
79

Pseudorandom sequence generator
based on the computation of ln 2⋆

Ivan Opirskyy1,∗,†, Oleh Harasymchuk1,†, Olha Mykhaylova1,†, Oleksii Hrushkovskyi1,†
and Pavlo Kozak1,†

1 Lviv Polytechnic National University, 12 Stepana Bandery str., 79000 Lviv, Ukraine

Abstract
This paper discusses creating a pseudorandom sequence generator using the natural logarithm of the
number 2 (ln 2) calculator. Pseudorandom sequence generators are key elements in cryptography,
modeling, and numerical methods, where high-quality randomness is required. Traditionally, various
mathematical algorithms are used for this purpose, but we propose a new approach based on the numerical
properties of ln 2. The paper describes in detail the method of computing ln 2 using the Taylor series and
demonstrates how these calculations can be integrated into a pseudorandom sequence generator. The main
idea is to use the ln 2 approximation to initialize the generator, allowing for the creation of number
sequences with a high degree of randomness. The use of ln 2, known for its mathematical stability and
accuracy, opens new horizons for generating numbers that are important for many scientific and
engineering applications. The presented test results show that the proposed method provides uniform
distribution and passes the standard NIST statistical tests. This demonstrates the potential of using
mathematical constants and their numerical computations to improve the characteristics of pseudorandom
sequence generators. Our approach offers the possibility of creating generators with improved
characteristics without significantly increasing computational complexity. Additionally, we discuss
potential directions for improving the generator, including optimizing the algorithm and expanding to other
mathematical constants. This approach not only enhances the quality of pseudorandom sequences but also
provides new tools for research in number theory and computational mathematics. An important aspect is
that the proposed method provides high generation speed, making it attractive for use in real-world
applications where computation time is a critical parameter. Thus, our generator may find wide application
in various fields, including cryptographic protocols, simulation algorithms, and other numerical methods
that require high-quality randomness and computational efficiency.

Keywords
pseudorandom sequence generator, pseudorandom number generators, mathematical algorithms, Taylor
series, NIST statistical tests, mathematical constants, cryptographic protocols, simulation algorithms,
computational efficiency1

1. Introduction
Pseudorandom Number Generators (PRNGs) and
Pseudorandom Sequence Generators (PSGs) are key
elements in many scientific and technical fields. They play
a crucial role in modern technologies, providing the basis
for numerous applications in computer science,
cryptography, statistical sampling, modeling, and
simulations [1–7]. These generators enable the creation of
number sequences that, while deterministic, appear random,
which is critically important for ensuring data security,
model accuracy, and algorithm reliability. In a world where
information is becoming increasingly valuable,
understanding and using PRNGs and PSGs is essential for
developing effective solutions in various fields, from finance
to gaming. Thus, the importance of pseudorandom number

CQPC-2024: Classic, Quantum, and Post-Quantum Cryptography, August
6, 2024, Kyiv, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 ivan.r.opirskyi@lpnu.ua (I. Opirskyi); garasymchuk@ukr.net
(O. Harasymchuk); mykhaylovaolga1@gmail.com (O. Mykhaylova);
oleksii.hrushkovskyi.kb.2022@lpnu.ua (O. Hrushkovskyi);
pavlo.kozak.kb.2022@lpnu.ua (P. Kozak)

generators is hard to overestimate, as they provide the
foundation for innovation and development in many sectors
[8]. Particularly noteworthy is their importance in
cybersecurity, where they are also a key element, and are
used in solving various tasks, namely for data encryption
[9], authentication [10, 11], key generation, digital
signature creation algorithms, and in testing and evaluating
security [12–18]. Therefore, developers of such generators
face high demands for the quality of the output sequences:
unpredictability, statistical independence, cryptographic
robustness, and maximum generation speed. Ensuring a
high quality of randomness is an important task, as it affects
the reliability and accuracy of many algorithms and systems
where the generated sequences will be applied.
Traditionally, various mathematical algorithms and
methods are used to generate pseudorandom numbers,

 0000-0002-8461-8996 (I. Opirskyi); 0000-0002-8742-8872
(O. Harasymchuk); 0000-0002-3086-3160 (O. Mykhaylova); 0009-0007-
3626-9780 (O. Hrushkovskyi); 0009-0005-0432-4541 (P. Kozak)

© 2024 Copyright for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

80

including the linear congruential method [19–21], shift
register generators [22–24], the Lagrange method [25],
Mersenne Twister algorithms [26], and others [27–30].
However, existing approaches do not always meet the
requirements for uniform distribution and passing
statistical tests, so researchers continuously search for new
methods, ways, and algorithms to generate pseudorandom
sequences that meet the growing demands for their quality.

2. Problem statement
The research problem involves seeking a new approach to
generating pseudorandom numbers that would ensure high-
quality randomness and computational efficiency. One such
approach is the use of the numerical properties of
mathematical constants [31]. The natural logarithm of
number 2 (ln 2) has a range of unique properties that make
it promising for use in generating pseudorandom numbers.
Existing studies demonstrate the effectiveness of using
logarithms of mathematical constants in cryptography and
numerical methods [32–34], but the integration of ln 2 into
pseudorandom number generators remains insufficiently
explored.

This paper aims to develop and test a pseudorandom
number generator based on the computation of ln 2 using
the Taylor series. The research tasks include describing the
methodology for computing ln 2, integrating these
computations into a pseudorandom number generator,
conducting testing, assessing the quality of the generated
sequences, and analyzing the results.

Lastly, this solution offers robust change and feature
management capabilities. This means that it can easily adapt
to evolving business needs, with the ability to incorporate
new features and make necessary changes in a timely and
efficient manner. This flexibility ensures the solution
remains relevant and continues to deliver value over time
[35].

3. Research analysis
Historically, the concept of logarithms was introduced in
the 17th century by the Scottish mathematician John Napier,
who first developed logarithmic tables [36]. His work
significantly simplified the process of multiplying and
dividing large numbers, which was extremely useful for
astronomy, navigation, and other sciences. Natural
logarithms, based on the number 𝑒 (approximately equal to
2.71828), appeared later and became important in
mathematical analysis thanks to the works of Leibniz and
Euler [37, 38].

One of the classic methods for computing 𝑒 is using the
Taylor series. For example, one can use the expansion of the
logarithmic function into a Taylor series around 1:

. (1)

For x = 1, we get:

. (2)

This series converges relatively slowly, so more efficient
methods are typically used for practical calculations [39].
Another approach is based on numerical integration
methods. The natural logarithm can be defined as a definite
integral:

. (3)

For numerical computation of this integral, methods
such as the rectangle (midpoint), trapezoidal, or Simpson’s
rule are applied, which allows for obtaining more precise
values [40].

One of the most powerful methods of computing
Ln 2 is the Newton-Raphson method, which is used for

finding the roots of equations and can be adapted for
computing logarithms [41]. Starting with the equation
ey = 2, where y = ln 2, we can formulate a function
f(x) = ex – 2 and apply the Newton-Raphson method to solve
for

. (4)

A clear downside is that the use of Euler’s constant 𝑒 for
computation is required, which itself is transcendental and
cannot be precisely calculated. Therefore, it is necessary to
calculate the constant itself simultaneously, which increases
the number of operations. On the other hand, in such a case,
one iteration can generate a much larger sequence of
numbers than other algorithms.

With the advent of computers, an obvious application
became the computation of mathematical constants. In one
of the first works on this topic [42], the following formula
was used to compute ln 2:

.
(5)

This represents a series of transformations over the
classical Taylor series expansion [43]. In 1995, there was an
unprecedented breakthrough in the calculation of constants.
French mathematician Simon Plouffe discovered a series
that allowed the computation of the ith hexadecimal digit of
π [44]. The formula is as follows:

. (6)

Later, other variations of this formula were found for
other constants [35], among which we are, of course,
interested in ln(2), which is represented by the formula:

.
(7)

Also, a representative of this type of formula is the
aforementioned formula (5). These formulas have allowed
for the effective calculation of constants starting from any
hexadecimal number [45], ensuring low resource
consumption, but in practice, the approximation to the exact
result occurs slowly. Some formulas ensure the accuracy of
calculations at the expense of using more computer

81

resources. For example, in 1997 a record of 10,079,926 digits
was set [46], which compared to the results of 1962 [42], i.e.,
3863 digits, is a significant breakthrough. This was achieved
using the Mercator series [47], and in this case, by the
formula:

, (8)
where

.
(9)

Over time, the basic principle of calculation has not
changed, as the use of such formulas allows obtaining
precise values, although it requires a large amount of
computation. For example, the record for the number of
digits after the decimal was set in 2021 by William Ekols [48]
and represents 1.5·1012 digits after the comma. To calculate
such several digits, it took 98.9 days [49], and for the
correctness check—61.7. And this is on a machine that has
48 cores and 256 GB of RAM.

Also, do not forget the software that was used to
calculate such several digits. This software is called y-
cruncher and was created in 2009 [50]. The main advantage
of this software is its optimization and maximum efficiency
in resource use thanks to various techniques [51]. For the
calculation, this formula is used:

. (10)

The most recent record as of now for computing the
number of digits after the decimal is 3·1012 digits after the
comma, set by Jordan Ranous on February 12, 2024 [52]. A
machine with 2 × Intel Xeon Platinum 8460H (a total of 80
cores) and 512 GB of RAM was used. The computation took
42.7 days, while the correctness check took 58.3 days.

In conclusion, it can be noted that in calculating ln(2),
we face two extremes: formulas that allow efficiently, in
terms of resource use, to calculate this constant but for
accuracy lose their speed or those that use a large number
of resources. Ideally, finding a compromise would be
optimal, but when we face the task of precise calculation of
ln(2), this option does not exist. Accordingly, by shifting the
focus from precise calculation of ln(2) to using knowledge
about this constant for generating pseudorandom sequences,
we can achieve a compromise and obtain the desired result.

In this paper, we will take a detailed look at using the
Taylor series for generating pseudorandom sequences and
demonstrate an algorithm that allows efficiently obtaining
binary random sequences of great length that pass NIST
statistical tests through which the quality of the generated
pseudorandom sequence can be best assessed [53–57].

4. The main part

4.1. Analysis of the Taylor series for ln 2

As mentioned earlier, the constant ln(2) is decomposed into
the following Taylor series:

. (11)
After performing a series of operations, we obtain such

a definition of the series:

. (12)
That has the general form:

. (13)

Let’s move on to the binary representation of ln 2. In
essence, it is:

,
(14)

where xi is the value of the ith bits.
However, it should be noted here that we are not

interested in calculating the exact value in its mathematical
essence, we are interested in the non-periodicity of the bit
sequence, what it contains, respectively, the operations of
multiplication/division by 2, offsets, adjustments at a
random place in the sequence, etc. affect the non-periodicity
of the sequence and can be used.

Accordingly, the problem can be reduced to finding a
way to obtain a sequence of bits from (13).

Let’s consider one way to solve this problem:
The binary number system includes only two values: 0

and 1, respectively, they can be used for logical “Yes” or
“No”.

The proposed method determines whether a specific
iteration of formula (13) is in the interval [xi,xi + 1] and
localizes this interval. In it is the principle, it resembles a
mixture of Newton’s method and arithmetic coding.

4.2. Development and improvement of the
algorithm for the generation of
pseudorandom sequences based on
the calculation of the Taylor series

The operation of the algorithm can be represented as
follows:

Input: sequence_length
n: = 1
numerator_buffer = 0
denominator_buffer = 1
sequence[sequence_length]
Repeat sequence_length times
sequence_item = n * (n+1)
numerator_buffer = numerator_buffer *
sequence_item+denominator_buffer
denominator_buffer * = sequence_item

If (numerator_buffer “1” >= denominator_buffer:
sequence[i-th] = 1
numerator_buffer = (numerator_buffer “1” -
denominator_buffer
If numerator_buffer == 0:
denominator_buffer = 1

82

Otherwise:
sequence[i-th] = 0
numerator_buffer “ = 1
n+ = 2
Output: sequence

Let’s consider this algorithm in more detail. Let’s
assume that a segment of length is given. We iterate the
series. We check whether the iteration value belongs to the
interval [0.5, 1]. If it does, one is entered into the sequence,
and the segment is localized by subtracting the doubled
numerator from the denominator. If it is not, then zero is
entered into the sequence, and the segment is localized by
doubling the numerator.

Overall, this method does not ensure the exact
calculation of any type of Taylor series, but due to its
intricate structure, it can be used as a basis for generating
pseudorandom numbers. This is because it involves a series
of manipulations with non-periodic constants, which
empirically should enable the generation of pseudorandom
sequences based on them. Additionally, the technical aspect
of the algorithm’s operation, which includes the overflow of
some variables, should not be overlooked. Although this
deprives us of calculation precision, it introduces a certain
randomness. To verify the quality of the algorithm, let’s
analyze the results of testing the obtained sequences using
series (3) with the NIST statistical test suite:

Table 1
Test results of the algorithm for generating pseudorandom
sequences based on the calculation of the Taylor series using
the NIST statistical test package

Statistical Test p-value Pass Rate Status
Frequency 0.000199 7/10 Failed
Block Frequency 0.000000 10/10 Failed
Cumulative Sums 0.008879 8/10 Pass
Runs 0.000000 0/10 Failed
Longest Run 0.000000 1/10 Failed
Rank 0.000000 0/10 Failed
FFT 0.000000 0/10 Failed
Non-Overlapping
Template

0.000000 0/10 Failed

Overlapping Template 0.000000 2/10 Failed
Universal 0.017912 7/10 Failed
Approximate Entropy 0.000000 0/10 Failed
Random Excursions – 3/3 Pass
Random Excursions
Variant

– 3/3 Pass

Serial 0.066882 9/10 Pass
Linear Complexity 0.739918 10/10 Pass

As can be seen, in some key aspects, the obtained

sequence does not meet the statistical standards of
randomness. This is caused by technical limitations because,
at high n values, n(n+1) overflows the variable and starts to
acquire a certain pattern, losing the aspect of randomness.

This issue can be prevented by using libraries for
working with large numbers (for example, the GNU
Multiple Precision Arithmetic Library [58] or bn from
OpenSSL [59]) or by optimizing the algorithm itself, such as
by changing the series we iterate. To save computational
resources, we will focus on the latter option.

Let’s analyze the series iteration in the given algorithm.
For each iteration, the value of n(n+1) is calculated, which

transforms into n2+n. As can be seen, the value in the
denominator of the series increases quadratically, which is
the reason for the low speed and loss of randomness
characteristics in the later iterations of the algorithm. One
can try to simplify this series by removing one of the
multipliers and checking the statistical characteristics of the
sequence obtained in this case the n(n+1) contains two
multipliers: even and odd. The best option would be to leave
the odd multiplier because, in the case of an even one, the
first bit of the iteration value of the series will always be 0,
and when calculating the numerator, the obtained value will
be even, which represents a certain pattern of the
pseudorandom sequence.

As a result, we get the following improved algorithm:

Input: sequence_length
n: = 1
numerator_buffer = 0
denominator_buffer = 1
sequence[sequence_length]
Repeat sequence_length times
sequence_iteration = n
numerator_buffer = numerator_buffer *
sequence_iteration+denominator_buffer
denominator_buffer *= sequence_iteration
If (numerator_buffer “1) >= denominator_buffer:
sequence[i-th] = 1
numerator_buffer = (numerator_buffer “1” —
denominator_buffer
If numerator_buffer == 0:
denominator_buffer = 1
Otherwise:
sequence[i-th] = 0
numerator_buffer “=1

n+ = 2
Output: sequence[]

After testing the improved algorithm using the NIST

statistical test suite, we obtained the following results:
Analyzing the test results, we can conclude that the

algorithm generates sequences that meet the statistical
standards for pseudorandom sequences. Let’s move on to
comparing the performance between the basic version and
the improved one.

Comparison of the Improved Algorithm with the Basic
Version:

Technical Specifications of the Computer:
CPU: AMD Ryzen 5 4500U with Radeon Graphics (6) @
2.375GHz
OS: Linux
RAM: 16 GB
Sequence Generation Performance:
10,000 bits generation:
Basic: 0m0.003 seconds
Improved: 0m0.002 seconds
1,000,000 bits generation:
Basic: 0m0.105 seconds
Improved: 0m0.081 seconds

83

100,000,000 bits generation:
Basic: 0m4.401 seconds
Improved: 0m4.300 seconds

Table 2
Test results of an improved pseudorandom sequence
generation algorithm based on the calculation of the Taylor
series using the NIST statistical test suite

Statistical Test p-value Pass Rate Status
Frequency 0.122325 10/10 Pass
Block Frequency 0.739918 10/10 Pass
Cumulative Sums 0.066882 10/10 Pass
Runs 0.008879 10/10 Pass
Longest Run 0.534146 9/10 Pass
Rank 0.350485 10/10 Pass
FFT 0.534146 10/10 Pass
Non-Overlapping
Template

0.739918 10/10 Pass

Overlapping Template 0.066882 10/10 Pass
Universal 0.213309 10/10 Pass
Approximate Entropy 0.350485 9/10 Pass
Random Excursions – 2/2 Pass
Random Excursions
Variant

– 2/2 Pass

Serial 0.739918 10/10 Pass
Linear Complexity 0.534146 10/10 Pass

From these results, we see that the improved algorithm
consistently performs faster than the basic version at all
tested sequence lengths, demonstrating its efficiency. This
shows significant advantages, especially when the
algorithm scales to larger data sizes, suggesting that the
modifications made to simplify the series calculation
contribute to a reduction in computational time while
maintaining or enhancing the randomness quality of the
sequences.

As can be seen from the figure, at any sequence length,
the improved algorithm shows better performance, and
considering that it also passes the NIST statistical tests, this
indicates its significant advantage over the basic algorithm.
This improvement not only enhances efficiency but also
ensures that the algorithm maintains robust statistical
properties, making it highly effective for applications
requiring high-quality pseudorandom sequences.

Figure 1: Shows a comparison of the performance between the basic and improved algorithms. The blue color represents
the basic version, and the orange color represents the improved version

5. Conclusion
The main conclusions of our research include:

Algorithm Development: A new algorithm based
on the Taylor series has been proposed that provides the
generation of pseudorandom sequences. This approach
is based on the numerical properties of the natural
logarithm of number 2 (ln 2), which is mathematically
stable and accurate. Using ln 2 to initialize the generator
allows achieving a high degree of randomness in the
created sequences.

Algorithm Analysis: A detailed analysis of the
developed algorithm was conducted, which includes
checking its statistical characteristics and testing for
compliance with NIST requirements. Testing showed
that the algorithm could not initially provide a uniform

distribution of pseudorandom numbers, leading to its
improvement.

Algorithm Improvement: The basic algorithm has
been improved, which provides better performance and
improved statistical characteristics of the generated
sequences. Optimization of the algorithm allows for
significantly reducing the computational complexity,
making it effective for use in real-world applications
where computation time is a critical parameter.

The results of this research are an important step
towards improving the reliability and quality of
pseudorandom number generators. The proposed
approach may find wide application in various fields
such as cryptography, numerical modeling, simulations,
and other numerical methods that require high-quality
randomness and computational efficiency.

84

Furthermore, the improved algorithm proposed in this
paper can be used to create new generators or to
enhance existing solutions, for example through
optimization of calculations or application of new
generation methods. Future research may focus on
expanding the algorithm to other mathematical
constants, which may further improve the quality of
pseudorandom numbers. It is also possible to create an
algorithm based on formula (5) using intervals (for
example, as in Hamming matrices) or using other Taylor
series for generating new pseudorandom sequences.
Using such methods opens new horizons for the
development of number theory and computational
mathematics, providing powerful tools for solving a
wide range of tasks in various fields of science and
technology, especially for information protection.

References
[1] E. Alkan, A Comparative Study on Pseudo

Random Number Generators in IoT devices, Delft
University of Technology, Bachelor Seminar of
Computer Science and Engineering (2021).

[2] T. Kietzmann, M. Wählisch, A Guideline on
Pseudorandom Number Generation (PRNG) in the
IoT, ACM Comput. Surv. 54 (2022) 1–38. doi:
10.1145/3453159.

[3] M. Mandrona, V. Maksymovych, Comparative
Analysis of Pseudorandom Bit Sequence
Generators, J. Automation Inf. Sci. 49(3) (2017) 78–
86. doi: 10.1615/JAutomatInfScien.v49.i3.90.

[4] G. Fishman, Pseudorandom Number Generation,
Discrete-Event Simulation, Springer Series in
Operations Research, (2001). doi: 10.1007/978-1-
4757-3552-9_9.

[5] M. François, D. Defour, P. Berthomé, A Pseudo-
Random Bit Generator Based on Three Chaotic
Logistic Maps and IEEE 754-2008 Floating-Point
Arithmetic, Theory and Applications of Models of
Computation, TAMC 2014, LNCS 8402, (2014). doi:
10.1007/978-3-319-06089-7_16.

[6] E. Barker, L. Feldman, G. Witte, Recommendation
for Random Number Generation Using
Deterministic Random Bit Generators, ITL
Bulletin, National Institute of Standards and
Technology, Gaithersburg, MD (2015).

[7] L. Shujun, M. Xuanqin, C. Yuanlong, Pseudo-
random Bit Generator Based on Couple Chaotic
Systems and Its Applications in Stream-Cipher
Cryptography, Progress in Cryptology—
INDOCRYPT 2001, LNCS 2247 (2001). doi:
10.1007/3-540-45311-3_30.

[8] V. Buriachok, et al., Invasion Detection Model
using Two-Stage Criterion of Detection of
Network Anomalies, in: Cybersecurity Providing

in Information and Telecommunication Systems,
vol. 2746 (2020) 23–32.

[9] V. Sokolov, P. Skladannyi, H. Hulak, Stability
Verification of Self-Organized Wireless Networks
with Block Encryption, in: 5th International
Workshop on Computer Modeling and Intelligent
Systems, vol. 3137 (2022) 227–237.

[10] M. TajDini, et al., Brainwave-based
Authentication using Features Fusion, Comput.
Secur. 129, no. 103198 (2023) 1–11. doi:
10.1016/j.cose.2023.103198.

[11] Z. B. Hu, et al., Authentication System by Human
Brainwaves Using Machine Learning and Artificial
Intelligence, in: Advances in Computer Science for
Engineering and Education IV (2021) 374–388. doi:
10.1007/978-3-030-80472-5_31.

[12] V. Maksymovych, M. Mandrona, O. Harasym-
chuk, Dosimetric Detector Hardware Simulation
Model Based on Modified Additive Fibonacci
Generator, in: Advances in Computer Science for
Engineering and Education II, Springer
International Publishing, Cham (2020) 162–171.

[13] L. Baldanzi, et al., Cryptographically Secure
Pseudo-Random Number Generator IP-Core Based
on SHA2 Algorithm, Sensors 20(7) (2020). doi:
10.3390/s20071869.

[14] V. Maksymovych, et al., Simulation of
Authentication in Information-Processing
Electronic Devices Based on Poisson Pulse
Sequence Generators, Electronics (Basel) 11 (2022).
doi: 10.3390/electronics11132039.

[15] V. Maksymovych, et al., Development of Additive
Fibonacci Generators with Improved
Characteristics for Cybersecurity Needs, Appl. Sci.
(Basel) 12 (2022) 1519. doi: 10.3390/app12031519.

[16] A. Orúe, et al., A Review of Cryptographically
Secure PRNGs in Constrained Devices for the IoT,
SOCO 2017, ICEUTE 2017, CISIS 2017:
International Joint Conference SOCO’17-CISIS’17-
ICEUTE’17 649 (2018). doi: 10.1007/978-3-319-
67180-2_65.

[17] L. Baldanzi, et al., Cryptographically Secure
Pseudo-Random Number Generator IP-Core Based
on SHA2 Algorithm, Sensors 20(7) (2020) 1869.
doi: 10.3390/s20071869.

[18] E. Almaraz Luengo, A Brief and Understandable
Guide to Pseudo-Random Number Generators and
Specific Models for Security, Statistic Surveys 16
(2022) 137–181.

[19] E. Faure, et al., Method for Generating
Pseudorandom Sequence of Permutations Based
on Linear Congruential Generator, CMIS-2022:
The Fifth International Workshop on Computer
Modeling and Intelligent Systems (2022).

85

[20] D. Lehmer, Mathematical Methods in Large-Scale
Computing Units, Second Symposium on Large-
Scale Digital Calculating Machinery (1949) 141–
146.

[21] R. Katti, R. Kavasseri, V. Sai, Pseudorandom Bit
Generation Using Coupled Congruential
Generators, IEEE Transactions on Circuits and
Systems II: Express Briefs 57(3) (2010) 203–207.
doi: 10.1109/TCSII.2010.2041813.

[22] G. Jonatan, et al., Gaussian Pseudo-Random
Number Generator using LFSR’s Rotation and
Split, International Symposium on Electronics and
Smart Devices (ISESD) (2021) 1–5. doi:
10.1109/ISESD53023.2021.9501694.

[23] S. Ichikawa, Pseudo-Random Number Generation
by Staggered Sampling of LFSR, Eleventh
International Symposium on Computing and
Networking (2023) 134–140, doi:
10.1109/CANDAR60563.2023.00025.

[24] V. Maksymovych, O. Harasymchuk, M. Shabatura,
Modified Generators of Poisson Pulse Sequences
Based on Linear Feedback Shift Registers,
Advances in Intelligent Systems and Computing,
AISC 1247 (2021) 317–326.

[25] C. Nouar, Z. Guennoun, A Pseudo-Random
Number Generator Using Double Pendulum, Appl.
Math. Inf. Sci. 14 (2020) 977–984. doi:
10.18576/amis/ 140604.

[26] A. Jagannatam, Mersenne Twister—A Pseudo
Random Number Generator and its Variants,
Technical report, Department of Electrical
Computer Engineering, George Mason University
(2008).

[27] V. Maksymovych, et al., A New Approach to the
Development of Additive Fibonacci Generators
Based on Prime Numbers, Electronics
(Switzerland) 10(23) (2021) 2912. doi:
10.3390/electronics10232912.

[28] V. Maksymovych, et al., Hardware Modified
Additive Fibonacci Generators Using Prime
Numbers, Advances in Computer Science for
Engineering and Education VI, ICCSEEA 2023,
LNDECT 181 (2023). doi: 10.1007/978-3-031-
36118-0_44.

[29] S. Bilan, M. Bilan, S. Bilan, Novel pseudo-Random
Sequence of Numbers Generator Based on Cellular
Automata, Collection Inf. Technol. Secur. 3(1)
(2015) 38–50. doi: 10.20535/2411-1031.2015.
3.1.57710.

[30] I. Hanouti, et al., A Lightweight Pseudo-Random
Number Generator Based on a Robust Chaotic
Map, Fourth International Conference On
Intelligent Computing in Data Sciences (ICDS)
(2020) 1–6. doi: 10.1109/ICDS50568. 2020.9268715.

[31] Z. Chen, Z. Niu, A. Winterhof, Arithmetic
Crosscorrelation of Pseudorandom Binary
Sequences of Coprime Periods, IEEE Transactions
on Information Theory 68(11) (2022) 7538–7544.
doi: 10.1109/TIT.2022.3184176.

[32] A. Zamula, A. Semchenko, Pseudo-Random
Number Generators Based on Discrete Logarithm,
Technology Audit and Production Reserves
5(1(13)) (2013) 28–31. doi: 10.15587/2312-
8372.2013.18390.

[33] R. Gennaro, An Improved Pseudo-Random
Generator Based on Discrete Log, Advances in
Cryptology — CRYPTO 2000, CRYPTO 2000, LNCS
1880 (2000). doi: 10.1007/3-540-44598-6_29.

[34] C. Lara-Nino, A. Diaz-Perez, M. Morales-
Sandoval, Elliptic Curve Lightweight
Cryptography: A Survey, IEEE Access 6 (2018)
72514–72550. doi: 10.1109/ACCESS.2018.2881444.

[35] D. Bailey, P. Borwein, S. Plouffe, On The Rapid
Computation of Various Polylogarithmic
Constants (1997).

[36] J. Napier, Mirifici Logarithmorum Canonis
Descriptio (1614).

[37] C. Boyer, A History of Mathematics, Wiley (1991).
[38] E. Maor, e: The Story of a Number, Princeton

University Press (1994).
[39] T. Apostol, Mathematical Analysis, Addison-

Wesley (1974).
[40] C. Lanczos, Applied Analysis, Dover Publications

(1988).
[41] W. Press, et al., Numerical Recipes: The Art of

Scientific Computing, Cambridge University Press
(2007).

[42] D. Sweeney, On the Computation of Euler’s
Constant (1962).

[43] J. Steward, Calculus, Brooks Cole (2002).
[44] D. Bailey, S. Plouffe, Recognizing Numerical

Constants (1995).
[45] X. Gourdon, P. Sebah, N-th Digit Computation

(2003).
[46] X. Gourdon, P. Sebah, The Logarithmic Constant:

log 2 (2004).
[47] William Echols. URL:

https://williamechols.com/#ln 2
[48] Number World. URL:

http://www.numberworld.org/y-
cruncher/records.htm

[49] Number World. URL:
http://www.numberworld.org/y-cruncher/

[50] Number World. URL:
http://www.numberworld.org/y-
cruncher/#Features

[51] Number World. URL:
http://www.numberworld.org/y-
cruncher/#Records

86

[52] NIST. URL:
https://csrc.nist.gov/projects/random-bit-
generation/documentation-and-software

[53] NIST SP 800-22, A Statistical Test Suite for
Random and Pseudorandom Number Generators
for Cryptographic Applications.

[54] O. Garasimchuk, et al., A Study of the
Characteristics of the Fibonacci Modified Additive
Generator with a Delay, J. Autom. Inf. Sci. 48(11)
(2016) 76–82. doi: 10.1615/JAutomatInfScien.
v48.i11.70.

[55] V. Maksymovych, et al., Investigating the
Statistical Characteristics of Poisson Pulse
Sequences Generators Constructed in Different
Ways, J. Autom. Inf. Sci. 49(10) (2017) 11–19.

[56] V. Maksymovych, O. Harasymchuk, I. Opirskyy,
The Designing and Research of Generators of
Poisson Pulse Sequences on Base of Fibonacci
Modified Additive Generator, International
Conference on Theory and Applications of Fuzzy
Systems and Soft Computing, ICCSEEA 2018:
Advances in Intelligent Systems and Computing
754 (2019) 43–53. doi: 10.1007/978-3-319-91008-
6_5.

[57] B. Susanti, J. Jimmy, M. Ardyani, Evaluation with
NIST Statistical Test on Pseudorandom Number
Generators based on DMP-80 and DMP-128, 5th

International Seminar on Research of Information
Technology and Intelligent Systems (ISRITI) (2022)
166–171. doi: 10.1109/ISRITI56927.2022.10053041.

[58] GNU Multiple Precision Arithmetic Library. URL:
https://gmplib.org/

[59] OpenSSL Documentation for the bn Library. URL:
https://www.openssl.org/docs/man1.0.2/man
3/bn.html

