
Semantic Error Detection in Code Translation Using
Knowledge-Driven Static Analysis with AI Chain
Lei Chen1, Sai Zhang1, Fangzhou Xu1, Liang Wan1 and Xiaowang Zhang1,∗

1College of Intelligence and Computing, Tianjin University, Tianjin 300350, China

Abstract
In the task of code translation, neural network-based models frequently generate semantically incorrect
code that deviates from the original logic of the source code. This problem persists even with advanced
large models. While a recent approach suggests using test cases to identify these semantic errors, its
effectiveness is highly dependent on the quality of the test cases, making it unsuitable for code snippets
that lack test cases in real-world scenarios. To automatically locate semantic errors in code translation
without valid test cases, we propose the Knowledge-guided Semantic Analysis Framework (KSAF). KSAF
decomposes the source and translated code synchronously and performs static analysis to detect semantic
errors. This is achieved by leveraging fine-grained knowledge in conjunction with an AI chain-driven
Large Language Model (LLM). In a previously studied benchmark of Python programs, our framework
based on the GPT-3.5-turbo model achieved a correctness rate of 47.8% through a static evaluation
method. This result represents a 37.2% improvement over the baseline using the same base model and a
13.4% improvement in correctness compared to the baseline using the GPT-4-turbo-based model.
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1. Introduction

Code translation involves converting a program written in one programming language into
another, ensuring that the original functionality remains intact. Neural network models have
achieved significant success in this task, but recent studies [1, 2] have found that these models
often introduce subtle errors. These subtle errors can be grouped into syntactic and semantic
errors. Syntax errors violate the syntax rules of destination languages, which a grammar checker
can often identify. In contrast, semantic errors are more subtle and may result in translated
code that either fails to execute without violating the target language’s syntax or produces
outputs that are inconsistent with the original code [3]. For example, as shown in the replace
function in Figure 1, s.replace(‘-’, ‘ ’) in Python replaces all occurrences of ‘-’ with ‘ ’, while in
JavaScript, it only replaces the first occurrence by default.

Based on this, Wang et al. [3] rely on test cases that can expose semantic errors to analyze
code and locate these errors dynamically. However, their method is highly dependent on the
quality of the test cases, requiring them to reveal semantic errors effectively, and it cannot
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handle code snippets lacking valid test cases. Additionally, In the code translation domain,
relying on test cases to execute code is not only costly but also poses potential security risks [4].
To automatically locate semantic errors in code translation in the absence of valid test

cases, we propose a framework KSAF, which decomposes the source code and translated code
synchronously and statically analyses the code to locate semantic errors with fine-grained
knowledge combined with AI chain-driven LLM. Experiments show that our approach can
achieve better results. KSAF is the first method to locate semantic errors in code translation
without test cases. It only requires API documentation, does not need model training, and is
adaptable to low-resource languages.

2. Approach

Knowledge Base

def f_gold(s: str, k: int) -> str:
    s = s.replace('-', '').upper()
    res = []
    cnt = (len(s) % k) or k
    t = 0
    for i, c in enumerate(s):
        res.append(c)
        t += 1
        if t == cnt:
            t = 0
            cnt = k
            if i != len(s) - 1:
                res.append('-’)
    return ''.join(res)

(C) Checking 

javascript code="
function f_gold(s, k) {
    s = s.replace('-', '').toUpperCase();
    let res = [];
    let cnt = (s.length % k) || k;
    let t = 0;
    for (let i = 0; i < s.length; i++) {
        res.push(s[i]);
        t += 1;
        if (t == cnt) {
            t = 0;
            cnt = k;
            if (i != s.length - 1) {
                res.push('-');
            }
        }
    }
    return res.join('');
}

Translated Code
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Figure 1: A static analysis framework based on the Large Language Model (LLM).

Figure 1 illustrates the general framework of our approach. We first build an API knowledge
base by crawling the official JavaScript documentation [5]. Then, we design a framework based
on the knowledge-driven AI chain and code decomposition to locate errors in code translation
statically.
In this work, we collect API documents from the online resource

[5] through the web crawler tool [6], where each API document is a crawled web
page containing rich information such as the name of the API, syntax, parameters, samples, and
function descriptions. We only keep half-structured API statements and functional descriptions,
where an API statement describes the fully qualified name(FQN) of an API, which serves as a
retrieval index for the knowledge base. The functional description contains the functional logic
and behavior of that API.
In the Neural Source Map Generator module, as shown in Figure 1 A, the source code,



Table 1
Performance of baseline methods and KSAF on benchmarks.

Method 𝒮𝑠𝑒𝑚
𝒮𝑠𝑢𝑏_𝑠𝑒𝑚

𝒮ℎ𝑖𝑑 𝒮𝑑𝑖𝑓
Few Shot +GPT-3.5-turbo 4.3% 3.1% 2.6%
CoT + GPT-3.5-turbo 10.6% 13.0% 14.0%
Few Shot + GPT-4-turbo-preview 32.1% 36.2% 34.5%
CoT + GPT-4-turbo-preview 34.4% 44.6% 45.1%
KSAF+GPT-3.5-turbo 47.8% 46.4% 45.1%

translated code, and a fixed prompt are input into the LLM. This module produces a mapping
between atomic fragments in the source code and their corresponding parts in the translated
code, providing an ordered list of these atomic fragments.

In the Code AST Decomposition module, as shown in Figure 1 B, the abstract syntax tree(AST)
of the source code is traversed to extract ”subtrees” from eight types of nodes as sub-code [7].
Using the mapping list from Module A, the corresponding translated code for each sub-code is
obtained. Each sub-code pair is then passed to the next module.
After obtaining the sub-code and its corresponding translated code, KSAF uses LLM for

static analysis to identify semantic inconsistencies between the source and translated code. We
designed a knowledge-driven LLM AI Chain workflow, as shown in Figure 1 C, which includes
three steps: Checking, Comparing, and Locating, all using the same LLM. In the Checking step,
KSAF inputs the source code, translated code, and a fixed prompt into the LLM to extract the fully
qualified names (FQN) of operators and APIs, then passes the results to the Comparing step. In
the Comparing step, the FQNs are linked with an offline-built API knowledge base to obtain the
corresponding API function descriptions. These descriptions and the results from the Checking
step form a prompt fed into the LLM to precisely summarize the differences in operators and
APIs between the source and translated code. In the Locating step, the Comparing step results,
source code, and translated code are input into the LLM as a prompt to identify suspicious code
lines that might cause semantic inconsistencies between the source and translated code.

3. Experiments

In this module, our objective is to compare the effectiveness of KSAF with other methods.
To ensure fairness in the experiments, we selected methods that, like KSAF, do not require
test cases for static code analysis. Specifically, we chose the widely recognized prompt-based
methods that aim to fully leverage the potential of foundational models: LLMs with Few-Shot
Learning [8]: A few examples are provided as demonstration examples in the prompt to guide
the LLM in achieving better performance on the task. LLMs with Chain of Thought (CoT) [9]:
By appending ”Let’s think step by step” at the end of the prompt, the LLM is prompted to explain
the reasoning or steps before providing the final answer.
We used the dataset (excluding test cases) and metrics [3] of Wang et al. to evaluate our

method and baseline. Where 𝒮𝑠𝑒𝑚, 𝒮ℎ𝑖𝑑, and 𝒮𝑑𝑖𝑓 denote the ratios of successfully identified
errors to the total number of semantic errors, hidden errors, and errors leading to results



that differ from the source code output, respectively. Semantic errors are when the code is
syntactically correct but logically flawed, causing the program to behave in a way that is not
expected. Hidden errors are a special kind of semantic error, which usually can’t be immediately
localized to a specific fix, even when running test cases. Errors leading to results that differ
from the source code output are also a type of semantic error, which does not cause a runtime
error but causes the output of the translated code in unit tests to be inconsistent with the source
code [3].
As shown in Table 1, our method outperforms all baseline approaches. Additionally, the

method proposed by Wang et al. is unable to handle code without test cases, resulting in zero
values for all metrics. And following the experimental setup of previous work [3], we found
that our framework KSAF detected an average of 3.0 suspicious lines, which represents 16.5% of
the total lines of code. This indicates that users typically need to review only 1 to 3 lines to
understand and fix semantic errors.

4. Conclusion

This paper propose a method based on code AST decomposition and fine-grained knowledge
combined with an AI chain-driven LLM to locate semantic inconsistencies between source and
translated code. This method effectively handles code without test cases. We plan to extend
our approach to multi-language datasets and conduct comprehensive experiments to further
validate KSAF’s effectiveness in the future.
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