of
anomaly detection results. However, the applicability of
this approach to high-dimensional spatial-temporal data
has not been explored.

Building upon the insights from Ochiai et al. and Takeishi,
we propose a novel anomaly detection framework that com-
bines the strengths of both approaches. Our method inte-
grates SHAP (SHapley Additive exPlanations) values with
dimensionality reduction to identify and explain anomalies
in spatial-temporal population data. By leveraging the ex-
planatory power of SHAP values, we aim to improve the
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accuracy and interpretability of anomaly detection results,
while also extending the applicability of Takeishi’s approach
to high-dimensional data.

The main contributions of this paper are as follows:

• We introduce a novel anomaly detection method
that integrates dimensionality reduction with SHAP
values to identify anomalies in spatialtemporal pop-
ulation data.

• We evaluate the effectiveness of our approach using
a real-world dataset of human mobility patterns in
a major urban area, demonstrating its superiority
compared to traditional reconstruction error-based
methods.

• We extend the applicability of Takeishi’s Shapley
value-based approach to high-dimensional spatial-
temporal data, enhancing its utility for real-world
scenarios.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of related work in anomaly
detection and spatial-temporal data analysis. Section 3
describes our proposed methodology in detail. Section 4
presents the experimental setup. Section 5 discusses the
experimental results. Finally, Section 6 concludes the paper
and discusses future research directions.

2. Related Work
The detection of anomalies in urban population flows has
been extensively explored using diverse data sources, in-
cluding road sensors[3], surveillance cameras[4], and social
media data[5]. While road sensors and surveillance cam-
eras prove effective for identifying local abnormalities, their
broader application for city-wide anomaly detection is ham-
pered by high installation and maintenance costs. On the
other hand, social media data facilitates multimodal anomaly
detection methods, such as the integration of bike-sharing
and taxi usage history[6], and the semantic interpretation
of location-based anomalies identified through social media
analytics[7].

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ryou.koyama.aw@nttdocomo.com
https://orcid.org/0009-0007-4157-1634
https://creativecommons.org/licenses/by/4.0


This research leverages population data extracted from
communication logs between mobile devices and base sta-
tions to enhance anomaly detection capabilities. In contrast
to road sensors and surveillance cameras, mobile device data
captures a wide array of individual behaviors throughout the
entire city, thus offering a more comprehensive solution for
detecting anomalies. For instance, Yabe et al.[8] utilized sta-
tistical methods to detect the emergence of non-designated
shelters during disasters, although their studies lacked a
quantitative assessment of accuracy. Similarly, Ochiai et
al. used mobile phone-based population data to detect non-
designated evacuation sites during disasters by focusing on
reconstruction errors. However, as Takeishi has pointed
out, these reconstruction errors, significantly influenced by
feature interactions, may not accurately pinpoint anomaly
locations. To overcome this limitation, Takeishi introduced
a method that employs Shapley Values to elucidate the ori-
gins of anomalies within dimensionality reduction models.

3. Methodologies
This section details our proposed methodology, SHAP Val-
ues of Reconstruction Error, for anomaly detection, incorpo-
rating SHAP values derived from reconstruction errors. We
begin by describing Principal Component Analysis (PCA) as
the foundation for dimensionality reduction. Subsequently,
we outline the traditional method based on reconstruction
errors. Then, we introduce our enhanced approach that
integrates SHAP values to improve the accuracy and ef-
fectiveness of anomaly detection. Finally, we explain the
calculation of SHAP values for multi-dimensional objec-
tive variables, extending the methodology to more complex
scenarios.

3.1. Principal Component Analysis
PCA is a widely-used technique for reducing the dimension-
ality of high-dimensional data while preserving the most
significant features. By projecting the data onto a lower-
dimensional space, PCA identifies the principal components
that capture the maximum variance in the data.

Given a dataset X ∈ R𝑛×𝑑 with 𝑛 samples and 𝑑 features,
the PCA process involves the following steps:

1. Standardize the Data: Subtract the mean of each
feature from the dataset to center the data around
the origin.

2. Compute the Covariance Matrix: Calculate the
covariance matrix C = 1

𝑛
X𝑇X.

3. Perform Eigenvalue Decomposition: Decom-
pose the covariance matrix into eigenvalues and
eigenvectors: C = VΛV𝑇 , where Λ is a diagonal
matrix containing the eigenvalues, and V is a matrix
whose columns are the corresponding eigenvectors.

4. Select Principal Components: Choose the top
𝑝 eigenvectors corresponding to the largest eigen-
values to form the principal components. These
components maximize the variance retained in the
lower-dimensional space.

In this study, we set the threshold for the variance to be
retained at 90%. This means that we select the number of
principal components 𝑝 such that the cumulative variance
explained by these components is at least 90%. By retaining
the principal components that explain the majority of the

variance, PCA ensures that the most important features of
the data are preserved, allowing for effective dimensionality
reduction and subsequent analysis.

3.2. Reconstruction Error
Using the principal components obtained from PCA, we
can perform dimensionality reduction and reconstruction.
Consider a test data vector y ∈ R𝑑. The reduced repre-
sentation y𝑟𝑒𝑑 ∈ R𝑝 is obtained using the mapping func-
tion 𝑟𝑒𝑑𝑢𝑐𝑒 : R𝑑 → R𝑝, and the reconstructed vector
ŷ ∈ R𝑑 is computed using the reconstruction function
𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 : R𝑝 → R𝑑 as follows:

ŷ = 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡(𝑟𝑒𝑑𝑢𝑐𝑒(y)) (1)

The reconstruction error 𝑒y , a measure of fidelity of re-
construction, is defined as the squared Euclidean distance
between the original and reconstructed vectors:

𝑒y = ‖y − ŷ‖22 =

𝑑∑︁
𝑖=1

(𝑦𝑖 − 𝑦�̂�)
2 (2)

This error metric helps identify significant deviations from
normal patterns, which are potential indicators of anoma-
lies.

Additionally, the reconstruction error for each feature 𝑖
is calculated as:

𝑒𝑦𝑖 = |𝑦𝑖 − 𝑦�̂�| (3)

This feature-specific error is employed to identify which
specific features are exhibiting anomalies.

3.3. SHAP Values of Reconstruction Error
Typically, the SHAP value 𝜑𝑖(𝑥) for each feature 𝑖 is cal-
culated using all features of the instance 𝑥 as explanatory
variables and the prediction 𝑦 as the objective variable as
follows:

𝜑𝑖(𝑥) = 𝑠ℎ𝑎𝑝_𝑣𝑎𝑙𝑢𝑒(𝑖; 𝑦, 𝑥) (4)

This formulation allows for measuring the impact of fea-
ture 𝑖 on the prediction 𝑦, providing a concrete metric for
understanding the significance of each feature in the model.

Similarly, the SHAP value of reconstruction error𝜓𝑖(𝑥) is
calculated using all features of the instance 𝑥 as explanatory
variables and the reconstruction error 𝑒𝑦 as the objective
variable using the following function:

𝜓𝑖(𝑥) = 𝑠ℎ𝑎𝑝_𝑣𝑎𝑙𝑢𝑒(𝑖; 𝑒𝑦, 𝑥) (5)

This formulation measures the impact of feature 𝑖 on
the reconstruction error 𝑒𝑦 , providing a concrete metric
for evaluating the significance of each feature in anomaly
detection.

3.4. SHAP Values of Reconstruction Error
for Multidimensional Obejective
Variables

The SHAP value of Reconstructtion Error𝜓𝑖(𝑥) for feature 𝑖,
when the objective variable is represented in one dimension,
is calculated using the following equation [9]:

𝜓𝑖(𝑥) =
∑︁

𝑆⊆{1,...,𝑑}∖𝑖

(𝑑− |𝑆| − 1)!|𝑆|!
𝑑!

[𝑓(𝑥𝑆∪𝑖)− 𝑓(𝑥𝑆)]

(6)



In this equation, 𝑓(𝑥𝑆∪𝑖) denotes the model’s predicted
value when the feature set 𝑆 includes feature 𝑖, and 𝑓(𝑥𝑆)
represents the predicted value when the set 𝑆 is used with-
out feature 𝑖. |𝑆| denotes the number of elements in the
feature subset 𝑆, and 𝑑 is the total number of features.

Subsequently, the SHAP Values of Reconstruction Error
𝜓

(𝑘)
𝑖 (𝑥) for feature 𝑖 impacting the 𝑘-th dimension of the

objective variable is calculated as the average difference
between the model predictions with and without feature
𝑖, across all combinations of features, thus extending equa-
tion 6 into the multidimensional context of SHAP Values of
Reconstruction Error as follows:

𝜓
(𝑘)
𝑖 (𝑥) =

1

𝐾

𝐾∑︁
𝑘=1

⎡⎣ ∑︁
𝑆⊆{1,...,𝑑}∖𝑖

(𝑑− |𝑆| − 1)!|𝑆|!
𝑑!

[𝑓 (𝑘)(𝑥𝑆∪𝑖)− 𝑓 (𝑘)(𝑥𝑆)]
]︁

(7)

This formulation allows for measuring the impact of fea-
ture 𝑖 across different combinations of features on each
dimension of the recostruction error. By doing so, it pro-
vides a concrete metric for elucidating the significance of
feature 𝑖 in anomaly detection, offering detailed insights
into the causes of anomalies in specific dimensions.

4. Preliminaries

4.1. Definition: Spatial-Temporal
Population Data

This study utilizes Mobile Spatial Statistics (MSS) [10],
representing population counts recorded across a two-
dimensional geographic grid. Each record, denoted as
(𝑔, 𝑡, 𝑝𝑜𝑝𝑔,𝑡), indicates the population count 𝑝𝑜𝑝𝑔,𝑡 at grid
𝑔 and timestamp 𝑡.

4.2. Problem Statement
The goal of this study is to assess the accuracy of anomaly
detection in spatial-temporal population data. We compare
two methodologies: a traditional approach using recon-
struction errors, and a novel approach using SHAP Values
of Reconstruction Errors.

4.2.1. Anomaly Insertion Methodology

During the test phase, artificial anomalies are introduced
by altering population figures within selected grids. For
each timestamp 𝑡, a grid 𝑔 is chosen randomly, and 𝑝𝑜𝑝𝑔,𝑡
is modified to the maximum or minimum value seen during
the training period, defined as:

𝑝𝑜𝑝𝑛𝑒𝑤
𝑔,𝑡 =

{︃
max(𝑝𝑜𝑝𝑔,𝑡′ : 𝑡

′ ∈ 𝑇train), if max anomaly
min(𝑝𝑜𝑝𝑔,𝑡′ : 𝑡

′ ∈ 𝑇train), if min anomaly

4.2.2. Evaluation Methodology

The efficacy of each detection method is quantified using
the Hits@𝑘 metric, which determines if the true anomalous
grid is among the top 𝑘 ranks based on anomaly scores. The
scores are calculated using the following equations:

𝑒𝑦𝑔 = |𝑦𝑔 − 𝑦𝑔| (as defined in Equation 3) (8)

𝜓(𝑘)
𝑔 (𝑥) =

1

𝐾

𝐾∑︁
𝑘=1

⎡⎣ ∑︁
𝑆⊆{1,...,𝑑}∖𝑔

(𝑑− |𝑆| − 1)!|𝑆|!
𝑑!

[𝑓 (𝑘)(𝑥𝑆∪𝑔)− 𝑓 (𝑘)(𝑥𝑆)]
]︁

(as defined in Equation 7)

(9)

Rankings for each grid are obtained by comparing these
scores against all others in the dataset.

Hits@k Calculations For both methods, Hits@k is de-
fined and calculated separately for each method to assess
the efficacy in identifying the true anomalies within the top
𝑘 ranks of predicted anomalies. The total number of test in-
stances, denoted as 𝑁 , is used to normalize the calculations,
ensuring that the results are proportional to the size of the
test dataset. The calculations are as follows:

Hits@𝑘reconst =
1

𝑁

𝑁∑︁
𝑖=1

1(rank(𝑒𝑦𝑔𝑖 ) ≤ 𝑘) (10)

Hits@𝑘SHAP =
1

𝑁

𝑁∑︁
𝑖=1

1(rank(𝜓(𝑘)
𝑔𝑖 (𝑥)) ≤ 𝑘) (11)

where 1(·) is the indicator function, and 𝑁 represents the
total number of test instances. These metrics facilitate a di-
rect comparison of the methods’ effectiveness in accurately
detecting anomalies.

5. Experiments

Figure 1: The study area encompassing a total area of 5km x
5km around Shibuya Station, divided into a grid with each cell
measuring 500m x 500m.

5.1. Dataset
This study utilizes Mobile Spatial Statistics data generated
from communication records between NTT DOCOMO’s
base stations and mobile devices. This data is divided into
mesh units across Japan in accordance with the Regional
Mesh standards provided by the Ministry of Internal Af-
fairs and Communications Statistics Bureau[11]. Population
counts for each grid are estimated at 10-minute intervals,
considering factors such as number of devices accessing
each base station, market share rates, residential areas, age,



Table 1
Examples of Anomaly Detection Results for Randomly Sampled Grids: This table compares the detection rankings from
reconstruction error and SHAP value methods across three timestamps. Ranks close to 1 indicate higher detection accuracy.

Timestamp 𝑡 Randomly Sampled Grid 𝑔 𝑝𝑜𝑝𝑔,𝑡 𝑝𝑜𝑝𝑛𝑒𝑤
𝑔,𝑡 rank(𝑒𝑔 ) rank(𝜓(𝑘)

𝑔 (𝑥))

2022/10/31 19:10 5339-3588-4 1.378 -1.257 1 1
2022/10/31 10:50 5339-3574-1 1.429 2.187 9 8
2022/10/31 9:10 5339-3584-1 1.536 1.682 6 2

and gender. To ensure privacy, the data is prepared in ac-
cordance with guidelines published by NTT DOCOMO[12].
The experimental area, as shown in figure 1 , comprises 100
grids of 500 square meters each, centered around Shibuya
Station. The population data is treated as 100-dimensional
feature vectors and standardized for each dimension.

5.2. Training Phase
The training data consists of population records with a 10-
minute resolution from October 17 and October 24, 2022,
totaling 288 instances (6×24×2), were prepared. A PCA
model was trained with these data, setting the dimensional-
ity reduction to retain 90% of the variance.

5.3. Testing Phase
The test data consists of 144 population records (6×24) from
October 31, 2022, matching the same month and day of the
week as the training data. Anomalies were inserted using
the method described in Section 4.2.1. For each instance, one
grid was randomly selected, and its population count was
replaced with either the maximum or minimum population
observed for that grid. A total of 288 tests were conducted
to determine if the grid with the altered population could
be accurately identified.

5.4. Experimental Results
This section presents the results of anomaly detection exper-
iments conducted using both the traditional reconstruction
error method and the proposed SHAP value method. The
performance of each method is illustrated through selected
examples at various timestamps, as detailed in Table 1.

The analysis shows varying levels of detection accuracy
for each method, with lower ranking values indicating
higher precision in anomaly detection. Specifically, at 19:10
on October 31, 2022, both methods accurately detected the
anomaly in grid 5339-3588-4, achieving the lowest possible
rank of 1. This instance demonstrates the effectiveness of
both approaches in scenarios where there is a substantial
change in population, from 1.378 to -1.257.

Conversely, at 10:50 on the same day, the anomaly in grid
5339-3574-1 was detected with lower accuracy, resulting
in ranks of 9 and 8 for the reconstruction error and SHAP
methods, respectively. This indicates a reduced effectiveness
of both methods in detecting anomalies associated with
smaller changes in population, from 1.429 to 2.187.

Moreover, at 9:10, the SHAP method outperformed the
reconstruction error method by more accurately identifying
the anomaly in grid 5339-3584-1, with a rank of 2 compared
to 6. This demonstrates the SHAP method’s enhanced ability
to detect subtle yet significant changes in population, from
1.536 to 1.682.

A comprehensive evaluation using the Hits@k metric,
which assesses performance under scenarios of maximum

Table 2
Comparison of Hits@k Metrics for Reconstruction Error and
SHAP Methods Across All Test Instances: This table presents the
performance of both anomaly detection methods under condi-
tions of maximum and minimum population changes. Hits@k
values range from 0 to 1, where values closer to 1 indicate higher
accuracy in detecting anomalies.

MAX MIN

𝑘 = 1 𝑘 = 3 𝑘 = 1 𝑘 = 3

Hits@𝑘reconst 0.382 0.458 0.340 0.410
Hits@𝑘SHAP 0.417 0.472 0.375 0.438

and minimum population changes, is summarized in Table
2. Hits@k values range from 0 to 1, with higher values
indicating more effective anomaly detection.

For maximum population changes, the SHAP method
demonstrates superior performance with Hits@k scores of
0.417 at 𝑘 = 1 and 0.472 at 𝑘 = 3, exceeding the scores of
the reconstruction error method, which are 0.382 at 𝑘 = 1
and 0.458 at 𝑘 = 3. Similarly, in scenarios of minimum pop-
ulation changes, the SHAP method achieves better scores
of 0.375 at 𝑘 = 1 and 0.438 at 𝑘 = 3, outperforming the
reconstruction error method’s scores of 0.340 at 𝑘 = 1 and
0.410 at 𝑘 = 3. These findings confirm the effectiveness
of the SHAP method in consistently identifying anomalies
under varied conditions, highlighting its superiority over
the traditional method.

6. Conclusion
This paper evaluated the performance of established recon-
struction error techniques and the SHAP value method for
anomaly detection in spatio-temporal population datasets.
The study highlighted the SHAP method’s enhanced capa-
bility for precise anomaly identification, which is crucial
for high-accuracy applications such as urban planning and
emergency management. The experimental datasets were
synthetically modified to include anomalies, offering a con-
trolled setting to examine and contrast the performance of
these methods. Future research aims to extend the appli-
cation of these techniques to real-world data, particularly
in scenarios impacted by events like accidents, disasters, or
significant public gatherings.
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