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Abstract
Understanding causal relations within manufacturing pipelines is crucial for key manufacturing tasks such as
anomaly detection and root cause analysis. However, existing causal machine learning (causal ML) approaches
struggle to scale effectively to the vast number of variables present in manufacturing settings. We advocate for
incorporating domain knowledge within the manufacturing pipelines, represented as knowledge graphs (KGs),
for designing causal ML methods for large-scale manufacturing problems. Knowledge graphs can encode rich
contextual information about the interactions and dependencies between different components and stages of
the manufacturing pipeline, providing a structured framework to guide the discovery of causal relationships.
By incorporating KGs, causal ML models can leverage both data-driven approaches and domain knowledge,
enhancing scalability and improving the accuracy of causal learning in large scale manufacturing settings.

1. Introduction

Causal machine learning (causal ML) encompasses ML methods aimed at identifying cause-and-effect
relationships among variables, primarily using observational data. Manufacturing pipelines involve
tens of thousands of observed and unobserved variables, including physical sensor readings, material
properties, machine parameters, and environmental factors. Understanding the causal relations between
these variables is critical for downstream tasks such as anomaly detection, root cause analysis and
process optimization [1]. Existing causal ML methods have demonstrated effectiveness with relatively
small numbers of variables; however, they either cannot scale to manufacturing problem or do so
with significant inefficiency. The challenge with scaling arises from the combinatorial complexity
of evaluating possible causal relationships among variables [2], compounded by noise, confounders,
and unobserved variables. We argue that integrating expert-curated knowledge graphs (KGs) of
manufacturing processes can enable the development of scalable approaches that discern meaningful
causal relationships amidst the complexity of data. Specifically, this knowledge can clarify existing
causal relationships and specify additional constraints over the search space, drastically improving
the computational tractability and learning stability of causal ML methods. Due to their symbolic
form, KGs can significantly enhance the interpretability of causal ML model outputs. Such knowledge-
guided approaches have the potential to enhance both the scalability and accuracy of causal ML
techniques, ultimately supporting more informed decision-making and process optimization in real-
world manufacturing environments.

2. Constructing KGs for Manufacturing Pipelines

The observational data from manufacturing pipelines typically includes sensor readings and details
about the manufactured parts. Beyond this, however, there is abundant structured and unstructured
knowledge available from most manufacturing pipelines. Organizing this knowledge into KGs requires
close collaboration between manufacturing experts, who understand the intricacies of the individual
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manufacturing processes, and KG construction experts, who can effectively structure and integrate the
data [3] [4]. Specifically, we are exploring the integration of the following information into KGs to
develop large-scale causal machine learning methods:

1. Direct and indirect causal influences: expert knowledge on known causal relationships,
non-causal relationships, and conditional independence between variables.

2. Manufacturing pipeline workflow: a structured representation of the production process,
including temporal and logical dependencies between stages and variables.

3. Noise characteristics of variables: information regarding which variables are subject to mea-
surement noise and the nature of that noise (e.g., Gaussian, uniform, etc.).

4. Latent variables and confounders: identification of important unobserved variables and
potential confounding factors in the production process.

3. KGs Enables Large-Scale Causal ML for Manufacturing

The scalability issue of causal learning from observational data lies in determining whether a causal
relationship exists between each pair of variables (nodes) [2]. Traditional causal discovery methods
are the least scalable due to the need to compute conditional independence between pairs of nodes,
making it a combinatorial optimization problem. A more scalable approach involves determining the
topological ordering of nodes by iteratively identifying the leaf nodes of the causal graph and then
applying feature selection techniques [5]. Recently, approximation methods using deep learning have
achieved significantly higher scalability (up to 500 nodes [2]). However, no existing method can scale
up to the manufacturing setting due to limitations in assumptions and complexity of the problem. We
argue that scalable causal ML methods for manufacturing demands explicit relational descriptions
beyond ground-level sensor measurements. Below, we analyse how knowledge can facilitate large-scale
causal ML methods:

• Knowledge on direct and indirect causal influences provides constraints on the causal struc-
ture, prunes invalid edges early in the discovery process, and thereby effectively narrows down
candidate causal graphs and reduces the search space for learning algorithms.

• Knowledge onmanufacturing pipeline workflow can guide the node selection process to focus
on the most relevant nodes, reduce the candidates of possible causes and thus improve scalability.
This knowledge also impose temporal constrains on the topological ordering of nodes, reducing
the number of candidate graphs in a Markov equivalent class. Temporal constrains can also
facilitate efficient time-series based causal ML methods. Note that temporal constrains are not
sufficient conditions for identifying causal relations.

• Knowledge on noise characteristics of variables provides valuable insights into causal processes
in additive noise models (ANM) [6] or post-nonlinear (PNL) models [7] for discovering nonlinear
causal relationships. By incorporating this knowledge, researchers can better tailor causal ML
methods to account for specific types and levels of noise present in the data. This knowledge can
enhance the effectiveness of causal discovery by mitigating the impact of noise and uncovering
more accurate causal relationships amidst complex, real-world data scenarios.

• Knowledge on latent variables and confounders allows for more precise identification of causal
relationships and better decision-making in complex systems. Current causal ML methods often
overlook the presence of unobserved variables. However, in the real world, these latent factors
can significantly influence the observed data and lead to erroneous causal learning if not properly
accounted for.

We are researching the development of neuro-symbolic or hybrid causal ML methods to incorporate
domain-specific KGs. Neuro-symbolic methods combine the strengths of symbolic reasoning with
neural network approaches [8], allowing for more scalable, interpretable and robust causal modeling
frameworks [9]. Furthermore, KG-guided large-scale causal MLmethods should also consider leveraging



parallel computing, efficient data structures, and advanced statistical techniques to manage the scale. In
conclusion, by addressing scalability issues in causal ML with domain KGs, we can make significant
strides in solving problems such as anomaly detection and root cause analysis, leading to higher
product quality, more efficient operations and improved process control, ultimately benefiting the entire
manufacturing industry.
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