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Abstract
Spatio-temporal graph (STG) forecasting is a critical task with extensive applications in the real world, including traffic and weather
forecasting. Although several recent methods have been proposed to model complex dynamics in STGs, addressing long-range spatio-
temporal dependencies remains a significant challenge, leading to limited performance gains. Inspired by a recently proposed state space
model named Mamba, which has shown remarkable capability of capturing long-range dependency, we propose a new STG forecasting
framework named SpoT-Mamba. SpoT-Mamba generates node embeddings by scanning various node-specific walk sequences. Based on
the node embeddings, it conducts temporal scans to capture long-range spatio-temporal dependencies. Experimental results on the
real-world traffic forecasting dataset demonstrate the effectiveness of SpoT-Mamba.
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1. Introduction
The predictive learning methods on time series play a cru-
cial role in diverse applications, such as traffic and weather
forecasting. The intricate relationships and dynamic na-
ture of time series are often represented as graphs, specifi-
cally spatio-temporal graphs (STGs), where node attributes
evolve over time. Recently, spatio-temporal graph neu-
ral networks (STGNNs) have emerged as a powerful tool
for capturing both spatial and temporal dependencies in
STGs [1, 2, 3]. Many of those methods employ graph neu-
ral networks (GNNs) to exploit spatial dependencies inher-
ent in the graph structures, integrating them with recur-
rent units or convolutions to capture temporal dependen-
cies [2, 4, 5, 6, 7, 8, 9]. These approaches have facilitated
the capturing of spatio-temporal dependencies within STGs.
Despite their remarkable performance in predictive learn-
ing tasks, they often face challenges in handling long-range
temporal dependencies among different time steps [10, 11].

STGs often exhibit repetitive patterns over both short and
long periods, which is critical for precise predictions [12, 13].
Therefore, several methods have adopted self-attention
mechanisms of transformer layers [14] rather than recurrent
units to enhance their capability in exploiting global tempo-
ral information [10, 11, 15]. However, the significant compu-
tational overhead and complexity of attention mechanisms
are being highlighted as major concerns [10, 12, 16, 17].

Meanwhile, structured state space sequence (S4) models
have emerged as a promising approach for sequence mod-
eling with linear scaling in sequence length [18]. Those
models take the advantages of recurrent neural networks
and convolutional neural networks, enabling them to han-
dle long-range dependencies without relying on attention.
However, due to their inability to select information depend-
ing on input data, they have shown limited performance.

A recent study has introduced a new S4 model overcom-
ing the issue, named Mamba, which introduces a selection
mechanism to filter information in an input-dependent man-
ner [19]. Mamba has demonstrated notable performance
over transformers across various types of sequence data,
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including language, audio, and genomics. In addition, there
have been several studies towards replacing the transformer
with Mamba in graph transformer frameworks [20, 21, 22].

In this paper, our focus lies on the predictive learning task
on STGs, specifically STG forecasting. For STG forecasting,
it is vital to capture the evolving behavior of individual
nodes over time and how these changes propagate through-
out the entire graph. Furthermore, leveraging these dynam-
ics over long spatial and temporal ranges plays a crucial
role in dealing with the intricate spatio-temporal correla-
tions in STGs [1, 3, 23]. Building upon these insights and
recent advances, we introduce SpoT-Mamba, a new Spatio-
Temporal graph forecasting framework with a Mamba-
based sequence modeling architecture. With Mamba blocks,
SpoT-Mamba extracts structural information of each node by
scanning multi-way walk sequences and effectively captures
long-range temporal dependencies with temporal scans. Ex-
periments on the real-world dataset demonstrate that SpoT-
Mamba achieves promising performance in STG forecasting.
The official implementations of SpoT-Mamba are available
at https://github.com/bdi-lab/SpoT-Mamba.

2. Preliminaries
State Space Model (SSM) The state space model (SSM)
assumes that dynamic systems can be represented by their
states at time step 𝑡 [18]. SSM defines the evolution of
a dynamic system’s state with two equations: h′(𝑡) =
Ah(𝑡) + B𝑥(𝑡) and 𝑦(𝑡) = Ch(𝑡) + D𝑥(𝑡), where
h(𝑡) ∈ R𝐷 denotes the latent state, 𝑥(𝑡) ∈ R represents
the input signal, 𝑦(𝑡) ∈ R denotes the output signal, and
A ∈ R𝐷×𝐷,B ∈ R𝐷×1,C ∈ R𝐷×𝐷 , and D ∈ R are
learnable parameters. SSM learns how to transform the in-
put signal 𝑥(𝑡) into the latent state h(𝑡), which is used to
model the system dynamics and predict its output 𝑦(𝑡).

Discretized SSM To adapt SSM for discrete input se-
quences instead of continuous signals, discretization is ap-
plied with a step size ∆. The discretized SSM is defined in a
recurrent form: h𝑡 = Ah𝑡−1 +B𝑥𝑡 and 𝑦𝑡 = Ch𝑡, where
A and B are approximated learnable parameters using a
bilinear method with a step size ∆ [18]. The term D is
omitted from the equations as it can be considered as a skip
connection. This formulation allows for capturing temporal
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dependencies efficiently, resulting in similar computations
to those in recurrent neural networks.

Meanwhile, due to its linear time-invariant (LTI) property,
SSM can be reformulated as discrete convolution: y = K*x
and K ∈ R𝐿 = (CB,CAB, . . . ,CA

𝐿−1
B), where x ∈

R𝐿 denotes the input sequence, y ∈ R𝐿 denotes the output
sequence, * indicates the convolution operation, and 𝐿 is
the sequence length. This representation facilitates parallel
training for SSM, thereby enhancing training efficiency.

The recurrent and convolutional representations of SSM
for sequence modeling enable parallel training and linear
scaling in sequence length. To further enhance the com-
putational complexity of SSM, the structured state space
sequence (S4) models have been proposed [18]. S4 models
address the fundamental bottleneck of SSM, which involves
repeated matrix multiplications, by employing a low-rank
correction to stably diagonalize the transition matrix A.

Mamba S4 models have demonstrated remarkable per-
formance in handling long-range dependencies in contin-
uous signal data, such as audio and time series. However,
S4 models struggle with effectively handling discrete and
information-dense data such as text [19]. This limitation
arises from the LTI property inherent in the convolutional
form of SSMs. While the LTI property enables linear time se-
quence modeling for S4 models, it requires that the learnable
matrices A, B, and C, as well as the step size ∆, remain
unchanged across all time steps. Consequently, S4 models
cannot selectively recall previous tokens or combine the
current token, treating each token in the input sequence
uniformly. In contrast, Transformers dynamically adjust at-
tention scores based on the input sequence, allowing them
to effectively focus on different parts of the sequence [14].

To address both the lack of selectivity in S4 models and
the efficiency bottleneck in sequence modeling, a recent
study introduced a new S4 model called Mamba, which
removes the LTI constraints [19]. Mamba incorporates a
selection mechanism that allows its learnable parameters to
dynamically interact with the input sequence. This mech-
anism is achieved by modifying the learnable parameters
B and C, as well as the step size ∆, to functions of the
input sequence. Therefore, Mamba can selectively recall or
ignore information in an input-dependent manner, while
maintaining linear scalability in sequence length.

Inspired by the recent advancements in Mamba, we pro-
pose a Mamba-based sequence modeling architecture for
predictive learning tasks on STGs. Our approach employs
a selective mechanism to handle the dynamical changes
in STGs, capturing long-range spatio-temporal dependen-
cies. In addition, this allows for addressing computational
inefficiencies in transformer-based STGNNs [10, 11, 15].

Spatio-Temporal Graph Forecasting A spatio-temporal
graph (STG) is defined as 𝒢 = (𝒱, ℰ ,𝒳 ), where 𝒱 is
a set of 𝑁 nodes, ℰ ⊂ 𝒱 × 𝒱 is a set of edges, 𝒳 =
[X1, . . . ,X𝜏 ] is a sequence of observed data for all nodes
at each historical time step, and 𝜏 is a length of the se-
quence. Here, X𝑡 ∈ R𝑁×𝐷in denotes the observed data
at time step 𝑡, where 𝐷in denotes the dimension of the in-
put node attributes. STG forecasting aims to predict future
observations for 𝑇 ′ time steps, given historical observa-
tions for the previous 𝑇 time steps. This is formulated as

[X𝑡−𝑇+1, . . . ,X𝑡]
𝑓(·)−−→ [X𝑡+1, . . . ,X𝑡+𝑇 ′ ], where 𝑓(·)

represents the STG forecasting model.

3. Spatio-Temporal Graph
Forecasting with SpoT-Mamba

We propose SpoT-Mamba (Figure 1), which captures spa-
tial dependencies from node-specific walk sequences and
learns temporal dependencies across time steps leveraging
Mamba-based sequence modeling. By utilizing the selection
mechanisms of Mamba blocks, SpoT-Mamba can selectively
propagate or forget information in an input-dependent man-
ner on both temporal and spatial domain.

Multi-way Walk Sequence In STGs, the temporal se-
quences for nodes are naturally defined by the time-series
data. On the other hand, since the topological structure
does not have a specific order, a tailored method is required
to define the spatial sequences of nodes in graphs. Hence,
we employ three well-known walk algorithms: depth-first
search (DFS), breadth-first search (BFS), and random walks
(RW), to extract diverse local and global structural informa-
tion from each node’s neighborhood. The walk sequences
of length 𝐾 for node 𝑣𝑖 using these walk algorithms are
defined as 𝒲𝐵𝐹𝑆(𝑖), 𝒲𝐷𝐹𝑆(𝑖), and 𝒲𝑅𝑊 (𝑖), respectively.
These node-specific walk sequences are extracted 𝑀 times
to exploit more comprehensive structural information.

Walk Sequence Embedding SpoT-Mamba generates em-
beddings for node-specific walk sequences by scanning each
sequence. Here, SpoT-Mamba performs bi-directional scans
through Mamba blocks, which makes the model robust to
permutations and captures the long-range spatial depen-
dency of the sequence more effectively [21]. Then, SpoT-
Mamba aggregates the representations of node-specific walk
sequences with pointwise convolution. This allows for incor-
porating representations of neighboring nodes to generate
walk sequence embedding for each type of walk sequence.

Subsequently, SpoT-Mamba integrates the walk sequence
embeddings into a node embedding w𝑖 ∈ R𝐷 using Multi-
Layer Perceptron (MLP), where 𝑖 represents the node index
and 𝐷 denotes the embedding dimension. Rather than sim-
ply stacking GNN layers, we employ Mamba-based sequence
modeling to generate node embeddings from diverse types
of walk sequences. Therefore, our approach effectively cap-
tures local and long-range dependencies within the graph
by scanning the neighborhood structure of each node.

Temporal ScanwithMambaBlocks We adopt the learn-
able day-of-week and timestamps-of-day embeddings to
capture the repetitive patterns over both short and long
periods in STGs [24]. SpoT-Mamba concatenates these em-
beddings with the node embedding for each time step to
effectively model temporal dynamics from historical obser-
vations. Then, it performs selective recurrent scans with
Mamba blocks across the sequence of embeddings along
the time axis, observing changes in temporal dynamics over
time. This process helps identify critical portions of the
sequence for forecasting and captures periodic patterns in
both short- and long-term intervals. Consequently, the re-
sults effectively encompass spatio-temporal dependencies,
thereby enriching the predictive capabilities.

STG forecasting of SpoT-Mamba Finally, SpoT-Mamba
enhances the representations of nodes scanned along the
temporal axis by incorporating global information from the
entire graph at each time step through transformer layers.
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Figure 1: Overview of SpoT-Mamba. The first row represents the node-specific walk sequence embedding. The second row
represents the overall procedure of STG forecasting. W ∈ R𝑁×𝐷 denotes the node embeddings for all nodes in the graph
and Z𝑡′ ∈ R𝑁×4𝐷 denotes one of the outcomes from the temporal scan, corresponding to the time step 𝑡′.

Then, MLP is applied to forecast the attributes of each node
for future time steps. To accurately predict the temporal
trajectory while ensuring robustness to outliers that deviate
significantly from the expected trajectory, we train SpoT-
Mamba utilizing the Huber loss, which is less sensitive to
outliers while maintaining the smoothness of the squared
error for small errors [24].

4. Experiments
We compare the performance of SpoT-Mamba with state-of-
the-art baselines. Additionally, we conduct ablation studies
to further demonstrate the effectiveness of SpoT-Mamba.

4.1. Dataset and Experimental Setup
Dataset We evaluate SpoT-Mamba on PEMS04 [25], a real-
world traffic flow forecasting benchmark, following the ex-
perimental setup in [24]. PEMS04 contains highway traffic
flow data collected from the California Department of Trans-
portation’s Performance Measurement System (PEMS). The
nodes represent the sensors, and edges are created when
two sensors are on the same road. Traffic data in PEMS04 is
collected every 5 minutes. We set the input and prediction
intervals to 1 hour, corresponding to 𝑇 = 𝑇 ′ = 12. The
statistic of PEMS04 is shown in Table 1. In the experiments,
PEMS04 is divided into training, validation, and test sets in
a 6:2:2 ratio in temporal order.

Baselines We compare SpoT-Mamba with several base-
lines using various methods, including GNNs and Trans-
formers. For STGNNs, we consider GWNet [9], DCRNN [26],
AGCRN [27], GTS [28], and MTGNN [29]. For attention-
based methods, we include STAEformer [24], GMAN [30],
and PDformer [31]. Additionally, other methods such as
HI [16], STNorm [32], and STID [33] are also considered.

Evaluation Metrics We use three standard metrics for
traffic flow prediction: Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Mean Absolute Percentage
Error (MAPE). MAE is the unweighted mean of the absolute

Table 1
Statistic of PEMS04 dataset.

|𝒱| |ℰ| #Time Steps Time Interval Time Range

307 338 16,992 5 min. 01/2018 - 02/2018

differences between predictions and ground truth values.
RMSE is calculated as the square root of the average of the
squared differences. MAPE is similar to MAE but normalizes
each error by the corresponding ground truth value and
expresses it as a percentage. For all three metrics, lower
values indicate better performance. Additionally, we rank all
the methods used in our experiments across these evaluation
metrics and compute their average ranks.

Implementation Details SpoT-Mamba is implemented
using the Deep Graph Library [34] and PyTorch [35]. For the
transformer, we utilize the off-the-shelf transformer encoder
available in PyTorch, and for Mamba, we employ the official
implementation [19] and apply pre-normalization. We train
SpoT-Mamba for 300 epochs using the Adam optimizer [36],
with early stopping if there is no improvement over 20
epochs. Additionally, we apply the learning rate decay,
reducing the learning rate at the 20th, 40th, and 60th epochs.
To determine the optimal hyperparameters for SpoT-Mamba,
we conduct a grid search. The grid search covers 𝑀 ∈
{2, 4}, learning rates of {0.001, 0.0005}), weight decays of
{0.001, 0.0001}, and learning rate decay rates of {0.1, 0.5}.
We fix the feed-forward dimension to 256, 𝐷 = 32, 𝐾 =
20, dropout probability to 0.1, batch size to 32, and the
number of layers for Mamba and the transformer to 3. All
experiments are conducted using GeForce RTX 3090 24GB.

4.2. Traffic Forecasting Performance
Table 2 shows the traffic forecasting performance of the
baselines and SpoT-Mamba on PEMS04 in terms of MAE,
RMSE, and MAPE. Note that we report the baseline results
from [24] since we strictly followed the experimental set-
tings described in [24]. For each evaluation metric, the best
results are boldfaced, and the second-best results are under-
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Figure 2: Traffic flow forecasting results for four randomly selected nodes in PEMS04. The blue line represents the ground
truth, and the orange line denotes the predictions made by SpoT-Mamba.

Table 2
Traffic forecasting performance on PEMS04. ‘Avg.’ denotes the
average rank across the three evaluation metrics.

MAE Rank RMSE Rank MAPE Rank Avg.
HI 42.35 13 61.66 13 29.92 13 13

GWNet 18.53 5 29.92 1 12.89 6 4
DCRNN 19.63 11 31.26 8 13.59 11 10
AGCRN 19.38 9 31.25 7 13.40 9 8.33
STGCN 19.57 10 31.38 9 13.44 10 9.67

GTS 20.96 12 32.95 12 14.66 12 12
MTGNN 19.17 8 31.70 11 13.37 8 9
STNorm 18.96 6 30.98 6 12.69 5 5.67
GMAN 19.14 7 31.60 10 13.19 7 8

PDformer 18.36 3 30.03 3 12.00 3 3
STID 18.38 4 29.95 2 12.04 4 3.33

STAEformer 18.22 1 30.18 5 11.98 2 2.67
SpoT-Mamba 18.31 2 30.11 4 11.86 1 2.33

lined. It is observed that SpoT-Mamba consistently achieves
high rankings across all metrics: MAE, RMSE, and MAPE,
recording the highest average rank among all methods. This
suggests the effectiveness of Mamba’s selective recurrent
scan in modeling spatio-temporal dependency. Compared
to other metrics, SpoT-Mamba demonstrates its best per-
formance in MAPE, achieving the highest ranking. Among
the baselines, STAEformer [24] shows the most comparable
performance to SpoT-Mamba.

4.3. Qualitative Analysis & Ablation Studies
In Figure 2, we visualize the predictions of SpoT-Mamba
and the ground-truth time series on PEMS04. For this visu-
alization, predictions are made for four randomly selected
nodes, starting from an arbitrary time step within a test
split, covering 576 consecutive time steps (equivalent to two
days). Since we set 𝑇 = 𝑇 ′ = 12, multiple predictions
are concatenated to represent the duration. When multiple
predictions exist at a single time step, we average them. It is
observed that the predicted time series closely aligns with
the ground-truth data.

Additionally, we conduct the ablation studies of SpoT-
Mamba on PEMS04. We replace the Mamba blocks used
for the walk sequence embedding (indicated as Walk Scan)
and for scanning along the time axis (indicated as Temporal
Scan) with transformer encoders. Note that when replacing
the Mamba blocks for the Temporal Scan with a transformer
encoder, we reduce the batch size from 32 to 8 due to Out-of-
Memory issues. Results are shown in Table 3. We observed
differences in performance depending on which type of scan

Table 3
Ablation studies of SpoT-Mamba on PEMS04, varying the types
of the walk scan and temporal scan modules.

Walk Scan Temporal Scan MAE RMSE MAPE
Transformer Transformer 18.41 30.32 12.12
Transformer Mamba 18.69 30.17 12.28

Mamba Transformer 18.29 30.06 11.93
Mamba Mamba 18.31 30.11 11.86

module is replaced. Specifically, when the Walk Scan is con-
ducted by a transformer encoder, the overall performance
of SpoT-Mamba decreases (first and second rows). On the
other hand, replacing only the Mamba blocks for the Tem-
poral Scan with a transformer encoder shows negligible
performance differences (third row).

This disparity can be attributed to the inherent differ-
ences between Mamba and Transformer, along with the
application of learnable embeddings that impose biases on
the sequence. Mamba blocks scan inputs recurrently, inher-
ently considering the sequence order. In contrast, the trans-
former encoder does not recognize input sequence order
by itself. Furthermore, while SpoT-Mamba utilizes learn-
able embeddings for temporal sequences, i.e., day-of-week
and timestamps-of-day, it does not apply such embeddings
for walk sequences. As a result, the Transformer encoder
struggles to perceive the order in walk sequences, despite
performing well with temporal sequences.

5. Conclusion and Future Work
In this paper, we explore STG forecasting and introduce a
new Mamba-based STG forecasting model, SpoT-Mamba.
SpoT-Mamba utilizes Mamba blocks to scan multi-way
walk sequences and temporal sequences. This approach
allows the model to effectively capture the long-range spatio-
temporal dependencies in STG, enhancing forecasting ac-
curacy on complex graph structures. SpoT-Mamba shows
promising results on the real-world traffic forecasting bench-
mark PEMS04. For future work, we will extend SpoT-Mamba
to handle graphs with complex relations [37, 38] and evolv-
ing graphs [39, 40].
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