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Abstract
Anomaly detection distinguishes anomalies from normals. In an anomaly graph, both anomalies and
normals are represented as nodes, with their relationships denoted by edges. However, in graph anomaly
detection, the number of anomalous nodes is typically far fewer than that of normal nodes. To address the
issue of class imbalance, existing Graph Neural Networks (GNNs) tend to overlook anomalous (minority
class) node samples, resulting in suboptimal performance. To solve this, we propose a method MG-GNN,
which generates minority class samples for GNN in the hidden space, thereby improving the classification
performance for anomalous nodes. Experiments have demonstrated the effectiveness of our method in
solving this problem.
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1. Introduction

Typically, the graph anomaly detection (GAD) task is treated as a semi-supervised binary node
classification problem (normal vs. anomalous). However, in an anomaly graph, the number
of anomalies is significantly lower than normals. Generally, efforts to adapt GNNs to class-
imbalanced graphs can be broadly categorized into two types [1]: data-level and algorithm-level
methods. Data-level methods typically attempt to balance class distribution by pre-processing
the training samples using oversampling or undersampling techniques [2]. Algorithm-level
methods consider misclassification costs to focus more on minority classes or to ignore majority
classes, thereby mitigating the impact of class imbalance [3].

However, recent GAD methods struggle to adapt to this extreme class imbalance, leading to
poor classification performance for anomalous nodes (minority class). Table 1 summarizes the
distribution of the two classes of nodes in the YelpChi [4] and Amazon [5] datasets, as well as
the test accuracy of a recent GNN for these two classes. It is evident that anomalies constitute
only a small portion of the total nodes, and the prediction accuracy for anomalies is significantly
lower than that for normals.

In this poster, we propose a method MG-GNN to solve this problem, which generates minority
class samples for GNN in the hidden space, mitigating the negative impact of class imbalances.
Specifically, we first use a GNN to map the node feature and structural information into hidden
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Table 1
The distribution of the number of nodes in the YelpChi and Amazon datasets, and the test accuracy of
BWGNN[6] for anomalies and normals.

Dataset # Nodes (Anomaly%) Anomaly Acc(%) Normal Acc(%)

YelpChi 45,954 (14.53%) 61.03 91.76
Amazon 11,944 (6.87%) 82.42 97.54

space. Then, based on the hidden representations of the minority class, we generate a large
number of minority nodes to achieve a relatively balanced class distribution before performing
classification. The experiments show that our method can handle the class imbalance issues.

2. Methodology

2.1. Problem Definition

Given an anomaly graph 𝒢 containing both normal and anomalous nodes, the objective is to
learn a classifier 𝑓(·) based on the graph 𝒢 and a set of partially labeled nodes 𝑌Train. The
classifier aims to predict the labels of the unlabeled nodes 𝑌 Test, where 1 represents anomalies
and 0 represents normal nodes. The task can be formalised as:

𝑓(𝒢, 𝑌𝑇𝑟𝑎𝑖𝑛) → 𝑌 𝑇𝑒𝑠𝑡 (1)

2.2. Model Overview

Our model, MG-GNN, consists of three main components. First, a GNN encoder transforms the
node feature and structural information into hidden space. Next, based on the representation
of the minority class in the hidden space, a large number of nodes representing the minority
class are generated, ensuring that the numbers of normal and anomalous classes are relatively
balanced. Finally, a classifier is used to perform classification under these balanced conditions.

2.3. GNN Decoder

To encode the anomaly graph, we utilize BWGNN as the backbone network due to its low-
and band-pass characteristics. It is noteworthy that we do not use GCN [7] as the encoder
here because GCN is based on the homophily assumption and cannot adequately handle the
heterophily of anomaly graphs. The decoder is defined as

𝐻 = BWGNN(𝐴,𝑋) (2)

where 𝑋 ∈ R𝑁×𝑑 represents the raw node features, 𝐴 is the adjacency matrix of the graph,
and 𝐻 is the node representation in hidden space.



2.4. Synthetic Node Generator

After obtaining the node representations 𝐻 , we use SMOTE [8] to generate synthetic anomalies.
The basic idea is to interpolate between samples of the target minority class and their nearest
neighbors in the hidden space. Specifically, let ℎ𝑣 ∈ 𝐻 represent the representation of an
anomalous node 𝑣. First, the nearest node ℎ𝑢 ∈ 𝐻 of node 𝑣 is found based on Euclidean
distance:

𝑢 = argmin
𝑚

‖ℎ𝑚 − ℎ𝑣‖, ℎ𝑚 ∈ 𝐻 (3)

where, unlike [9, 10], we do not require node 𝑢 to necessarily be an anomaly class, as recent
research [11] has shown that this strategy can better expand the decision space of anomalies.
Then, we generate a new minority class node ℎ𝑢 through linear interpolation:

ℎ𝑘 = 𝛿ℎ𝑣 + (1− 𝛿)ℎ𝑢 (4)

where 𝛿 ∈ [0, 1] is sampled from the Beta distribution. The synthesized node 𝑘 is labeled as an
anomalous node. Therefore, we can obtain a large number of synthesized anomalous nodes.
Additionally, we can select more nearest neighbors to get more synthetic anomalous nodes.

2.5. Classifier

After synthesizing a large number of nodes, we stack the representations of the original nodes
with the synthesized abnormal nodes to obtain a more balanced class, denoted as 𝐻 ′. Finally,
we use another MLP as a classifier for final prediction.

𝑌 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑀𝐿𝑃 (𝐻 ′)) (5)

Finally, the loss is calculated using cross-entropy. It is important to note that the loss is computed
not only for the original nodes but also for the synthesized anomalous nodes.

3. Experiments

Table 2
Performance Results.

Dataset YelpChi Amazon
Metric F1-macro AUC GMean F1-macro AUC GMean

BWGNN 76.92 90.47 75.68 91.45 96.61 90.12
MG-GNN 78.85 92.57 78.09 92.83 98.14 91.72

We employ three widely used class equalization metrics for fair comparisons, namely F1-
macro, AUC and GMean. The experimental results from Table 2 show that after generating a
large number of anomaly class nodes using our method, the class imbalance is better handled
and the overall performance is improved. Additionally, from Table 3 and Table 1 we observe



Table 3
The test accuracy of MG-GNN for anomalies and normals.

Dataset Anomaly Acc(%) Normal Acc(%)

YelpChi 71.72 90.70
Amazon 85.42 97.21

a significant improvement in the accuracy of anomalies, while the accuracy of correct nodes
remains largely unaffected. This demonstrates that our method effectively mitigates the impact
of class imbalance.

4. Conclusion

In this poster, we propose a method MG-GNN, which generates minority class samples for
GNN in the hidden space. Experimental results demonstrate that our method can enhance the
classification performance of anomalous nodes while having minimal impact on normal nodes.
In future work, we are interested in addressing the issue of class imbalance by leveraging the
original distribution of the graph.
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