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Abstract
The spatial-temporal prediction of transit speeds is of great importance today as it allows for the anticipation and mitigation
of vehicular congestion, thereby improving traffic efficiency. In machine learning, models such as ConvLSTM or Transformers
enable reasonable predictions at the spatio-temporal level. However, these models typically assume a square grid configuration,
which can limit the use of more convenient configurations in transportation, such as hexagonal grids. We propose a ConvLSTM
neural network adapted to hexagonal grid sequences for transit speed prediction, incorporating a transformation of the
hexagonal input to allow the use of standard spatial temporal architectures based on square grids. This work validates
the proposed model through experiments comparing our approach with baseline methods using traffic data from freight
transportation in the Metropolitan Region of Santiago, Chile. The results indicate that using hexagonal sequences improves
the mean absolute error (MAE) in predicting freight traffic speeds by 2.7% compared to the base spatio-temporal ConvLSTM
prediction model. For future work, we propose using larger databases and adapted transformers.
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1. Introduction
The prediction of transit speeds emerges as a critical com-
ponent in addressing road congestion, offering a way to
anticipate and mitigate real-time setbacks [1], essential
for refining the distribution industry and the last mile.
By projecting transit speeds at different times and loca-
tions, transportation companies can fine-tune the routes
of their fleets, minimizing delays and cutting operational
costs [2, 3]. This knowledge also enables drivers to make
better decisions regarding their itineraries, avoiding bot-
tlenecks and ensuring more agile and effective deliveries.
This has a tangible impact on customer satisfaction and
overall supply chain efficiency.

In recent years, there has been a notable increase in the
application of machine learning (ML) techniques to ad-
dress traffic speed prediction. Thanks to the availability
of real-time data, such as GPS information from vehicles,
sensor data, and online traffic, ML algorithms can ana-
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lyze complex and dynamic patterns in traffic, allowing
for more accurate speed predictions. In this problem,
classical techniques such as Multiple Linear Regression
[4], ARIMA [5], Random Forests [4], Support Vector Ma-
chines (SVM) [6], and MLP neural networks [7] have
been applied. However, more modern models often uti-
lize deep learning techniques

Conversely, deep learning (DL) models have also been
employed for diverse tasks like crowd mobility predic-
tion [8, 9, 10] or traffic prediction [11, 12, 13, 14]. In
traffic prediction task, some networks commonly used
are Long Short-Term Memory (LSTM) Neural Networks
and Gated Recurrent Unit (GRU) networks. These mod-
els are ideal for modeling sequential data, such as time
series, allowing for efficient capture of both short and
long-term dependencies. Although current models are
increasingly powerful, they naturally assume a square
grid, meaning the information is represented by matrices
or tensors. However, in the context of transportation,
hexagonal grids offer significant advantages over tradi-
tional square inputs, particularly in terms of processing
efficiency and accuracy in representing spatial patterns.
The hexagonal geometry allows for greater connectiv-
ity and uniform coverage of the input space with fewer
sampling points, reducing information distortion. This is
because each hexagonal point has six equidistant neigh-
bors, unlike the four or eight neighbors in a square grid,
which facilitates better data interpolation and a more
accurate representation of shapes and patterns. While
existing spatio-temporal prediction models can approx-
imate hexagonal inputs, this often results in a loss of
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performance.
In this work, we propose processing a sequence of

hexagons where each cell contains the traffic speed of
vehicles using a specialized library. The adaptation to
a standard ConvLSTM network, designed to work with
square data, involves transforming the hexagonal data
into a compatible square structure. To achieve this, the
operations of upsampling, padding, and shifting are ap-
plied in series to preserve the original neighborhood of
the hexagons in the square structure. Then, a custom
kernel is applied to convolve the data and extract rele-
vant features, which allows maintaining the hexagonal
structure. The use of hexagonal inputs allows greater ef-
ficiency in terms of computation, according to [15], since
they require fewer parameters to achieve comparable
coverage of the input domain. This can translate into
faster training and lower resource consumption.

The contributions of our article are the following:

• We present a hexagonal grid-based representa-
tion for spatial-temporal data corresponding to
vehicle speeds;

• We conduct comparative experiments that in-
clude standard baseline machine learning models
along with the technique proposed in this work;

• We make the source code of this work available
to facilitate the replicability of experiments.

Section 2 outlines relevant prior work. Section 3 de-
tails the proposed methodology. Section 4 presents and
discusses the results of our experiments. Lastly, Section
5 summarizes our main conclusions.

2. Related work
Spatial-temporal prediction often use a combination of
recurrent and convolutional networks such as ConvL-
STM (Convolutional Long Short-Term Memory), which
merges the spatial analysis capabilities of CNNs with
the ability of LSTMs to capture temporal relationships.
Recently, Transformer neural models have been applied
[16, 17]. A notable feature of these networks is their
ability to model long-range dependencies in sequential
data.

In the literature, numerous works are focused on the
spatial-temporal prediction of transit speeds, congestion,
and transportation using deep neural networks. Lai et
al. [18] used an improved ConvLSTM model (eConvL-
STM), which incorporates advanced linear features. A
Traffic Pattern Attention (TPA) block and a Squeeze-and-
Excitation (SE) block are introduced to optimize the ac-
curacy in predicting traffic matrices, thus surpassing ex-
isting baseline models. Bogaerts et al. [14] presented
Graph CNN-LSTM, a hybrid architecture composed of

three components; a CNN, an LSTM neural network, and
a FFNN. This structure succeeds in predicting traffic over
short temporal horizons (5 minutes) as well as long-term
(up to 4 hours) through multi-stage predictions using
data provided by the DiDi Chuxing Gaia open data initia-
tive, and demonstrated superiority over cutting-edge ITS
algorithms, such as k-NN, SVM, or LSTM. The work of
DeepSTCL [19] implements a ConvLSTM network within
a deep learning framework for travel demand prediction,
standing out for its ability to capture spatial-temporal
dynamics and surpass traditional methods like AR and
ARIMA. Its focus on analyzing proximity, period, and
trend patterns results in more accurate predictions and
better interpretation of complex travel demand data, prov-
ing its superiority with real data from DIDI in Chengdu.
Zhang et al. [20], introduced an LSTM-XGBoost model
for short-term traffic flow prediction, addressing chal-
lenges such as periodicity and overfitting by combining
LSTM with dropout layers and XGBoost to enhance accu-
racy and generalization. Validated with traffic data from
Shenzhen, the model shows significant improvements in
accuracy and scalability, highlighting its contribution to
optimizing traffic prediction and efficient control. Duan
et al. [21], introduced an enhanced hybrid CNN-LSTM
model through a greedy algorithm for urban traffic flow
prediction using GPS data from taxis. This work com-
bines spatial and temporal feature extraction to improve
prediction accuracy and efficiency. Validated with data
from Xi’an, the model achieves shorter training times and
greater accuracy compared to previous methods, offering
an effective solution to the complexity of urban traffic
data. Xu et al. [22], proposed a spatio-temporal deep
learning framework, integrating ConvLSTM and Graph
Convolutional Network (GCN), for precise traffic speed
prediction. By extracting temporal features with Con-
vLSTM and spatial features with GCN, the framework
significantly improves predictive performance against
baseline methods, demonstrating its efficacy in the ad-
vanced analysis of large traffic data collected through
the Internet of Things (IoT). Hu et al. [23] present the
AB-ConvLSTM model, designed to accurately predict
large-scale traffic speed in urban road networks. This
model combines the ConvLSTM network, an attention
mechanism, and Bi-LSTM networks to extract spatial-
temporal and periodic features. The results show that
AB-ConvLSTM consistently outperforms other models
in predicting urban traffic speed, highlighting its ability
to capture historical significance and effectively extract
daily and weekly periodic functions.

Regarding hexagonal models, they have typically been
applied to spatial prediction tasks. Hexagdly [24] facili-
tates the use of convolutional neural networks (CNNs) in
this field without the need for data preprocessing. The
main advantage of this approach lies in its adaptation to
hexagonal grids through specific convolution and pool-



ing operations, overcoming the limitations of traditional
square convolution kernels.

Previous works focus on the combination of different
techniques and architectures to improve accuracy and
generalization in traffic prediction considering square in-
puts, while works considering hexagonal inputs propose
prediction at a spatial level. In this work, the geomet-
ric and topological advantages of hexagonal inputs are
exploited [25]. These allow for better coverage and con-
nectivity in capturing the spatial characteristics of traffic,
resulting in a more efficient and accurate representation
of temporal and spatial dynamics.

3. Proposed method
The general approach to processing sequences of data
grid sequences using spatio-temporal neural networks
assumes that the data is represented by square grids.
However, it is not clear how to apply these models to
data represented by hexagonal grids. Particularly, the
neighborhood of a cell is different; while a hexagonal
cell has six neighbors, a square cell has eight neighbors.
However, the use of hexagonal grids in convolutional
networks enhances prediction accuracy [26] due to the
reduced anisotropy of hexagonal filters [27]. Despite
this, the reviewed spatio-temporal neural models do not
consider this type of configuration.

In this work, we propose a ConvLSTM-based method
for spatial-temporal prediction utilizing hexagonal grids,
applied specifically to cargo vehicle speed data. This
method comprises three key steps outlined as follows:
(i) Initially, we transform the transit speed data onto
hexagonal grids represented in Cartesian coordinates.
(ii) Subsequently, we sequence the data in hexagonal
patterns while preserving the hexagonal constraint by
considering equivalent square grids. (iii) Lastly, we em-
ploy a ConvLSTM network with a hexagonal constraint
(HexConvLSTM) to train on the preprocessed speed data.
Now we will detail these steps.

3.1. Cartesian Representation
In this work, we first group the traffic speed data into
regular hexagons using a methodology that generates
a hexagonal grid. The implementation of this method
results in the generation of N regular hexagons, where N
is determined by a spatial resolution parameter. This gen-
eration produces a hexagonal grid where each hexagon
contains the measurements that the area encompasses.
In Fig. 1 we show an example of a hexagonal mesh con-
sidering 21 hexagons within the experimental region.
Fortunately, this hexagonal organization is typically fa-
cilitated by specialized libraries; in our case, we used
the H3 library from Uber [28]. This library generates

a georeferenced hexagonal grid from boundary coordi-
nates, where the number of hexagons depends on the H3
resolution parameter.

Figure 1: Grid with 21 hexagons covering the area of interest in
Santiago, Chile.

Each hexagon is identified by a unique index that en-
codes its position. When mapping these indices to a
Cartesian coordinate system (𝑖, 𝑗) for visualization or
computational purposes, hexagons sharing a common
coordinate will form a line that traverses the grid in a
diagonal direction. This is due to the nature of hexag-
onal packing, where each hexagon touches six others
in an arrangement that naturally forms diagonals when
represented in a 2D coordinate system (see Fig. 2).

(a) Hexagonal Grid

(b) Cartesian Grid

Figure 2: Hexagonal and Cartesian representation of July 21 at
10:00 a.m.

While in a square grid, a cell typically has eight direct



neighbors (up, down, left, right, and the four diagonals),
in a hexagonal grid, each cell is adjacent to six neigh-
bors. Therefore, the hexagonal neighborhood structure
significantly alters the spatial distances between cells.

3.2. Square Preprocessing
Given that the data from hexagonal cells are represented
as ordered pairs (𝑖, 𝑗), the hexagonal grid can be repre-
sented as a square grid, that is, in the form of matrices.
However, in a square grid, a cell has 8 neighbors, while
hexagonal cells have 6 neighbors. Therefore, it is nec-
essary to prepare the data so that a convolution oper-
ation, provided by ConvLSTM, respects the hexagonal
constraint.

This pre-processing is performed through a sequence
of matrix operations involving upsampling, padding, and
shifting. This approach results in a representation where
it is feasible for a convolution to respect the hexagonal
arrangement through a kernel constraint of a ConvLSTM.

3.2.1. UpSampling

The first step in data preprocessing is UpSampling. The
goal of this operation is to increase the vertical resolution
of the matrix by duplicating each row, while keeping
the horizontal content unchanged. Assuming that the
original matrix 𝐶 × 𝐶 and that the result of upsampling
is 𝐴′, the relationship between the elements of these
matrices can be expressed as:

𝐴′
𝑖,𝑗 = 𝐴⌊ 𝑖

2
⌋,𝑗 , ∀𝑖 ∈ [1, 2𝐶], ∀𝑗 ∈ [1, 𝐶].

Visually, if we consider 𝐴 as the original matrix, then,
after applying the UpSampling process, 𝐴′ results as fol-
lows:

𝐴 =

⎡⎢⎢⎢⎣
𝑎1,1 · · · 𝑎1,𝐶

𝑎2,1 · · · 𝑎2,𝐶

...
. . .

...
𝑎𝐶,1 · · · 𝑎𝐶,𝐶

⎤⎥⎥⎥⎦ 𝐴′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎1,1 · · · 𝑎1,𝐶

𝑎1,1 · · · 𝑎1,𝐶

𝑎2,1 · · · 𝑎2,𝐶

𝑎2,1 · · · 𝑎2,𝐶

...
. . .

...
𝑎𝐶,1 · · · 𝑎𝐶,𝐶

𝑎𝐶,1 · · · 𝑎𝐶,𝐶

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In this example, each row of 𝐴 has been duplicated in 𝐴′

resulting in a matrix of 2𝐶 × 𝐶 .

3.2.2. Padding

The second step, Padding, adds additional rows to the
matrix to prepare the data for the Shifting process, which
requires a specific number of rows to operate correctly.

Specifically, this step adds 𝐶 rows of zeros at the bottom
of 𝐴′, resulting in a new matrix 𝐴′′ with size (2𝐶+𝐶)×
𝐶 . The transformation from 𝐴′ to 𝐴′′ can be described
as follows:

𝐴′′
𝑖,𝑗 =

{︃
𝐴′

𝑖,𝑗 , if 1 ≤ 𝑖 ≤ 2𝐶

0, if 2𝐶 < 𝑖 ≤ 2𝐶 + 𝐶
, ∀𝑗 ∈ [1, 𝐶],

This equation specifies how 𝐶 rows of zeros are added
at the bottom of 𝐴′.

Visually, we can see that while 𝐴′ is a 2𝐶 ×𝐶 matrix
resulting from the UpSampling process, the result of the
Padding, 𝐴′′, will be visualized with the last 𝐶 rows
composed of zeros,

𝐴′′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎′
1,1 𝑎′

1,2 · · · 𝑎′
1,𝐶

𝑎′
1,1 𝑎′

1,3 · · · 𝑎′
1,𝐶

...
...

. . .
...

𝑎′
𝐶,1 𝑎′

𝐶,2 · · · 𝑎′
𝐶,𝐶

𝑎′
𝐶,1 𝑎′

𝐶,2 · · · 𝑎′
𝐶,𝐶

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In this matrix 𝐴′′, the elements 𝑎′
𝑖,𝑗 represent the val-

ues of 𝐴′, and the last 𝐶 rows are zeros, creating a final
matrix of (2𝐶+𝐶)×𝐶 . This adjustment in the padding
process ensures that the extended matrix has the appro-
priate size for the Shifting operation.

3.2.3. Shifting

The final step in the preprocessing is the Shifting, which
shifts each column of the matrix upwards by a number
of positions equal to the column index. This procedure
introduces a shift that depends on the column position,
achieving the necessary configuration to apply the hexag-
onal constraint kernel. For the matrix 𝐴′′, the resulting
matrix 𝐴′′′ is obtained as follows:

𝐴′′′
𝑖,𝑗 = 𝐴′′

(𝑖+𝑗) mod 2𝐶,𝑗 , ∀𝑖 ∈ [1, 2𝐶],∀𝑗 ∈ [1, 𝐶],

where 𝑖 is the row index and 𝑗 is the column index in
𝐴′′. The mod operation ensures that the shifting is cyclic,
allowing elements that exceed the bottom of the matrix
to re-enter from the top.
Considering that 𝐴′′ is a (2𝐶 + 𝐶) × 𝐶 matrix, the
shifting will result in a matrix where each column has
been shifted downwards based on its column index. Here
is a simplified representation to illustrate the effect on
some columns:



𝐴′′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎′′
1,1 𝑎′′

1,2 · · ·
...

...
. . .

𝑎′′
𝐶,1 𝑎′′

𝐶,2 · · ·
0 0 · · ·
...

...
. . .

0 0 · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝐴′′′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · ·
...

...
. . .

𝑎′′
1,1 𝑎′′

2,2 · · ·
𝑎′′
2,1 𝑎′′

3,2 · · ·
...

...
. . .

𝑎′′
𝐶,1 0 · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This pattern demonstrates how the elements of each
column shift upwards, and those exceeding the upper
limit of the matrix reappear at the bottom. The outcome
of this final step enables the use of a kernel constraint
in any ConvLSTM neural network implementation, en-
suring strict adherence to the original hexagonal grid
neighborhood.

3.3. HexConvLSTM Architecture
Assuming that the data were preprocessed into a square
grid according to 3.2, we propose using a ConvLSTM
neural network with a kernel constraint. Next, we will
describe the kernel constraint mask that enables adher-
ence to the hexagonal arrangement in the grid, followed
by the neural network used.

3.3.1. Kernel constraint

The kernel constraint is defined by a binary mask given
by:

⎡⎢⎢⎢⎢⎣
0 1 0
1 0 1
0 1 0
1 0 1
0 1 0

⎤⎥⎥⎥⎥⎦ where

⎡⎢⎢⎢⎢⎣
Ne(P)

Ne(P) Ne(P)
P

Ne(P) Ne(P)
Ne(P)

⎤⎥⎥⎥⎥⎦ .

In this matrix, the positions where there is a 1 indicate
the cells that will be active, allowing convolution at those
specific positions; otherwise, the cells are not processed.
The positions are represented in the left matrix, P is the
target cell and Ne(P) is the neighbor of target P. In this
way, the 6-neighborhood of a hexagonal cell is recov-
ered in the square grid when using standard convolution
operations.

3.3.2. The HexConvLSTM network

By introducing the kernel constraint, mentioned in the
previous subsection 3.3.1, into a standard ConvLSTM-2D
layer, we can recover the hexagonal neighborhood in
a matrix tensor. We refer to this network as HexCon-
vLSTM, where a diagram of it can be seen in Fig. 3.
The variables and parameters of the ConvLSTM network
are typically well-known and are detailed in [29]. The

Figure 3: HexConvLSTM block at time step 𝑡. The variables are
detailed in [29].

difference from a standard ConvLSTM lies in the applica-
tion of the kernel constraint, which allows the network
to consider only the neighbors provided by the original
hexagonal configuration.

In a nutshell, our proposal entails representing a hexag-
onal grid in a Cartesian representation (see Section 3.1),
preprocessing to preserve hexagonal neighborhood (see
Section, 3.2), and ultimately applying a ConvLSTM neu-
ral network (see Section 3.3). Subsequent experiments
aim to evaluate the efficacy of our approach on a real
dataset.

4. Experiments

4.1. Data
The database used in this work corresponds to data ex-
tracted from the Transportation and Logistics Center of
Andrés Bello University, a center dedicated to research-
ing routing problems, last-mile, logistics optimization,
among others. The raw data includes 22 million GPS
measurements of last-mile cargo vehicle speeds in Santi-
ago, Chile, Metropolitan Region. This data contains the
following information:

Table 1
Data description

Term Description

Id Measurement identifier.
Date_time Date and time of the measurement.
Lat Latitude.
Lon Longitude.
Speed Measured speed.
Dir Vehicle direction (in degrees).
Vehicle_code Vehicle identifier.

For this work, we have limited our data to a specific sub-
region (see Fig. 4), considering a particular area with
the highest data density in the city of Santiago de Chile,



the capital of Chile. A high data density is considered
to minimize missing data, since cargo vehicles tend to
prefer certain streets. The boundaries of the chosen area
are between latitudes -33.4331 and -33.4524, and longi-
tudes -70.6253 and -70.6655, forming a rectangle that
includes the Santiago Centro commune and parts of its
neighboring communes.

Figure 4: The upper image corresponds to the city of Santiago,
while the lower image corresponds to the study area.

The measurements for this subregion span from Jan-
uary 4th to July 25th, 2020. All measurements recording
a speed of zero were removed, indicating that the vehicle
was stopped or out of operation. Additionally, records
outside the time range of 8:00 a.m. to 7:00 p.m. were
excluded, as this interval has the highest concentration
of measurements. Measurements outside this range were
excluded due to their low frequency. Similarly, measure-
ments from Sundays were discarded as they also showed
similarly low frequency. It should be noted that there
were no measurements during the month of April during
the measurement period.

Regarding temporality, the measurements will be
treated as hourly time series, which can be divided into
157 days, with each day having 12 hours of measurement
(from 8:00 a.m. to 7:00 p.m.), resulting in a total of 1,884
time series. Each of these intervals will be treated as a
grid with values imputed according to Section 4.2.

In terms of experimental design, the HoldOut method
for time series [30] was followed, where data were se-
quentially divided into training (70%), validation (15%),
and testing (15%) sets, with MinMax scaling applied
to each set. All methods were evaluated considering
mean absolute error (MAE), mean squared error (MSE),
root mean squared error (RMSE), and coefficient of de-
termination (R2). Furthermore, to ensure replicabil-
ity, the demo source code for this work is available
at: https://github.com/Francisco0178/HexConvLSTM. At
this point, we state that our method is generic, and in
future work we will test it on public datasets [31].

4.2. Data Imputation
Our dataset consists of a time series with 1,884 temporal
steps, each representing one hour between 8:00 a.m. and
7:00 p.m. over 157 days. Using a fixed grid of 110 hexag-
onal cells, each time step contains average traffic speed
information for each hexagonal cell. These 110 cells are
derived from the hexagonal preprocessing described in
Section 3.1 using the H3 library at a resolution of 9.

However, it is worth noting that the data originates
from geolocated sensor data of cargo vehicles. Upon ana-
lyzing this data, it becomes apparent that these vehicles
tend to favor certain routes and schedules, resulting in
some regions being underrepresented in the data. For
instance, at 8 am, the few vehicles that do transit may
predominantly utilize main roads, leaving certain areas
unmeasured. Consequently, in the utilized representa-
tion, there are hexagonal cells with missing measurement
information, with the percentage of missing data depend-
ing on the H3 resolution parameter.

In our implementation using the H3 library, we opted
for an H3 resolution of 9, which generates 110 hexagons.
When represented in a square format, it yields 15x15
matrices (225 cells) with 54% missing data. Although this
is a high percentage of missing values, using the next H3
resolution, 10, results in grids of 5x6, which are too small
for the use of convolutional models; however, using an
H3 resolution of 8 results in 500 hexagons leading to 90%
missing data, which complicates the training of neural
models

In this study, various imputation methods were experi-
mented with, and we found experimentally that the PPCA
method performs better than Gaussian-based or MICE
imputations. It is worth noting that in [32], PPCA also
emerges as a competitive imputation model for traffic
prediction tasks.

4.3. Experimental Results
Comparative experiments were conducted among an
MLP network, GRU, LSTM, ConvLSTM, and our Hex-
ConvLSTM network. The MLP network comprises two

https://github.com/Francisco0178/HexConvLSTM


layers with 256 and 128 neurons, while the LSTM and
GRU networks consider 128 and 50 recurrent units, re-
spectively. For the ConvLSTM and HexConvLSTM net-
works, 128 ConvLSTM units are employed. In all neural
networks, Mean Squared Error (MSE) was utilized as the
loss function.

In the first experiment, we trained the networks using
data imputed by the three methods described in Section
4.2. The second experiment involved training the mod-
els with data imputed using the method that yielded the
best results, but with a reshaping of the time series. This
reshaping involved grouping the averages of two consec-
utive hourly periods, which resulted in halving the total
dimension of our time series.

4.3.1. One-Hour Granularity Experiment

Table 2 shows that the proposed HexConvLSTM network
achieved the best values across all metrics, surpassing
ConvLSTM with relative improvements of 1.3%, 1.3%,
0.7%, and 0.9% in MAE, MSE, RMSE, and R2 respectively.
This indicates that the hexagonal constraint better cap-
tures the dynamics between the cells, leading to improved
performance of a ConvLSTM network. However, when
comparing all models, HexConvLSTM yielded the best
results, outperforming its closest competitor, MLP. We
believe this model performs well due to the low resolu-
tion of the 15x15 grid. The competitiveness of MLP on
small images, such as on the MNIST dataset, is shown in
[33]. However, in the context of transportation in large
cities we need to increase the size of the grids to improve
the spatial resolution of prediction.

Table 2
Results from one-hour granularity data on test set

Red MAE MSE RMSE 𝑅2

GRU 7.071 119.696 10.941 0.456
MLP 6.988 118.788 10.899 0.460
LSTM 7.207 121.019 11.001 0.450
ConvLSTM 7.032 118.883 10.903 0.459
HexConvLSTM 6.973 118.048 10.865 0.463

4.3.2. Two-Hour Granularity Experiment

Another experiment involved aggregating our data into
the average of 2 consecutive time steps, resulting in se-
quences that still contain 12 steps, but now each step
represents aggregated information from 2 consecutive
days (6 steps per day), instead of one day per step. This
grouping approach effectively reduces the temporal res-
olution of our data but enriches each time step with a
more integrated view of temporal features.

Table 3
Results from two-hour granularity data on test set

Red MAE MSE RMSE 𝑅2

GRU 5.522 64.784 8.049 0.606
MLP 5.466 63.93 7.996 0.612
LSTM 5.713 67.852 8.237 0.588
ConvLSTM 5.573 65.564 8.097 0.602
HexConvLSTM 5.419 62.674 7.917 0.619

Table 3 presents the results of each tested method.
The HexConvLSTM network has once again achieved
the best values across all metrics, surpassing ConvLSTM
with relative improvements of 2.7%, 1.3%, 0.7%, and 2.8%
in MAE, MSE, RMSE, and R2, respectively. This reaffirms
that the hexagonal constraint effectively captures the
dynamics between the cells. Moreover, the results are
globally better than those from the one-hour granular-
ity due to less variability since two-hour averages are
considered, which appear to be more predictable for all
models in general. In this experiment, HexConvLSTM
further increases its advantage over the other models.

5. Conclusions
This work demonstrates that the proposed HexConvL-
STM model outperforms ConvLSTM across all metrics,
indicating superior capture of transit dynamics. It con-
sistently shows an advantage in all metrics, and this ad-
vantage is expected to increase as larger grids and longer
temporal intervals are used in the sequence of input grids.

The temporal grouping experiment shed light on an-
other critical aspect: efficiency in data representation can
be as crucial as the quality of the data itself. In this con-
text, HexConvLSTM not only handled the imputed data
well but also benefited significantly from the grouping,
enhancing its predictive capacity. This result underscores
how HexConvLSTM can extract value from adjustments
in data preparation, a considerable advantage for any
practical application.

As future work, we plan to use databases with more
records, include larger study regions, and incorporate
self-attention layers to improve the model’s performance.
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