
N3.js Reasoner: Implementing reasoning in N3.js
Wright, Jesse1

1Computer Science Department, University of Oxford, UK

Abstract
RDF reasoning typically does not occur in browser-based applications despite being critical to the next
generation of Web technologies. The primary constraint is that client-side reasoners do not meet the
performance requirements of modern applications and the technicalities of using reasoners make them
inaccessible to front-end developers.

This paper presents our performant implementation of a reasoning engine for N3.js that supports
Horn Rules. We demonstrate that it is possible to perform reasoning in the browser in a manner that is
performant enough for standard use cases to execute without interrupting the user experience.

Keywords
Reasoner, Inference, RDFJS, RDF, JavaScript, TypeScript, Web, Browser, Solid

1. Introduction

RDF reasoning has been integral to the Semantic Web since its inception in 2001 [1]. Most RDF
reasoners have been developed in Java or C++ for desktop or server environments [2]. However,
server-side reasoning alone is inadequate for a decentralised Semantic Web like Solid [3], where
data are distributed across many sources, including local files, Solid Pods, and public knowledge
graphs. Client-side reasoners are necessary to handle inferences from multiple sources and to
apply inferences to local documents or results from less-intelligent servers.

N3.js [4] is a widely-used JavaScript library in the Semantic Web ecosystem. It has 589 stars
on GitHub, 336 downstream packages, including Wikidata [5], and 2605 dependent GitHub
repositories. Since N3.js implements the RDF JS model specification [6] and the RDF JS dataset
specification [7], our reasoning engine is compatible with RDF JS libraries and applications out
of the box.

2. Implementation

We implement Horn Logic [8] reasoning in N3.js by applying the semi-naive reasoning al-
gorithm [9] alongside a bespoke technique for indexing rules in-memory to optimise rule
evaluation against the 3-layered index of N3.js - which we detail in the remainder of this section.

First, we describe the existing N3.js store index. For each triple in the store, the subject,
predicate and object are converted to a canonical string. An internal record maintains a mapping

Posters, Demos, and Industry Tracks at ISWC 2024, November 13–15, 2024, Baltimore, USA
Envelope-Open jesse.wright@cs.ox.ac.uk (W. Jesse)
GLOBE https://www.cs.ox.ac.uk/people/jesse.wright/ (W. Jesse)
Orcid 0000-0002-5771-988X (W. Jesse)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:jesse.wright@cs.ox.ac.uk
https://www.cs.ox.ac.uk/people/jesse.wright/
https://orcid.org/0000-0002-5771-988X
https://creativecommons.org/licenses/by/4.0


between these canonical strings and a numerical ID. Triples are stored by adding these numerical
IDs as keys in nested indexes (dictionaries). The N3.js store uses three, three-layered indexes to
store data. The depth of these indexes reflects the fact that a triple has three elements: subject
(s), predicate (p) and object (o). The three indexes are ordered as osp, spo and pos.

We assume that most applications have a limited number of rules, i.e. less than 100 as with
RDFS and OWL2RL inference. Consequently our reasoner implementation1 optimises to reduce
the time complexity of reasoning with respect to dataset size. The first step of reasoning in
N3.js is re-writing rules to: (1) convert each non-variable term in the premise and conclusion
into the internal ID used by the N3.js store index; (2) convert each variable into a pointer to
a shared memory location into which concrete values for the variable will be substituted (c.f.
Figure 2a); (3) identify matching patterns between a rule’s conclusion and the premise(s) of the
same or other rules (c.f. Figure 3a) to establish which rules need to be evaluated next when
new implicit data is discovered; and (4) precompute which of the 3 N3.js store indexes should
be used for looking up triples matching a rule premise. Figure 1b shows how the rule {?s a ?o
. ?o rdfs:subClassOf ?o2} → {?s a ?o2} (R1) is stored in memory with respect to the index
mapping in Table 1a. Figure 3a displays the dependencies between {?o1 rdfs:subClassOf ?o2 .
?o2 rdfs:subClassOf ?o3 } → {?o1 rdfs:subClassOf ?o3} (R2) and R1.

Rules are then evaluated as follows: (1) perform a nested loop join on the premises, the
outermost loop iterates through triples matching the first premise - substituting bindings
into the variable memory locations (c.f. Figure 2a), subsequent nested loops iterate over the
remaining premises and iterate through all triples matching the partially-bound pattern (c.f.
Figure 2b); (2) new conclusion triples found added to the three-layered indexes; (3) for each new
conclusion, identify matching premises from the same, or other, rules (c.f. Figure 3a); and (4)
perform the subsequent reasoning run using rules with these premises pre-filled (c.f. Figure 3b)
to avoid re-evaluating the same patterns across reasoning runs.

1 rdf:type
2 rdfs:subClassOf
3 timbl:me
4 ex:computerScientist
5 foaf:Person
6 ex:computerScienceProfessor
7 ex:Armin

(1a) Mapping between IDs (left) and IRIs (right) (1b) In-memory representation of R1

(2a) Matching first premise of R1 against a triple (2b) Matching second premise of R1 against a triple

1https://github.com/rdfjs/N3.js/pull/296

https://github.com/rdfjs/N3.js/pull/296
https://github.com/rdfjs/N3.js/pull/296


(3a) The dependency between R2 and R1 is stored
and can be used to pre-fill variables in R1 after R2
has been evaluated.

(3b) Matches to the first premise of R1 can then
be iterated through to produce new derivations on
subsequent reasoning runs.

3. Performance Results and Conclusion

We evaluate this N3.js reasoner against the only other known browser-available reasoning
engines: EYE JS [10], a WebAssembly port of EYE [11], and the HyLAR Reasoner [12]. The
results in Table 1 and Table 2 were collected at https://github.com/jeswr/demo-perf-tests/ on a
GitHub Actions runner with 2 cores and 7GB of memory, running Ubuntu 22.04. NodeJS results
were collected from commit a51bc3e. Chrome and Firefox were run headless using Selenium2

and the performance results are collected from commit 33cbfb4.
Table 1 presents the time taken to perform RDFS materialisation on Tim Berners-Lee’s profile

card and the FOAF ontology [13]. The N3.js reasoner outperforms the others, completing the
task in under 0.1s, which is within the threshold for an instantaneous user perception [14].

Table 2 presents the time taken to materialise all inferences for the the Data Deep Taxonomy
Benchmark (DTB) using the N3.js Reasoner, EYE JS, and HyLAR. This modification of the deep
taxonomy benchmark encodes subclasses as facts (:N0 rdfs:subClassOf :N1) rather than rules
(?X rdf:type :N0 → ?X rdf:type :N1), as the N3.js reasoner is optimised to handle a large
number of facts. The depth variable indicates the number of nested subclasses in the dataset.
The extended (ext) taxonomy benchmark scales the number of instances of the class :N0 with
the depth; consequently the number of implicit facts scales quadratically with depth.

The N3.js Reasoner primarily outperforms HyLAR because (1) HyLAR does not index triples
or rules; consequently, HyLAR iterates through all facts when matching each premise taking
𝑂(𝑛) time (2) HyLAR does not create internal representations for terms and triples - resulting in
(2a) costly string and object comparison operations for rule matching where N3.js is comparing
integers and (2b) costly object creation where N3.js is adding integers to an existing index.

These results show that N3.js can efficiently reason over moderately-sized datasets in the
browser, proving that we can now perform RDF inference in the client.

2https://www.selenium.dev/

https://github.com/rdfjs/N3.js/pull/296
https://github.com/jeswr/demo-perf-tests/
https://github.com/jeswr/demo-perf-tests/commit/a51bc3e4e99252c83336507b765c55f7396951f0
https://github.com/jeswr/demo-perf-tests/commit/33cbfb4139430e441a4d8d170e543791d455798a
https://www.w3.org/People/Berners-Lee/card
https://www.w3.org/People/Berners-Lee/card
http://xmlns.com/foaf/spec/
https://github.com/jeswr/deep-taxonomy-benchmark/blob/bb174f559afd91b1ae25719fc3d71e207e9e842b/lib/deepTaxonomy.ts#L12-L32
https://github.com/jeswr/deep-taxonomy-benchmark/blob/bb174f559afd91b1ae25719fc3d71e207e9e842b/lib/deepTaxonomy.ts#L12-L32
https://eulersharp.sourceforge.net/2003/03swap/dtb-note
https://eulersharp.sourceforge.net/2003/03swap/dtb-note
https://www.selenium.dev/


Table 1
Time taken to apply RDFS inference to Tim Berners-Lee’s profile card and the FOAF ontology [13]. In
this experiment, there are 14 rules, 961 facts and 866 derivations.

Depth N3.js Reason EYE JS Hylar
NodeJS 23ms 876ms 126ms
Chrome 28ms 962ms 104ms
Firefox 43ms 1573ms 129ms

Table 2
Result of the Data Deep Taxonomy Benchmark (DTB) in NodeJS, Chrome and Firefox. TIMEOUT occurs
after 6 hours for NodeJS and 1 hour for Chrome and Firefox. Times for Firefox are only available to the
nearest millisecond.

NodeJS
Depth N3.js Reason EYE JS Hylar N3.js Reason (ext) EYE JS (ext) Hylar (ext)
101 0.185ms 32.2ms 2.91ms 1.30ms 117ms 11.0ms
102 1.67ms 484ms 527ms 131ms 31.7s 20.0s
103 13.4ms 28.1s 333s 13.4s TIMEOUT TIMEOUT
104 58.9ms 2540s TIMEOUT MemErr TIMEOUT TIMEOUT
105 618ms TIMEOUT TIMEOUT MemErr TIMEOUT TIMEOUT
106 MemErr TIMEOUT TIMEOUT MemErr TIMEOUT TIMEOUT

Chrome
Depth N3.js Reason EYE JS Hylar N3.js Reason (ext) EYE JS (ext) Hylar (ext)
101 0.110ms 51.5ms 11.6ms 0.575ms 203ms 15.0ms
102 0.728ms 594ms 406s 73.1ms 44.2s 17.9s
103 8.35ms 34.9s 297s 7.75s TIMEOUT TIMEOUT
104 55.5ms TIMEOUT TIMEOUT MemErr TIMEOUT TIMEOUT
105 403ms TIMEOUT TIMEOUT MemErr TIMEOUT TIMEOUT
106 6.16s TIMEOUT TIMEOUT MemErr TIMEOUT TIMEOUT

Firefox
Depth N3.js Reason EYE JS Hylar N3.js Reason (ext) EYE JS (ext) Hylar (ext)
101 0ms 62ms 4ms 0ms 408ms 15ms
102 1ms 989ms 670ms 147ms 55.9s 29.1s
103 13ms 45.9s 469s 5.17s TIMEOUT TIMEOUT
104 96ms TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT
105 933ms TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT
106 12.9s TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT

4. Usage

The reasoner is now distributed with N3.js; making it easily accessible to
JavaScript developers via NPM. Documentation can be found in the README.

Acknowledgements

Jesse Wright is funded by the Department of Computer Science, University of
Oxford.

https://www.w3.org/People/Berners-Lee/card
http://xmlns.com/foaf/spec/
https://github.com/rdfjs/N3.js/?tab=readme-ov-file#reasoning
https://www.npmjs.com/package/n3
https://github.com/rdfjs/N3.js/?tab=readme-ov-file#reasoning
https://www.cs.ox.ac.uk/
https://www.ox.ac.uk/
https://www.ox.ac.uk/


References

[1] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Scientific american 284 (2001)
34–43.

[2] A. Khamparia, B. Pandey, Comprehensive analysis of semantic web reasoners and tools: a
survey, Education and Information Technologies 22 (2017) 3121–3145.

[3] S. Capadisli, T. Berners-Lee, R. Verborgh, K. Kjernsmo, Solid protocol, https://solidproject.
org/TR/2021/protocol-20211217 (2021).

[4] R. Verborgh, R. Taelman, J. Wright, S. V. Braeckel, L. Rietveld, D. Hurlburt, K. Woudt,
T. Bergwinkl, Vincent, T. Tanon, S. ROZE, N. D. Martin, J. Smart, M. Maillard, Martin,
M. Fathi, P. Colpaert, P. Heyvaert, Ruben, Shawn, W. Turner, alxflam, elf Pavlik, L. Roy,
J. D. Smet, J. Scazzosi, I. Aaronsohn, H. Zuo, G. Middell, rdfjs/n3.js: v1.17.3, 2024. URL:
https://doi.org/10.5281/zenodo.10866356. doi:10.5281/zenodo.10866356.

[5] D. Vrandečić, M. Krötzsch, Wikidata: a free collaborative knowledgebase, Communications
of the ACM 57 (2014) 78–85.

[6] T. Bergwinkl, M. Luggen, elf Pavlik, B. Regalia, P. Savastano, R. Verborgh, RDF/JS: Data
model specification, W3C Community Group Draft Report, W3C, 2023. http://rdf.js.org/
data-model-spec/.

[7] T. Bergwinkl, B. Regalia, V. Felder, R. Taelman, RDF/JS: Dataset specification 1.0, W3C
Community Group Final Report, W3C, 2019. https://rdf.js.org/dataset-spec/.

[8] B. N. Grosof, I. Horrocks, R. Volz, S. Decker, Description logic programs: Combining logic
programs with description logic, in: Proceedings of the 12th international conference on
World Wide Web, 2003, pp. 48–57.

[9] S. Abiteboul, R. Hull, V. Vianu, Foundations of databases, volume 8, Addison-Wesley
Reading, 1995, pp. 312–316.

[10] J. Wright, J. D. Roo, I. Smessaert, P. Hochstenbach, W. Slabbinck, eyereasoner/eye-
js: v16.22.0, 2024. URL: https://doi.org/10.5281/zenodo.13632329. doi:10.5281/zenodo.
13632329.

[11] R. Verborgh, J. De Roo, Drawing conclusions from linked data on the web: The eye
reasoner, IEEE Software 32 (2015) 23–27.

[12] M. Terdjimi, L. Médini, M. Mrissa, Hylar: Hybrid location-agnostic reasoning, in: ESWC
Developers Workshop 2015, 2015, p. 1.

[13] D. Brickley, L. Miller, Foaf vocabulary specification 0.91, 2007.
[14] F. F.-H. Nah, A study on tolerable waiting time: how long are web users willing to wait?,

Behaviour & Information Technology 23 (2004) 153–163.

https://solidproject.org/TR/2021/protocol-20211217
https://solidproject.org/TR/2021/protocol-20211217
https://doi.org/10.5281/zenodo.10866356
http://dx.doi.org/10.5281/zenodo.10866356
http://rdf.js.org/data-model-spec/
http://rdf.js.org/data-model-spec/
https://rdf.js.org/dataset-spec/
https://doi.org/10.5281/zenodo.13632329
http://dx.doi.org/10.5281/zenodo.13632329
http://dx.doi.org/10.5281/zenodo.13632329

	1 Introduction
	2 Implementation
	3 Performance Results and Conclusion
	4 Usage

