
79 

Pseudorandom sequence generator 
based on the computation of ln 2⋆ 

Ivan Opirskyy1,∗,†, Oleh Harasymchuk1,†, Olha Mykhaylova1,†, Oleksii Hrushkovskyi1,†  
and Pavlo Kozak1,† 

1 Lviv Polytechnic National University, 12 Stepana Bandery str., 79000 Lviv, Ukraine 
 

Abstract 
This paper discusses creating a pseudorandom sequence generator using the natural logarithm of the 
number 2 (ln 2) calculator. Pseudorandom sequence generators are key elements in cryptography, 
modeling, and numerical methods, where high-quality randomness is required. Traditionally, various 
mathematical algorithms are used for this purpose, but we propose a new approach based on the numerical 
properties of ln 2. The paper describes in detail the method of computing ln 2 using the Taylor series and 
demonstrates how these calculations can be integrated into a pseudorandom sequence generator. The main 
idea is to use the ln 2 approximation to initialize the generator, allowing for the creation of number 
sequences with a high degree of randomness. The use of ln 2, known for its mathematical stability and 
accuracy, opens new horizons for generating numbers that are important for many scientific and 
engineering applications. The presented test results show that the proposed method provides uniform 
distribution and passes the standard NIST statistical tests. This demonstrates the potential of using 
mathematical constants and their numerical computations to improve the characteristics of pseudorandom 
sequence generators. Our approach offers the possibility of creating generators with improved 
characteristics without significantly increasing computational complexity. Additionally, we discuss 
potential directions for improving the generator, including optimizing the algorithm and expanding to other 
mathematical constants. This approach not only enhances the quality of pseudorandom sequences but also 
provides new tools for research in number theory and computational mathematics. An important aspect is 
that the proposed method provides high generation speed, making it attractive for use in real-world 
applications where computation time is a critical parameter. Thus, our generator may find wide application 
in various fields, including cryptographic protocols, simulation algorithms, and other numerical methods 
that require high-quality randomness and computational efficiency. 
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1. Introduction 
Pseudorandom Number Generators (PRNGs) and 
Pseudorandom Sequence Generators (PSGs) are key 
elements in many scientific and technical fields. They play 
a crucial role in modern technologies, providing the basis 
for numerous applications in computer science, 
cryptography, statistical sampling, modeling, and 
simulations [1–7]. These generators enable the creation of 
number sequences that, while deterministic, appear random, 
which is critically important for ensuring data security, 
model accuracy, and algorithm reliability. In a world where 
information is becoming increasingly valuable, 
understanding and using PRNGs and PSGs is essential for 
developing effective solutions in various fields, from finance 
to gaming. Thus, the importance of pseudorandom number 

 

CQPC-2024: Classic, Quantum, and Post-Quantum Cryptography, August 
6, 2024, Kyiv, Ukraine 
∗ Corresponding author. 
† These authors contributed equally. 

 ivan.r.opirskyi@lpnu.ua (I. Opirskyi); garasymchuk@ukr.net 
(O. Harasymchuk); mykhaylovaolga1@gmail.com (O. Mykhaylova); 
oleksii.hrushkovskyi.kb.2022@lpnu.ua (O. Hrushkovskyi); 
pavlo.kozak.kb.2022@lpnu.ua (P. Kozak) 

generators is hard to overestimate, as they provide the 
foundation for innovation and development in many sectors 
[8]. Particularly noteworthy is their importance in 
cybersecurity, where they are also a key element, and are 
used in solving various tasks, namely for data encryption 
[9], authentication [10, 11], key generation, digital 
signature creation algorithms, and in testing and evaluating 
security [12–18]. Therefore, developers of such generators 
face high demands for the quality of the output sequences: 
unpredictability, statistical independence, cryptographic 
robustness, and maximum generation speed. Ensuring a 
high quality of randomness is an important task, as it affects 
the reliability and accuracy of many algorithms and systems 
where the generated sequences will be applied. 
Traditionally, various mathematical algorithms and 
methods are used to generate pseudorandom numbers, 
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including the linear congruential method [19–21], shift 
register generators [22–24], the Lagrange method [25], 
Mersenne Twister algorithms [26], and others [27–30]. 
However, existing approaches do not always meet the 
requirements for uniform distribution and passing 
statistical tests, so researchers continuously search for new 
methods, ways, and algorithms to generate pseudorandom 
sequences that meet the growing demands for their quality. 

2. Problem statement 
The research problem involves seeking a new approach to 
generating pseudorandom numbers that would ensure high-
quality randomness and computational efficiency. One such 
approach is the use of the numerical properties of 
mathematical constants [31]. The natural logarithm of 
number 2 (ln 2) has a range of unique properties that make 
it promising for use in generating pseudorandom numbers. 
Existing studies demonstrate the effectiveness of using 
logarithms of mathematical constants in cryptography and 
numerical methods [32–34], but the integration of ln 2 into 
pseudorandom number generators remains insufficiently 
explored. 

This paper aims to develop and test a pseudorandom 
number generator based on the computation of ln 2 using 
the Taylor series. The research tasks include describing the 
methodology for computing ln 2, integrating these 
computations into a pseudorandom number generator, 
conducting testing, assessing the quality of the generated 
sequences, and analyzing the results. 

Lastly, this solution offers robust change and feature 
management capabilities. This means that it can easily adapt 
to evolving business needs, with the ability to incorporate 
new features and make necessary changes in a timely and 
efficient manner. This flexibility ensures the solution 
remains relevant and continues to deliver value over time 
[35]. 

3. Research analysis 
Historically, the concept of logarithms was introduced in 
the 17th century by the Scottish mathematician John Napier, 
who first developed logarithmic tables [36]. His work 
significantly simplified the process of multiplying and 
dividing large numbers, which was extremely useful for 
astronomy, navigation, and other sciences. Natural 
logarithms, based on the number 𝑒 (approximately equal to 
2.71828), appeared later and became important in 
mathematical analysis thanks to the works of Leibniz and 
Euler [37, 38]. 

One of the classic methods for computing 𝑒 is using the 
Taylor series. For example, one can use the expansion of the 
logarithmic function into a Taylor series around 1: 

. (1) 

For x = 1, we get: 

. (2) 

This series converges relatively slowly, so more efficient 
methods are typically used for practical calculations [39]. 
Another approach is based on numerical integration 
methods. The natural logarithm can be defined as a definite 
integral: 

. (3) 

For numerical computation of this integral, methods 
such as the rectangle (midpoint), trapezoidal, or Simpson’s 
rule are applied, which allows for obtaining more precise 
values [40]. 

One of the most powerful methods of computing  
Ln 2 is the Newton-Raphson method, which is used for 

finding the roots of equations and can be adapted for 
computing logarithms [41]. Starting with the equation 
ey = 2, where y = ln 2, we can formulate a function 
f(x) = ex – 2 and apply the Newton-Raphson method to solve 
for 

. (4) 

A clear downside is that the use of Euler’s constant 𝑒 for 
computation is required, which itself is transcendental and 
cannot be precisely calculated. Therefore, it is necessary to 
calculate the constant itself simultaneously, which increases 
the number of operations. On the other hand, in such a case, 
one iteration can generate a much larger sequence of 
numbers than other algorithms. 

With the advent of computers, an obvious application 
became the computation of mathematical constants. In one 
of the first works on this topic [42], the following formula 
was used to compute ln 2: 

. 
(5) 

This represents a series of transformations over the 
classical Taylor series expansion [43]. In 1995, there was an 
unprecedented breakthrough in the calculation of constants. 
French mathematician Simon Plouffe discovered a series 
that allowed the computation of the ith hexadecimal digit of 
π [44]. The formula is as follows: 

. (6) 

Later, other variations of this formula were found for 
other constants [35], among which we are, of course, 
interested in ln(2), which is represented by the formula: 

. 
(7) 

Also, a representative of this type of formula is the 
aforementioned formula (5). These formulas have allowed 
for the effective calculation of constants starting from any 
hexadecimal number [45], ensuring low resource 
consumption, but in practice, the approximation to the exact 
result occurs slowly. Some formulas ensure the accuracy of 
calculations at the expense of using more computer 
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resources. For example, in 1997 a record of 10,079,926 digits 
was set [46], which compared to the results of 1962 [42], i.e., 
3863 digits, is a significant breakthrough. This was achieved 
using the Mercator series [47], and in this case, by the 
formula: 

, (8) 
where 

. 
(9) 

Over time, the basic principle of calculation has not 
changed, as the use of such formulas allows obtaining 
precise values, although it requires a large amount of 
computation. For example, the record for the number of 
digits after the decimal was set in 2021 by William Ekols [48] 
and represents 1.5·1012 digits after the comma. To calculate 
such several digits, it took 98.9 days [49], and for the 
correctness check—61.7. And this is on a machine that has 
48 cores and 256 GB of RAM. 

Also, do not forget the software that was used to 
calculate such several digits. This software is called y-
cruncher and was created in 2009 [50]. The main advantage 
of this software is its optimization and maximum efficiency 
in resource use thanks to various techniques [51]. For the 
calculation, this formula is used: 

. (10) 

The most recent record as of now for computing the 
number of digits after the decimal is 3·1012 digits after the 
comma, set by Jordan Ranous on February 12, 2024 [52]. A 
machine with 2 × Intel Xeon Platinum 8460H (a total of 80 
cores) and 512 GB of RAM was used. The computation took 
42.7 days, while the correctness check took 58.3 days. 

In conclusion, it can be noted that in calculating ln(2), 
we face two extremes: formulas that allow efficiently, in 
terms of resource use, to calculate this constant but for 
accuracy lose their speed or those that use a large number 
of resources. Ideally, finding a compromise would be 
optimal, but when we face the task of precise calculation of 
ln(2), this option does not exist. Accordingly, by shifting the 
focus from precise calculation of ln(2) to using knowledge 
about this constant for generating pseudorandom sequences, 
we can achieve a compromise and obtain the desired result. 

In this paper, we will take a detailed look at using the 
Taylor series for generating pseudorandom sequences and 
demonstrate an algorithm that allows efficiently obtaining 
binary random sequences of great length that pass NIST 
statistical tests through which the quality of the generated 
pseudorandom sequence can be best assessed [53–57]. 

4. The main part 

4.1. Analysis of the Taylor series for ln 2 

As mentioned earlier, the constant ln(2) is decomposed into 
the following Taylor series: 

. (11) 
After performing a series of operations, we obtain such 

a definition of the series: 

. (12) 
That has the general form: 

. (13) 

Let’s move on to the binary representation of ln 2. In 
essence, it is: 

, 
(14) 

where xi is the value of the ith bits. 
However, it should be noted here that we are not 

interested in calculating the exact value in its mathematical 
essence, we are interested in the non-periodicity of the bit 
sequence, what it contains, respectively, the operations of 
multiplication/division by 2, offsets, adjustments at a 
random place in the sequence, etc. affect the non-periodicity 
of the sequence and can be used. 

Accordingly, the problem can be reduced to finding a 
way to obtain a sequence of bits from (13). 

Let’s consider one way to solve this problem:  
The binary number system includes only two values: 0 

and 1, respectively, they can be used for logical “Yes” or 
“No”. 

The proposed method determines whether a specific 
iteration of formula (13) is in the interval [xi,xi + 1] and 
localizes this interval. In it is the principle, it resembles a 
mixture of Newton’s method and arithmetic coding. 

4.2. Development and improvement of the 
algorithm for the generation of 
pseudorandom sequences based on 
the calculation of the Taylor series 

The operation of the algorithm can be represented as 
follows: 
 
Input: sequence_length 
n: = 1 
numerator_buffer = 0 
denominator_buffer = 1 
sequence[sequence_length] 
Repeat sequence_length times 
sequence_item = n * (n+1) 
numerator_buffer = numerator_buffer * 
sequence_item+denominator_buffer 
denominator_buffer * = sequence_item 
 
If (numerator_buffer “1” >= denominator_buffer: 
sequence[i-th] = 1 
numerator_buffer = (numerator_buffer “1” - 
denominator_buffer 
If numerator_buffer == 0: 
denominator_buffer = 1 
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Otherwise: 
sequence[i-th] = 0 
numerator_buffer “ = 1 
n+ = 2 
Output: sequence 
 

Let’s consider this algorithm in more detail. Let’s 
assume that a segment of length is given. We iterate the 
series. We check whether the iteration value belongs to the 
interval [0.5, 1]. If it does, one is entered into the sequence, 
and the segment is localized by subtracting the doubled 
numerator from the denominator. If it is not, then zero is 
entered into the sequence, and the segment is localized by 
doubling the numerator.  

Overall, this method does not ensure the exact 
calculation of any type of Taylor series, but due to its 
intricate structure, it can be used as a basis for generating 
pseudorandom numbers. This is because it involves a series 
of manipulations with non-periodic constants, which 
empirically should enable the generation of pseudorandom 
sequences based on them. Additionally, the technical aspect 
of the algorithm’s operation, which includes the overflow of 
some variables, should not be overlooked. Although this 
deprives us of calculation precision, it introduces a certain 
randomness. To verify the quality of the algorithm, let’s 
analyze the results of testing the obtained sequences using 
series (3) with the NIST statistical test suite: 

Table 1 
Test results of the algorithm for generating pseudorandom 
sequences based on the calculation of the Taylor series using 
the NIST statistical test package 

Statistical Test p-value Pass Rate Status 
Frequency 0.000199 7/10 Failed 
Block Frequency 0.000000 10/10 Failed 
Cumulative Sums 0.008879 8/10 Pass 
Runs 0.000000 0/10 Failed 
Longest Run 0.000000 1/10 Failed 
Rank 0.000000 0/10 Failed 
FFT 0.000000 0/10 Failed 
Non-Overlapping 
Template 

0.000000 0/10 Failed 

Overlapping Template 0.000000 2/10 Failed 
Universal 0.017912 7/10 Failed 
Approximate Entropy 0.000000 0/10 Failed 
Random Excursions – 3/3 Pass 
Random Excursions 
Variant 

– 3/3 Pass 

Serial 0.066882 9/10 Pass 
Linear Complexity 0.739918 10/10 Pass 

 
As can be seen, in some key aspects, the obtained 

sequence does not meet the statistical standards of 
randomness. This is caused by technical limitations because, 
at high n values, n(n+1) overflows the variable and starts to 
acquire a certain pattern, losing the aspect of randomness. 

This issue can be prevented by using libraries for 
working with large numbers (for example, the GNU 
Multiple Precision Arithmetic Library [58] or bn from 
OpenSSL [59]) or by optimizing the algorithm itself, such as 
by changing the series we iterate. To save computational 
resources, we will focus on the latter option. 

Let’s analyze the series iteration in the given algorithm. 
For each iteration, the value of n(n+1) is calculated, which 

transforms into n2+n. As can be seen, the value in the 
denominator of the series increases quadratically, which is 
the reason for the low speed and loss of randomness 
characteristics in the later iterations of the algorithm. One 
can try to simplify this series by removing one of the 
multipliers and checking the statistical characteristics of the 
sequence obtained in this case the n(n+1) contains two 
multipliers: even and odd. The best option would be to leave 
the odd multiplier because, in the case of an even one, the 
first bit of the iteration value of the series will always be 0, 
and when calculating the numerator, the obtained value will 
be even, which represents a certain pattern of the 
pseudorandom sequence. 

As a result, we get the following improved algorithm: 
 

Input: sequence_length 
n: = 1 
numerator_buffer = 0 
denominator_buffer = 1 
sequence[sequence_length] 
Repeat sequence_length times 
sequence_iteration = n 
numerator_buffer = numerator_buffer * 
sequence_iteration+denominator_buffer 
denominator_buffer *= sequence_iteration 
If (numerator_buffer “1) >= denominator_buffer: 
sequence[i-th] = 1 
numerator_buffer = (numerator_buffer “1” — 
denominator_buffer 
If numerator_buffer == 0: 
denominator_buffer = 1 
Otherwise: 
sequence[i-th] = 0 
numerator_buffer “=1 
 
n+ = 2 
Output: sequence[] 

 
After testing the improved algorithm using the NIST 

statistical test suite, we obtained the following results: 
Analyzing the test results, we can conclude that the 

algorithm generates sequences that meet the statistical 
standards for pseudorandom sequences. Let’s move on to 
comparing the performance between the basic version and 
the improved one. 

Comparison of the Improved Algorithm with the Basic 
Version: 

 
Technical Specifications of the Computer: 
CPU: AMD Ryzen 5 4500U with Radeon Graphics (6) @ 
2.375GHz 
OS: Linux 
RAM: 16 GB 
Sequence Generation Performance: 
10,000 bits generation: 
Basic: 0m0.003 seconds 
Improved: 0m0.002 seconds 
1,000,000 bits generation: 
Basic: 0m0.105 seconds 
Improved: 0m0.081 seconds 
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100,000,000 bits generation: 
Basic: 0m4.401 seconds 
Improved: 0m4.300 seconds 

Table 2 
Test results of an improved pseudorandom sequence 
generation algorithm based on the calculation of the Taylor 
series using the NIST statistical test suite 

Statistical Test p-value Pass Rate Status 
Frequency 0.122325 10/10 Pass 
Block Frequency 0.739918     10/10 Pass 
Cumulative Sums 0.066882 10/10 Pass 
Runs 0.008879 10/10 Pass 
Longest Run 0.534146 9/10 Pass 
Rank 0.350485 10/10 Pass 
FFT 0.534146 10/10 Pass 
Non-Overlapping 
Template 

0.739918 10/10 Pass 

Overlapping Template 0.066882 10/10 Pass 
Universal 0.213309 10/10 Pass 
Approximate Entropy 0.350485 9/10 Pass 
Random Excursions – 2/2 Pass 
Random Excursions 
Variant 

– 2/2 Pass 

Serial 0.739918 10/10 Pass 
Linear Complexity 0.534146 10/10 Pass 

From these results, we see that the improved algorithm 
consistently performs faster than the basic version at all 
tested sequence lengths, demonstrating its efficiency. This 
shows significant advantages, especially when the 
algorithm scales to larger data sizes, suggesting that the 
modifications made to simplify the series calculation 
contribute to a reduction in computational time while 
maintaining or enhancing the randomness quality of the 
sequences. 

As can be seen from the figure, at any sequence length, 
the improved algorithm shows better performance, and 
considering that it also passes the NIST statistical tests, this 
indicates its significant advantage over the basic algorithm. 
This improvement not only enhances efficiency but also 
ensures that the algorithm maintains robust statistical 
properties, making it highly effective for applications 
requiring high-quality pseudorandom sequences. 

 

 
Figure 1: Shows a comparison of the performance between the basic and improved algorithms. The blue color represents 
the basic version, and the orange color represents the improved version 

5. Conclusion 
The main conclusions of our research include: 

Algorithm Development: A new algorithm based 
on the Taylor series has been proposed that provides the 
generation of pseudorandom sequences. This approach 
is based on the numerical properties of the natural 
logarithm of number 2 (ln 2), which is mathematically 
stable and accurate. Using ln 2 to initialize the generator 
allows achieving a high degree of randomness in the 
created sequences. 

Algorithm Analysis: A detailed analysis of the 
developed algorithm was conducted, which includes 
checking its statistical characteristics and testing for 
compliance with NIST requirements. Testing showed 
that the algorithm could not initially provide a uniform 

distribution of pseudorandom numbers, leading to its 
improvement. 

Algorithm Improvement: The basic algorithm has 
been improved, which provides better performance and 
improved statistical characteristics of the generated 
sequences. Optimization of the algorithm allows for 
significantly reducing the computational complexity, 
making it effective for use in real-world applications 
where computation time is a critical parameter. 

The results of this research are an important step 
towards improving the reliability and quality of 
pseudorandom number generators. The proposed 
approach may find wide application in various fields 
such as cryptography, numerical modeling, simulations, 
and other numerical methods that require high-quality 
randomness and computational efficiency. 
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Furthermore, the improved algorithm proposed in this 
paper can be used to create new generators or to 
enhance existing solutions, for example through 
optimization of calculations or application of new 
generation methods. Future research may focus on 
expanding the algorithm to other mathematical 
constants, which may further improve the quality of 
pseudorandom numbers. It is also possible to create an 
algorithm based on formula (5) using intervals (for 
example, as in Hamming matrices) or using other Taylor 
series for generating new pseudorandom sequences. 
Using such methods opens new horizons for the 
development of number theory and computational 
mathematics, providing powerful tools for solving a 
wide range of tasks in various fields of science and 
technology, especially for information protection. 
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