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Abstract 
This study explores the application of genetic algorithms in generating highly nonlinear substitution boxes 
(S-boxes) for symmetric key cryptography. We present a novel implementation that combines a genetic 
algorithm with the Walsh-Hadamard Spectrum (WHS) cost function to produce 8×8 S-boxes with a 
nonlinearity of 104. Our approach achieves performance parity with the best-known methods, requiring an 
average of 49,399 iterations with a 100% success rate. The study demonstrates significant improvements 
over earlier genetic algorithm implementations in this field, reducing iteration counts by orders of 
magnitude. By achieving equivalent performance through a different algorithmic approach, our work 
expands the toolkit available to cryptographers and highlights the potential of genetic methods in 
cryptographic primitive generation. The adaptability and parallelization potential of genetic algorithms 
suggests promising avenues for future research in S-box generation, potentially leading to more robust, 
efficient, and innovative cryptographic systems. Our findings contribute to the ongoing evolution of 
symmetric key cryptography, offering new perspectives on optimizing critical components of secure 
communication systems. 
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1. Introduction 
The realm of digital security is in a constant state of 
evolution, with symmetric key cryptography serving as a 
fundamental pillar in the architecture of secure 
communication systems [1–3]. At the core of many 
symmetric encryption algorithms lie Substitution boxes (S-
boxes) [4], which play a pivotal role in establishing the 
nonlinear components essential for robust encryption [5, 6]. 
These S-boxes are critical in creating the confusion and 
diffusion properties that Claude Shannon identified as 
crucial for secure ciphers [7, 8]. 

The cryptographic strength of an S-box is multifaceted, 
encompassing several key indicators [9]. Nonlinearity, 
which quantifies an S-box’s resistance to linear 
cryptanalysis, stands as a primary measure. For 8×8 S-boxes, 
commonly employed in modern ciphers, achieving a 
nonlinearity of 104 represents a significant benchmark [10–
12]. However, other properties such as differential 
uniformity, algebraic degree, and algebraic immunity also 
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play crucial roles in determining an S-box’s overall 
cryptographic efficacy [13, 14]. 

While algebraically constructed S-boxes, such as the one 
used in the Advanced Encryption Standard (AES) with its 
optimal nonlinearity of 112 [15], might seem ideal, they are 
not without vulnerabilities. The presence of inherent 
algebraic structures in such S-boxes can create potential 
weaknesses, making them susceptible to algebraic 
cryptanalysis [16–18]. This vulnerability underscores the 
need for randomly generated S-boxes that lack hidden 
algebraic structures, thereby enhancing resistance against 
sophisticated cryptanalytic techniques [19–21]. 

The generation of cryptographically robust S-boxes 
presents a significant computational challenge. The vast 
search space of possible configurations for 8×8 S-boxes is 
estimated at 28! (approximately 10506), renders exhaustive 
search methods impractical. This complexity has driven 
research towards heuristic approaches for S-box generation 
[22–24]. Methods such as simulated annealing, hill 
climbing, and genetic algorithms have shown promise in 
navigating this expansive solution space efficiently [25]. 
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Recent advances in heuristic S-box generation have made 
significant advances. Researchers have studied various cost 
functions, including the Walsh-Hadamard spectrum (WHS) 
function [23, 26], the Picek cost function (PCF) [10], 
improved Walsh-Hadamard spectrum-based cost functions 
(WCF) [10, 27], and two new extended cost functions (ECF 
and WCFS) [6, 28, 29] in conjunction with different search 
algorithms [10, 22]. These efforts have progressively 
reduced the computational cost of generating highly 
nonlinear S-boxes, with some methods achieving the target 
nonlinearity of 104 in fewer than 100,000 iterations. 

Despite these advancements, there remains a gap in 
understanding the full potential of genetic algorithms in this 
domain. While genetic approaches have been applied to S-
box generation, their performance in comparison to other 
heuristic methods, particularly in terms of consistency and 
efficiency in generating S-boxes with optimal cryptographic 
properties, remains an area ripe for exploration. 

Our study aims to address this gap by presenting a 
comprehensive investigation into the application of genetic 
algorithms for generating 8×8 S-boxes with a nonlinearity of 
104. We explore the synergy between genetic algorithms and 
the WHS cost function, aiming to match or surpass the 
efficiency of existing methods while leveraging the inherent 
advantages of evolutionary approaches, such as adaptability 
and the potential for parallelization. 

The remainder of this paper is structured as follows: 
Section 2 provides a comprehensive review of the literature, 
detailing the evolution of S-box generation techniques and 
the current state of the art. Section 3 offers a background on 
S-boxes, their cryptographic properties, and the theoretical 
foundations underpinning their design. Section 4 delineates 
our methodology and experimental setup, including the 
specifics of our genetic algorithm implementation and 
evaluation criteria. Section 5 presents our results and a 
detailed discussion, comparing our findings with existing 
methods and analyzing their implications. Finally, Section 6 
concludes the paper, summarizing our key findings and 
outlining promising directions for future research in this 
critical area of cryptographic system design. 

2. Literature review 
The design and generation of cryptographically strong S-
boxes have been subjects of intensive research in the field 
of symmetric key cryptography. This section provides a 
comprehensive review of the existing literature, focusing on 
various approaches to S-box generation and their 
cryptographic properties. 

Algebraic constructions of S-boxes, such as those based 
on finite field inversion used in the Advanced Encryption 
Standard (AES) [15, 30, 31], have been widely studied. 
However, as Bard (2009) [16] and Courtois and Bard (2007) 
[17] point out, these constructions may be vulnerable to 
algebraic attacks due to their inherent mathematical 
structure. This vulnerability has led to increased interest in 
generating S-boxes with more complex algebraic structures 
[32]. 

Heuristic approaches have gained significant traction in 
recent years. Clark et al. (2005) [26] introduced a simulated 
annealing approach for S-box generation [23], 
demonstrating its effectiveness in producing S-boxes with 

high nonlinearity. Building on this work, Souravlias et al. 
(2017) [33] proposed an algorithm portfolio approach 
combining simulated annealing and tabu search, showing 
improved results under limited time budgets. 

Genetic algorithms have also been explored for S-box 
generation [24, 34]. Tesar (2010) [35] combined a genetic 
algorithm with a tree search method, generating 8×8 S-
boxes with nonlinearity up to 104. Picek et al. (2016) [11] 
presented a novel cost function for evolving S-boxes, 
achieving significant improvements in both speed and 
quality of results compared to previous approaches. 

Ivanov et al. (2016a, 2016b) [36, 37] introduced an 
innovative approach using a modified immune algorithm 
combined with hill climbing, rapidly generating large sets 
of highly nonlinear bijective S-boxes. Their work 
demonstrated the potential of hybrid approaches in S-box 
generation. 

Recent advancements have focused on improving 
specific cryptographic properties. Rodinko et al. (2017) [38] 
optimized a method for generating high nonlinear S-boxes, 
achieving nonlinearity of 104, algebraic immunity of 3, and 
8-uniformity within reasonable computational time. Freyre 
Echevarría and Martínez Díaz (2020) [27] proposed a new 
cost function specifically designed to improve the 
nonlinearity of bijective S-boxes. 

The importance of multiple cryptographic criteria has 
been emphasized in recent literature. Freyre-Echevarría et 
al. (2020) [10] introduced an external parameter-
independent cost function for evolving bijective S-boxes, 
considering both nonlinearity and other important 
properties. Their work highlighted the need for balanced 
optimization across multiple cryptographic criteria. 

More recent studies have explored novel approaches to 
S-box generation. Artuğer and Özkaynak (2024) [39] 
proposed a post-processing approach to improve the 
nonlinearity of chaos-based S-boxes, addressing a 
longstanding challenge in this area. Haider et al. (2024) [40] 
introduced an S-box generator based on elliptic curves, 
offering a balance between randomization and optimization 
with minimal computation time. 

The application of S-boxes in specific cryptographic 
contexts has also been a focus of recent research. Jamal et 
al. (2024) [41] developed a region of interest-based medical 
image encryption technique using chaotic S-boxes, 
demonstrating the practical applications of advanced S-box 
designs in specialized domains. 

Emerging threats and the need for enhanced security 
have led to new considerations in S-box design. Fahd et al. 
(2024) [42] examined the reality of backdoored S-boxes, 
highlighting the importance of thorough cryptanalysis and 
the potential vulnerabilities in S-box structures. 

In conclusion, the literature reveals a trend towards more 
sophisticated, multi-criteria optimization approaches in S-box 
generation. While significant progress has been made in 
achieving high nonlinearity and other desirable properties, 
there remains a need for methods that can consistently produce 
S-boxes with optimal cryptographic characteristics while 
balancing computational efficiency and resistance to emerging 
cryptanalytic techniques. 
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3. Background 
Symmetric cryptography forms the backbone of secure 
communication in the digital age. At the heart of many 
symmetric ciphers lie Substitution boxes (S-boxes), 
nonlinear components crucial for ensuring the security and 
robustness of these cryptographic systems. This section 
provides a comprehensive overview of S-boxes, their role in 
symmetric cryptography, and the application of genetic 
algorithms in their optimization. 

3.1. S-boxes in symmetric cryptography 

Substitution boxes (S-boxes) are fundamental components 
in symmetric-key algorithms, serving as the primary source 
of nonlinearity [7, 8]. An S-box is essentially a vectorial 
Boolean function that maps a fixed number of input bits to 
a fixed number of output bits. Formally, an n×m S-box can 
be defined as [9]: 

2 2: n mS F F , 

where 𝐹ଶ
௡ and 𝐹ଶ

௠ are vector spaces over the Galois field 
GF(2) with dimensions n and m, respectively. 

The cryptographic strength of an S-box is determined 
by several critical properties [10]: 

1) Nonlinearity: A measure of the distance between the 
S-box and the set of all affine functions. For an n×n S-box, 
the nonlinearity is defined as:  

2 2
2

1 (

, 0\

)1
( ) 2 max ( 1)

2 n n
n

n b S x a x

a b
x

NL S    

 


  
F F

F , 
where denotes the dot product and ⊕ represents bitwise 

XOR. 
2) Differential uniformity: Quantifies the uniformity of 

output differences when the input is changed. The 
differential uniformity δ is given by:  
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3) Algebraic degree: The highest degree among the 

component Boolean functions of S. For an n×m S-box, the 
algebraic degree is:  
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4) Balancedness: An S-box is balanced if each output 

occurs with equal probability when the input is uniformly 
distributed. 

5) Algebraic Immunity [43]: A measure of resistance 
against algebraic attacks. For an S-box 𝑆: 𝐹ଶ

௡ → 𝐹ଶ
௠, the 

algebraic immunity is defined as:  

 ( ) min deg( ), ( )AI S P P I S  , 
where I(S) is the ideal generated by the polynomials 

representing the S-box:  
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The algebraic immunity can be computed by constructing 
the minimal reduced Gröbner basis of the ideal I(S) using the 
degree reverse lexicographic (degrevlex) ordering, and 
finding the polynomial of minimum degree in this basis. 

These properties collectively contribute to the S-box’s 
ability to resist various cryptanalytic attacks, including 
differential, linear, and algebraic cryptanalysis. The concept 
of algebraic immunity for S-boxes, as introduced by Faugère 
and Perret, provides a crucial measure of resistance against 
algebraic attacks, which attempt to express the cipher as a 
system of low-degree multivariate polynomial equations. 

The relationship between the algebraic immunity of an 
S-box and that of Boolean functions can be established 
through the following construction. Consider a Boolean 
function 𝑓ௌ: 𝐹ଶ

௡ା௠ → 𝐹ଶ defined as [44, 45]: 

1 2 1 2

1 2

1 2
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0, if , : ( , ,..., )
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.

S n m

i n j

i n j

f x x x y y y

i j f x x x y

i j f x x x y



      
The algebraic immunity of the S-box S is then equivalent 

to the minimum degree of non-zero polynomials in the 
annihilator of fS: 

( ) min ( ) | ( )SAI S deg g g Ann f  . 
This formulation provides a bridge between the 

algebraic immunity of vectorial Boolean functions (S-boxes) 
and that of single Boolean functions, unifying the concept 
across different cryptographic primitives. 

3.2. Importance of S-boxes in modern 
ciphers and the need for 
randomness 

S-boxes play a pivotal role in ensuring the security of 
symmetric ciphers by introducing nonlinearity and 
complexity into the encryption process [7]. They are 
employed in widely-used algorithms such as the Advanced 
Encryption Standard (AES) [15], where the SubBytes 
operation relies on a carefully designed 8×8 S-box. 
However, the increasing sophistication of cryptanalytic 
techniques has necessitated a reevaluation of traditional S-
box design methods. 

While algebraically constructed S-boxes, such as those 
used in AES (based on finite field inverses) [30, 31], offer 
certain advantages in terms of implementation efficiency 
and some cryptographic properties, they may fall short in 
terms of algebraic immunity [43]. The structured nature of 
these S-boxes can potentially lead to vulnerabilities against 
algebraic attacks, which have gained significant attention in 
recent years [16, 17]. 

Algebraic attacks exploit the possibility of expressing 
the cipher as a system of low-degree multivariate 
polynomial equations [17, 18]. The complexity of solving 
such systems is closely related to the algebraic immunity of 
the S-box [43]. A low algebraic immunity allows for a 
simpler representation of the cipher, potentially reducing 
the computational effort required for cryptanalysis [44, 45]. 
This vulnerability has prompted researchers to explore 
alternative methods for S-box generation that prioritize 
high algebraic immunity alongside other critical properties. 
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To address these concerns, there is growing interest in the 
cryptographic community in random or pseudo-random S-
boxes [24, 46, 47]. These S-boxes, generated through 
heuristic methods, offer several advantages: 

 Higher algebraic immunity: Random S-boxes are 
less likely to exhibit algebraic structures that can 
be exploited in attacks, potentially leading to 
higher algebraic immunity values. 

 Resistance to specialized attacks: Algebraically 
constructed S-boxes might be vulnerable to attacks 
tailored to their specific structure. Random S-
boxes, lacking such predictable structures, can 
offer better protection against these targeted 
attacks. 

 Flexibility in design: Heuristic methods allow for 
the optimization of multiple cryptographic criteria 
simultaneously, enabling a more balanced 
approach to S-box design. 

Adaptability to evolving threat models: As new 
cryptanalytic techniques emerge, the criteria for S-box 
generation can be adjusted more easily with heuristic 
methods compared to algebraic constructions. 

Various heuristic approaches have been proposed for 
generating high-quality random S-boxes, including: 

 Simulated Annealing [23, 26, 33, 48]: This method 
mimics the physical process of annealing in 
metallurgy, gradually “cooling” the system to find 
an optimal configuration. It has shown promise in 
generating S-boxes with good cryptographic 
properties. 

 Hill Climbing [6, 10, 36, 49, 50]: A local search 
algorithm that iteratively makes small 
improvements to a candidate solution. This 
approach can be effective in fine-tuning S-box 
properties. 

 Genetic Algorithms [10, 35, 37, 51]: Evolutionary 
approaches that mimic natural selection to evolve 
a population of S-boxes towards desired 
properties. These algorithms have demonstrated 
the ability to generate S-boxes with excellent 
cryptographic characteristics, including high 
algebraic immunity. 

In this work, we focus on genetic algorithms due to their 
ability to efficiently explore large search spaces and handle 
multi-objective optimization problems. Genetic algorithms 
offer a promising approach to generating S-boxes that 
balance multiple cryptographic criteria, including high 
algebraic immunity, nonlinearity, and differential 
uniformity. 

3.3. Genetic algorithms for S-box generation 

Genetic Algorithms (GAs) are stochastic optimization 
techniques inspired by the principles of natural selection 
and evolution [52, 53]. They operate on a population of 
potential solutions, evolving them over successive 
generations to improve their fitness concerning a defined 
objective function. In the context of S-box generation, GAs 

offer a powerful and flexible approach to optimizing 
multiple cryptographic properties simultaneously 
[10, 37, 54]. 

The fundamental principle of GAs is to emulate the 
process of natural selection, where the fittest individuals are 
more likely to survive and reproduce, passing their 
beneficial traits to future generations [52, 53]. In the case of 
S-box generation, an “individual” represents a candidate S-
box, and its “fitness” is determined by how well it satisfies 
the desired cryptographic properties. 

The basic structure of a GA includes the following 
components [54, 55]: 

 Chromosome representation: Encoding of 
potential solutions (S-boxes). 

 Fitness function: Evaluates the quality of solutions 
based on cryptographic criteria. 

 Selection mechanism: Chooses individuals for 
reproduction. 

 Genetic operators: Crossover and mutation to 
create new solutions. 

 Termination criteria: Conditions for ending the 
evolutionary process. 

A general pseudocode for a Genetic Algorithm applied 
to S-box generation can be described as follows: 
 

Algorithm: Genetic algorithm for S-box generation 
Input: Population size N, number of generations G, 

crossover rate pc, mutation rate pm; 
Output: Optimized S-box; 
 

1. Initialize population P of N random S-boxes 
2. For g = 1 to G do 
3.     Evaluate the fitness of each S-box in P 
4.     Select parents for reproduction using tournament 
selection 
5.     Create new population P’ through crossover and 
mutation: 
6.         For i = 1 to N/2 do 
7.             Select two parents p1 and p2 from P 
8.             If random (0,1) < pc then 
9.                 (c1, c2) = Crossover(p1, p2) 
10.            Else 
11.                (c1, c2) = (p1, p2) 
12.            End If 
13.            Mutate c1 and c2 with probability pm 
14.            Add c1 and c2 to P’ 
15.        End For 
16.    P = P’ 
17. End For 
18. Return the best S-box from P 

 
Key parameters and their roles: 

 Population size (N): Determines the diversity of 
solutions. A larger population allows for broader 
exploration of the search space but increases 
computational cost. 

 Number of generations (G): Controls the duration 
of the evolutionary process. More generations 
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allow for further optimization but may lead to 
overfitting. 

 Crossover rate (pc): Probability of performing 
crossover. Higher rates promote the exploration of 
new solution combinations. 

 Mutation rate (pm): Probability of mutating each 
bit in a chromosome. Higher rates increase 
diversity but may disrupt good solutions. 

The fitness function is crucial in guiding the 
evolutionary process towards S-boxes with desired 
cryptographic properties. 

The selection mechanism, often implemented as 
tournament selection, ensures that fitter individuals have a 
higher chance of being chosen for reproduction. This 
process mimics natural selection, where more adapted 
individuals are more likely to pass on their genes. 

Crossover operators for S-boxes must be carefully 
designed to preserve the bijective property. One approach 
is to use a permutation-based crossover, where segments of 
the S-box permutation are exchanged between parents. For 
example, given two parent S-boxes P1 and P2, a two-point 
crossover might produce offspring C1 and C2 as follows: 

1 1 2 1 1( , ,..., | ,..., | ,..., )k k l l nP a a a a a a a  ; 

2 1 2 1 1( , ,..., | ,..., | ,..., )k k l l nP b b b b b b b  ; 

1 1 2 1 1( , ,..., | ,..., | ,..., )k k l l nC a a a b b a a  ;

2 1 2 1 1( , ,..., | ,..., | ,..., )k k l l nC b b b a a b b  . 
Mutation operators introduce small random changes to 

maintain genetic diversity and prevent premature 
convergence. For S-boxes, this might involve swapping two 
randomly chosen elements or applying a random 
permutation to a subset of elements. 

4. Modified genetic algorithm 
Our research focuses on developing and implementing a 
modified genetic algorithm for generating 
cryptographically strong S-boxes. This section details our 
approach, the algorithm’s structure, and the experimental 
setup used to evaluate its performance. 

4.1. Modified genetic algorithm overview 

We have developed a modified genetic algorithm that 
incorporates elements of hill climbing, enhancing its ability 
to navigate the complex search space of S-box 
configurations. This approach allows for a more targeted 
exploration of promising regions while maintaining the 
population-based nature of genetic algorithms. 

The core idea of our algorithm is to maintain a 
population of S-boxes, subject them to controlled mutations, 
evaluate their cryptographic properties, and selectively 
propagate the best specimens to subsequent generations. 
This process is iterated until either an S-box meeting the 
desired criteria is found or a predefined computational limit 
is reached. The pseudocode for our modified genetic 
algorithm is: 

 

Algorithm: Modified genetic algorithm for S-box 
generation 

Input: Spop, Kiter, Kpop, Kmut 
Output: Optimized S-box or 0 (failure) 
 

1. For t = 0 to Kiter - 1 do 
2.     Spop = elite_selection(Spop) 
3.     For p = 0 to Kpop - 1 do 
4.         S ← Spop[p] 
5.         For k = 0 to Kmut - 1 do 
6.             S’ ← S 
7.             i ← random(0, 255) 
8.             j ← random(0, 255) 
9.             swap(S’[i], S’[j]) 
10.            Nf, Fc ← evaluate(S’) 
11.            If Nf ≥ 104 then 
12.                Return S’ 
13.            Spop = Spop ∪ {S’} 
14.        End For 
15.    End For 
16. End For 
17. Return 0 
 
Key components and parameters of the algorithm: 

 Spop: The population of S-boxes, initially generated 
using the Fisher-Yates shuffle algorithm to ensure 
bijectivity. 

 Kiter: Maximum number of iterations, set to 150,000 
in our experiments. 

 Kpop: Population size, representing the number of 
elite S-boxes maintained in each generation. 

 Kmut: Number of mutations applied to each S-box 
in the population per generation. 

The elite selection function performs a crucial role in 
our algorithm. It ranks the S-boxes based on their 
nonlinearity and objective function values, prioritizing 
higher nonlinearity and lower objective function values. 
This function ensures that only the top Kpop S-boxes survive 
to the next generation, maintaining a high-quality 
population. 

4.2. Mutation operator 

Our mutation operator is designed to preserve the 
bijectivity of the S-box while introducing controlled 
randomness. It operates by swapping two randomly 
selected (distinct) elements within the S-box. This approach 
ensures that the fundamental property of bijectivity is 
maintained throughout the evolutionary process. 

Formally, the mutation can be described as: 

[ ] [ ], [ ] [ ]S i S j S j S i   , 

where 𝑖, 𝑗 ∈ 0,1,… , 255, 𝑖 ≠ 𝑗  and all other elements 
remain unchanged. 

4.3. Objective function 

The choice of objective function is critical in guiding the 
evolutionary process towards cryptographically strong S-
boxes. We employ the WHS function proposed by Clark et 
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al. [26], which has shown effectiveness in generating high-
quality S-boxes. The WHS function is defined as [26]: 

255 255

1 0

| [ , ] |
R

b i

W XWH b iHS T
 

 
, 

where WHT[b,i] represents the Walsh-Hadamard 
transform coefficients; i iterate over all component 
functions and their linear combinations; b iterates over all 
linear functions; X and R are real-valued parameters. 

Based on empirical studies, we set R = 12 and X = 0, 
which has been shown to yield optimal results in generating 
bijective S-boxes with high nonlinearity [56, 57]. 

4.4. Evaluation criteria 

The primary criteria for evaluating the generated S-boxes 
are: 

 Nonlinearity (NL): We aim for a nonlinearity of at 
least 104, which is close to the theoretical 
maximum for 8×8 S-boxes. 

 Differential uniformity (δ): Lower values indicate 
better resistance against differential cryptanalysis. 

 Algebraic degree (deg): Higher degrees provide 
better resistance against algebraic attacks. 

 Algebraic immunity (AI): Higher values indicate 
increased resistance to algebraic cryptanalysis. 

The evaluate function in our algorithm computes these 
properties for each generated S-box, allowing us to assess 
its cryptographic strength comprehensively. 

4.5.  Experimental setup 

Our experiments were conducted on a high-performance 
computing cluster to handle the computational intensity of 
the S-box generation process. The implementation was done 
in C++ for efficiency, with parallelization to utilize multiple 
cores. 

Given that the calculation of the objective function is 
the most computationally expensive operation in terms of 
processor time, the complexity of the entire search 
algorithm can be considered proportional to the number of 
times the objective function is calculated. This corresponds 
to the number of S-boxes that were generated and 
evaluated. We denote this quantity as KSbox. 

To accelerate the algorithm’s performance, we 
implemented parallel computation of the new population 
using Nthread = 8 threads within each iteration. This 
parallelization significantly reduced the overall execution 
time of the algorithm. 

We conducted a comprehensive parameter sweep to 
analyze the impact of population size and mutation rate on 
the quality of the generated S-boxes and the algorithm's 
convergence rate. Specifically: 

 Population size (Kpop) was varied from 1 to 21 with 
a step size of 2. 

 The mutation rate (Kmut) was varied from 1 to 31 
with a step size of 3. 

For each combination of Kpop and Kmut, we performed 100 
independent runs of the search algorithm to ensure 
statistical significance. This resulted in a total of 
11×11×100 = 12,100 experimental runs. 

The algorithm was set to terminate upon finding an S-
box with nonlinearity ≥ 104 or reaching the maximum 
iteration limit of 150,000. For each run, we recorded the 
number of S-boxes generated and evaluated (KSbox), which 
serves as our primary metric for computational efficiency. 

5. Results and discussion 
This section presents the results of our comprehensive 
experimental study on the modified genetic algorithm for S-
box generation. We analyze the performance of the 
algorithm across various parameter configurations and 
discuss the implications of our findings. 

5.1. Overview of experimental results 

Our primary metric for evaluating the algorithm’s 
efficiency is KSbox, which represents the number of S-boxes 
generated and evaluated before finding an S-box with the 
desired nonlinearity of 104. Table 1 presents the average 
KSbox values for different combinations of population size 
(Kpop) and mutation rate (Kmut). 

5.2. Analysis of population size impact 

One of the most striking observations from our results is the 
superior performance of the algorithm when Kpop = 1. This 
configuration consistently yielded the lowest KSbox values 
across all mutation rates, with averages ranging from 49,277 to 
58,213. This finding is somewhat counterintuitive, as genetic 
algorithms typically benefit from larger population sizes that 
provide greater genetic diversity. 

The effectiveness of a single-individual population 
suggests that our algorithm’s behavior in this configuration 
closely resembles that of a stochastic hill-climbing method. This 
approach appears to be particularly well-suited to the S-box 
optimization problem, possibly due to the following factors: 

Landscape structure: The fitness landscape of S-box 
configurations may have numerous local optima that are 
relatively close in quality to the global optimum. In such a 
scenario, an aggressive local search can be highly effective. 

Mutation operator efficiency: Our swap-based 
mutation operator appears to be sufficiently powerful to 
navigate the search space effectively, even without the 
diversity typically provided by a larger population. 

Reduced computational overhead: With Kpop = 1, the 
algorithm avoids the computational cost associated with 
managing and evaluating a large population, allowing for 
more iterations within the same computational budget. 

5.3. Impact of mutation rate 

While the population size shows a clear trend, the impact of 
the mutation rate (Kmut) is more nuanced. For Kpop = 1, we 
observe that: 

The lowest KSbox (49,277) was achieved with Kmut = 7. 
Performance generally degraded with higher mutation 
rates, with KSbox increasing to 58,213 at Kmut = 1. 
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This pattern suggests that there exists an optimal 
balance between exploration and exploitation in the search 
process. Lower mutation rates may lead to premature 
convergence, while higher rates may disrupt good solutions 
too frequently. 

5.4. Scalability and computational 
efficiency 

As Kpop increases, we observe a general trend of increasing 
KSbox values, indicating reduced computational efficiency. 
This scaling behavior can be attributed to: 

 Increased evaluation overhead: Larger populations 
require more objective function evaluations per 
generation. 

 Slower convergence: Diversity maintenance in 
larger populations may slow down the 
convergence to high-quality solutions. 

However, it’s worth noting that larger populations 
might offer benefits not captured by the KSbox metric alone, 
such as increased robustness or the ability to find a more 
diverse set of high-quality S-boxes. 

5.5. Parallelization performance 

Our implementation of parallel computation using 8 threads 
(Nthread = 8) has proven to be effective in accelerating the 
search process. This parallelization strategy is particularly 
beneficial for configurations with larger Kpop and Kmut 
values, where the workload can be more evenly distributed 
across threads. 

 
Table 1 
The average number of S-boxes generated (KSbox) before finding an S-box with Nf = 104 

Kmut 
Kpop 

1 3 5 7 9 11 13 15 17 19 21 

1 58,213 65,942 72,830 86,642 101,726 111,990 112,718 125,113 132,806 140,336 149,339 
4 56,067 64,863 75,069 89,598 94,726 105,925 122,364 137,003 136,740 151,874 163,291 

7 49,277 67,198 77,848 88,353 103,154 109,618 122,382 130,901 142,463 144,601 165,918 

10 54,636 65,723 82,198 92,542 102,797 114,163 129,411 137,442 147,416 161,020 165,672 

13 56,042 62,660 83,216 94,538 101,073 117,611 124,466 135,244 152,048 158,696 171,756 

16 56,010 68,711 79,645 93,134 107,371 120,567 125,274 140,817 150,494 155,049 169,462 
19 56,532 65,910 82,883 92,911 105,144 117,877 129,718 142,017 155,463 164,902 175,531 
22 54,775 67,236 77,663 92,874 105,559 120,992 131,029 140,772 156,224 162,808 176,669 
25 50,066 70,394 79,596 98,967 115,462 118,406 135,294 144,708 157,321 177,621 183,087 
28 54,203 70,453 82,200 91,841 108,783 121,683 133,665 152,984 159,887 176,751 181,781 
31 53,709 71,581 91,827 101,536 109,625 126,616 143,233 156,987 160,573 183,069 192,493 

 

5.6. Comparison with existing methods 

The best-performing configuration of our algorithm 
(Kpop = 1, Kmut = 7) achieves an average KSbox of 49,277. To 
contextualize our findings within the broader landscape of 
S-box generation research, we conducted a comprehensive 
comparison of our genetic algorithm approach with existing 
methods. Table 2 presents this comparative analysis, 
encompassing various techniques and cost functions 
employed in the field. 

Our genetic algorithm implementation, utilizing the WHS 
cost function, achieves results that are on par with the best-
known methods in the field. Specifically, our approach 
generates S-boxes with a nonlinearity of 104 in an average of 
49,399 iterations, with a 100% success rate. This performance 
is comparable to our previous works using hill climbing 
[6, 28], which required 50,000 iterations on average. 

Several key observations emerge from this comparative 
analysis: 

 Parity in Performance: Our genetic algorithm 
achieves results that are statistically equivalent to 
the best-known methods, particularly our earlier 
hill-climbing approach. This parity is significant, 
as it demonstrates the versatility and potential of 
genetic algorithms in this domain. 

 Algorithmic Diversity: By achieving comparable 
results through a different algorithmic approach, 
we have expanded the toolkit available to 

cryptographers and security researchers. This 
diversity in high-performing methods enhances 
the robustness of S-box generation techniques. 

 Consistency and Reliability: Like our previous best 
results, the genetic algorithm maintains a 100% 
success rate in generating target S-boxes with 
nonlinearity 104. This level of reliability is crucial 
for practical applications in cryptographic system 
design. 

 Efficiency Across Methods: The similarity in 
performance between our genetic algorithm and 
hill climbing approaches (49,399 vs. 50,000 
iterations) suggests that we may be approaching 
theoretical limits of efficiency for generating S-
boxes with these properties using heuristic 
methods. 

Progress from Earlier Genetic Approaches: Compared to 
earlier genetic algorithm implementations [11, 35], our 
method shows substantial improvement, reducing the 
required iterations by orders of magnitude while achieving 
higher nonlinearity. 

The achievement of parity with the best-known results 
using a genetic algorithm is particularly noteworthy and 
underscores the potential of evolutionary approaches in 
cryptographic primitive generation.  
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5.7. Practical Implications 

The superior performance of the Kpop = 1 configuration has 
important implications for the practical application of our 
algorithm: 

 Resource efficiency: The algorithm can be 
effectively run on systems with limited 

computational resources, as it doesn’t require 
maintaining a large population. 

 Simplicity: The simplified population management 
makes the algorithm easier to implement and tune. 

 Adaptability: The algorithm’s efficiency makes it 
suitable for scenarios where S-boxes need to be 
generated or updated frequently. 

Table 2 
Comparison of S-box Generation Methods 

Method Cost Function Algorithm NL Success Rate, % Avg. Iterations 
[23,26] WHS SA 102 0.5 - 
[23] WHS SA 104 - 30,000,000 
[35] WHS HC 100 - 2,500 
[35] WHS GaT 104 - 3,239,000 
[11] WHS Ga 102 - 28,200 
[11] WHS GaT 104 - 3,849,881 
[11] WHS LSA 102 - 6,701 
[11] PCF Ga 104 - 741,371 
[11] PCF GaT 104 - 167,451 
[11] PCF LSA 104 - 172,280 
[27] WCF LSA 104 - 89,460 
[27] WCF HC 104 37 65,933 
[58] WHS SA 104 56.4 450,000 
[48] WCF SA 104 100 65,000 
[48,59] ECF SA 104 100 55,000 … 83,000 
[49] WHS HC 104 100 50,000 
[6,28] WCFS  HC 104 100 50,000 
Our work WHS Ga 104 100 49,399 

However, it’s important to note that while this 
configuration is optimal for finding a single high-quality 
S-box, alternative configurations may be more suitable 
for generating a diverse set of S-boxes or for multi-
objective optimization scenarios. 

5.8. Limitations and future work 

While our results are promising, several avenues for 
future research remain: 

 Extended cryptographic criteria: Incorporate 
additional criteria such as algebraic immunity 
and differential uniformity into the objective 
function. 

 Adaptive parameter tuning: Develop methods 
to dynamically adjust Kpop and Kmut during the 
search process. 

 Alternative mutation operators: Explore more 
sophisticated mutation strategies that leverage 
domain-specific knowledge about S-box 
structures. 

 Multi-objective optimization: Extend the 
algorithm to simultaneously optimize multiple 
cryptographic properties, potentially using 
Pareto-based approaches. 

In conclusion, our modified genetic algorithm 
demonstrates exceptional efficiency in generating 
cryptographically strong S-boxes, particularly in its hill-
climbing-like configuration. These findings contribute 

valuable insights to the field of cryptographic primitive 
design and offer a powerful tool for the development of 
secure symmetric encryption systems. 

6. Conclusions 
This study presents a significant advancement in the 
field of S-box generation for symmetric key 
cryptography, focusing on the application of genetic 
algorithms to produce highly nonlinear substitutions. 
Our research demonstrates that genetic algorithms, 
when properly optimized and combined with the Walsh-
Hadamard Spectrum (WHS) cost function, can achieve 
performance parity with the best-known methods in 
generating 8×8 S-boxes with a nonlinearity of 104. 

Key findings of our work include: 

 The genetic algorithm approach achieves an 
average of 49,399 iterations to generate target 
S-boxes, comparable to the best results of 
50,000 iterations using hill-climbing methods. 

 A 100% success rate in producing S-boxes with 
the desired nonlinearity, matching the reliability 
of top-performing techniques. 

 A significant improvement over earlier genetic 
algorithm implementations, reducing iteration 
counts by orders of magnitude. 

The achievement of performance parity using a different 
algorithmic approach expands the toolkit available to 
cryptographers and highlights the versatility of genetic 
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methods in cryptographic primitive generation. This 
diversity in high-performing techniques enhances the 
robustness of S-box generation methodologies. 

Furthermore, our results underscore the potential of 
genetic algorithms in this domain, particularly their 
adaptability to evolving cryptographic criteria and their 
inherent parallelization capabilities. These 
characteristics position genetic approaches as promising 
avenues for future research, potentially leading to more 
efficient, flexible, and innovative S-box generation 
techniques. 

In conclusion, while not surpassing existing 
methods in raw performance, our genetic algorithm 
approach offers a valuable alternative that matches the 
best-known results. This equivalence, coupled with the 
unique advantages of genetic algorithms, opens new 
perspectives in cryptographic research and 
development. Future work should focus on exploiting 
these advantages, potentially through hybridization 
with other heuristic methods or by leveraging parallel 
computing architectures to further enhance S-box 
generation efficiency. 
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