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Abstract 
Zero-knowledge proofs (ZKPs) have emerged as a promising solution to address the scalability challenges 
in modern blockchain systems. This study proposes a methodology for generating and verifying ZKPs to 
ensure the computational integrity of cryptographic hashing, specifically focusing on the SHA-256 
algorithm. By leveraging the Plonky2 framework, which implements the PLONK protocol with the FRI 
commitment scheme, we demonstrate the efficiency and scalability of our approach for both random data 
and real data blocks from the NEAR blockchain. The experimental results show consistent performance 
across different data sizes and types, with the time required for proof generation and verification remaining 
within acceptable limits. The generated circuits and proofs maintain manageable sizes, even for real-world 
data blocks with a large number of transactions. The proposed methodology contributes to the development 
of secure and trustworthy blockchain systems, where the integrity of computations can be verified without 
revealing the underlying data. Further research is needed to assess the applicability of the approach to other 
cryptographic primitives and to evaluate its performance in more complex real-world scenarios. 
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1. Introduction 
The advent of blockchain technology has revolutionized 
various industries, offering a decentralized and secure 
approach to data management and transactions [1]. 
However, as blockchain networks grow in size and 
complexity, scalability has emerged as a critical challenge. 
The increasing number of transactions and users on 
blockchain networks has led to slower transaction 
processing times and higher fees, hindering the widespread 
adoption of this technology [2]. Addressing the scalability 
issue is crucial for the success and practical applicability of 
modern blockchain projects [3–5]. 

Zero-knowledge Proofs (ZKPs) have gained significant 
attention as a potential solution to the scalability problem 
in blockchain networks [6, 7]. ZKPs allow one party (the 
prover) to prove to another party (the verifier) that a given 
statement is true without revealing any additional 
information beyond the validity of the statement itself 
[8, 9]. By enabling the verification of transactions without 
disclosing sensitive data, ZKPs can significantly reduce the 
computational burden on blockchain nodes and improve the 
overall efficiency of the network [7, 10]. The integration of 
ZKPs into blockchain systems has the potential to enhance 
privacy, security, and scalability, making them a promising 
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tool for addressing the limitations of current blockchain 
implementations [6, 11]. 

The primary objective of this research is to investigate the 
application of zero-knowledge proofs for ensuring the 
computational integrity of cryptographic hashing in 
blockchain systems. We aim to develop and evaluate a 
methodology for generating and verifying ZKPs using the 
Plonky2 framework, a state-of-the-art ZKP toolkit. The main 
tasks of this study include: 

1. Generating ZKPs for cryptographic hashing of 
random data using Plonky2. 

2. Testing the generated ZKPs to assess their 
correctness and efficiency. 

3. Applying the developed methodology to real data 
blocks from the NEAR blockchain [12]. 

4. Analyzing the performance and scalability of the 
proposed approach for both random and real-
world data. 

By addressing these tasks, we seek to contribute to the 
development of efficient and scalable solutions for ensuring 
the integrity of computations in blockchain systems, 
ultimately supporting the broader adoption of this 
transformative technology. 
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2. Background 
ZKPs are cryptographic protocols that allow a prover to 
convince a verifier of the validity of a statement without 
revealing any information beyond the truth of the statement 
itself [13]. The concept of ZKPs was first introduced by 
Goldwasser, Micali, and Rackoff in their seminal paper “The 
Knowledge Complexity of Interactive Proof Systems” [8]. A 
ZKP must satisfy three key properties: 

1. Completeness: If the statement is true, an honest 
prover can convince an honest verifier of its 
validity. 

2. Soundness: If the statement is false, no cheating 
prover can convince an honest verifier that it is 
true, except with a small probability. 

3. Zero-knowledge: The verifier learns nothing 
beyond the truth of the statement. 

Mathematically, a ZKP for a statement x ∈ L can be 
represented as an interactive protocol between a prover P 
and a verifier V, where L is an NP language. The prover P 
aims to convince the verifier V that x ∈ L without revealing 
any additional information. The protocol is described as 
follows [14]: 
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where (P,V)(x) denotes the output of the interaction 
between P and V on input x. 

The construction of ZKPs relies on several 
cryptographic primitives and techniques, such as 
commitment schemes, challenge-response protocols, and 
hash functions [15]. A common approach to designing ZKPs 
is the Sigma protocol, which consists of three moves: 
commitment, challenge, and response [16, 17]. 

1. Commitment: The prover sends a commitment to 
the verifier, which binds the prover to a specific 
value without revealing it. 

2. Challenge: The verifier sends a random challenge 
to the prover. 

3. Response: The prover computes a response based 
on the commitment, challenge, and private 
information related to the statement being proved. 

The verifier then checks the validity of the response and 
accepts or rejects the proof accordingly. The Fiat-Shamir 
heuristic [18] can be used to convert a Sigma protocol into 
a non-interactive ZKP by replacing the verifier’s challenge 
with a hash of the prover’s commitment and the statement 
being proved. 

Cryptographic hash functions play a vital role in 
blockchain systems, ensuring the integrity and 
immutability of data. However, the computation of hash 
functions can be time-consuming, especially for large 
datasets. ZKPs can be employed to prove the correctness of 
hash computations without revealing the input data, 
thereby reducing the computational burden on blockchain 
nodes [19]. 

In this study, we focus on the application of ZKPs to the 
SHA-256 hash function, which is widely used in blockchain 

systems. The Plonky2 framework, developed by Polygon 
Zero, is utilized to generate and verify ZKPs for SHA-256 
computations. Plonky2 is a modern ZKP toolkit that 
implements the PLONK protocol [20] in conjunction with 
the FRI (Fast Reed-Solomon Interactive Oracle Proofs) [21] 
commitment scheme. 

The PLONK protocol is a universally updatable 
structured reference string scheme that enables efficient 
proof generation and verification for arbitrary arithmetic 
circuits [20]. The FRI commitment scheme provides a fast 
and scalable method for committing to polynomials and 
verifying their evaluations [22]. 

By leveraging the capabilities of the Plonky2 
framework, we aim to develop an efficient and scalable 
methodology for generating and verifying ZKPs for SHA-
256 computations, ultimately contributing to the 
advancement of privacy-preserving and computationally 
efficient blockchain systems. 

3. Research methodology 
In this section, we present a detailed description of the 
methodology employed for generating and testing ZKPs 
to ensure the computational integrity of cryptographic 
hashing. Our approach consists of three main stages: 
generating ZKPs for random data, testing the obtained 
proofs, and applying the developed methodology to real 
data blocks from the NEAR blockchain [12]. 

3.1. Generating ZKPs for hashing random 
data 

To generate ZKPs, we utilized the Plonky2 framework 
developed by Polygon Zero. Plonky2 implements the 
PLONK protocol in conjunction with FRI as a commitment 
scheme, providing a robust and efficient verification 
mechanism. The generation process involved the 
following steps: 

1. Generating random data of various lengths (10, 
100, 1000, 10000 bytes). 

2. Computing the SHA-256 hash function for the 
generated data. 

3. Creating a ZKP to validate the correctness of the 
hash computation using Plonky2. 

4. Storing the generated proof and the corresponding 
circuit for subsequent verification. 

The experiments for generating ZKPs were conducted 
on a server with an AMD Ryzen 9 7950X 16-Core Processor 
running at 4.7 MHz. For each length of random data (10, 100, 
1000, 10000 bytes), we measured the following parameters: 

 The complexity of native verification (computing 
the hash function and comparing the result with 
the hash code) in cycles per byte and seconds. 

 The complexity of circuit generation in cycles per 
byte and seconds. 

 The complexity of proof generation in cycles per 
byte and seconds. 

 The complexity of proof verification in cycles per 
byte and seconds. 
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 The size of the generated circuit in gates. 
 The size of the generated proof in bytes. 

3.2. Testing the generated ZKPs 

To verify the correctness of the generated ZKPs, we 
employed the following methodology: 

1. Loading the generated proof and the 
corresponding circuit for each set of random data. 

2. Verifying the proof using Plonky2 while 
measuring the verification complexity in cycles 
per byte and seconds. 

3. Comparing the hash code obtained from the 
verification with the original hash code computed 
for the random data. 

3.3. Applying ZKPs to real data blocks from 
the NEAR blockchain 

To assess the applicability of the developed methodology to 
real-world data, we utilized blocks from the NEAR 
blockchain of various heights and with different numbers of 
transactions: 

 Block #121,114,606 at height 121,114,606, 
containing 52 transactions (5677 bytes) [23]. 

 Block #121,136,789 at height 121,136,789, 
containing 78 transactions (5092 bytes) [24]. 

 Block #121,117,653 at height 121,117,653, 
containing 102 transactions (4897 bytes) [25].  

 Block #121,089,333 at height 121,089,333, 
containing 169 transactions (6262 bytes) [26]. 

The selected blocks reflect the diversity of real data in 
the NEAR blockchain and allow us to evaluate the 
performance of ZKPs generation and verification in various 
scenarios. 

The process of generating and testing ZKPs for the 
selected NEAR blocks involved the following steps: 

1. Obtaining the binary block data from the NEAR 
blockchain using the provided block hashes. 

2. Generating ZKPs for each block using Plonky2 
while measuring the complexity of the circuit and 
proof generation. 

3. Verifying the generated proofs while measuring 
the verification complexity. 

4. Comparing the obtained results with the results 
for random data to assess the applicability and 
scalability of the proposed approach. 

By following this structured methodology, we aim to 
thoroughly evaluate the efficiency and practicality of 
generating and verifying ZKPs using Plonky2 for both 
random data and real data blocks from the NEAR 
blockchain [27]. The results of these experiments will be 
presented and discussed in the following section. 

4. Results and analysis 
In this section, we present and analyze the results 
obtained from generating and testing ZKPs for both 

random data and real data blocks from the NEAR 
blockchain. The experiments were conducted using the 
methodology described in the previous section, and the 
results provide valuable insights into the efficiency and 
scalability of the proposed approach. 

4.1. Results for random data 

Table 1 summarizes the results of generating and testing 
ZKPs for random data of various lengths using the Plonky2 
framework. The table includes the complexity of native 
verification, circuit generation, proof generation, and proof 
verification, as well as the sizes of the generated circuits and 
proofs. 

The results in Table 1 demonstrate the following key 
observations: 

1. The complexity of native verification, circuit 
generation, proof generation, and proof 
verification increases with the length of the 
random data. However, the increase in complexity 
is not linear, indicating the scalability of the 
proposed approach. 

2. The time required for native verification remains 
negligible (in the order of microseconds) even for 
larger data lengths, highlighting the efficiency of 
the native verification process. 

3. The time required for circuit generation and proof 
generation increases with the data length but 
remains within acceptable limits (less than 13 
seconds for 10000 bytes of data). 

4. The time required for proof verification is 
significantly lower than that of proof generation, 
emphasizing the efficiency of the verification 
process, which is crucial for the practical 
application of ZKPs. 

5. The sizes of the generated circuits and proofs 
increase with the data length but remain 
manageable (less than 250 KB for 10,000 bytes of 
data), ensuring the feasibility of storing and 
transmitting the generated proofs. 

These results confirm the efficiency and scalability of 
the proposed approach for generating and verifying ZKPs 
using the Plonky2 framework for random data of various 
lengths. 

To illustrate the relationship between the complexity of 
proof verification and the length of random data, we present 
Fig. 1, which shows the proof verification time as a function 
of the input data size. 

 
Figure 1: Proof verification time as a function of random 
data length 
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As evident from Fig. 1, the proof verification time remains 
consistently low, even for larger data sizes, with a 
verification time of approximately 0.0044 seconds for 
random data of length 10,000 bytes. This observation 
highlights the efficiency of the verification process and its 
potential for scalability in real-world applications. 

The linear relationship between the verification time 
and the data length can be attributed to the design of the 

Plonky2 framework and the underlying cryptographic 
primitives, such as the PLONK protocol and the FRI 
commitment scheme. The efficient arithmetic circuit 
representation and the optimized proof construction in 
Plonky2 contribute to the fast verification times, even for 
larger datasets. 

Table 1 
Results of generating and testing ZKPs for random data of various lengths 

Random Data Length (bytes) 10 100 1,000 10,000 

Native Verification Complexity 
(cycles/byte) 196 250 1,752 17,022 

Native Verification Complexity 
(seconds) 

0.00000004 0.00000005 0.0000003 0.000003 

Circuit Generation Complexity 
(cycles/byte) 197,896,186 432,109,936 5,653,509,584 58,641,652,143 

Circuit Generation Complexity 
(seconds) 0.04 0.09 1.23 12.70 

Proof Generation Complexity 
(cycles/byte) 

255,670,545 465,505,001 3,730,111,317 38,720,856,965 

Proof Generation Complexity 
(seconds) 0.05 0.10 0.82 8.58 

Proof Verification Complexity 
(cycles/byte) 11,826,688 12,459,491 15,544,539 19,610,437 

Proof Verification Complexity 
(seconds) 

0.0028 0.0029 0.0037 0.0044 

Circuit Size (gates) 1,419 2,842 22,739 223,148 
Proof Size (bytes) 121,752 127,256 152,756 180,112 

Table 2 
Results of generating and testing ZKPs for real data blocks from the NEAR blockchain 

Block Height 121,114,606 121,136,789 121,117,653 121,089,333 
Number of transactions 52 78 102 169 

Block bytes 5,677 5,092 4,897 6,262 
Native Verification Complexity 

(cycles/byte) 
9,368 8,424 8,366 10,318 

Native Verification Complexity 
(seconds) 0.000001 0.000001 0.000001 0.000002 

Circuit Generation Complexity 
(cycles/byte) 27,010,322,753 26,380,158,107 26,791,174,445 56,830,642,601 

Circuit Generation Complexity 
(seconds) 

5.87 5.71 5.80 12.18 

Proof Generation Complexity 
(cycles/byte) 18,633,537,207 19,172,519,712 18,015,459,404 38,191,422,267 

Proof Generation Complexity 
(seconds) 4.18 4.10 4.03 8.32 

Proof Verification Complexity 
(cycles/byte) 

17,173,339 17,197,238 17,034,388 19,024,157 

Proof Verification Complexity 
(seconds) 0.004 0.004 0.004 0.004 

Circuit Size (gates) 126,498 113,704 109,442 139,289 
Proof Size (bytes) 165,684 165,684 165,684 180,112 

4.2. Results for real data blocks from the 
NEAR blockchain 

To assess the applicability of the developed 
methodology to real-world scenarios, we generated and 
tested ZKPs for data blocks from the NEAR blockchain. 
Table 2 presents the results obtained for the selected 
blocks, including the block height, the number of 
transactions, the block size, and the complexity and time 

required for native verification, circuit generation, proof 
generation, and proof verification. 

The results in Table 2 lead to the following 
observations: 

1. The complexity of native verification for real 
data blocks is comparable to that of random 
data of similar sizes, confirming the consistency 
of the native verification process. 



29 

2. The time required for circuit generation and 
proof generation for real data blocks is also 
comparable to that of random data, 
demonstrating the applicability of the 
proposed approach to real-world scenarios. 

3. The time required for proof verification 
remains consistently low (around 0.004 
seconds) for all the tested real data blocks, 
regardless of the number of transactions or 
block size, highlighting the efficiency of the 
verification process. 

4. The sizes of the generated circuits and proofs 
for real data blocks are similar to those of 
random data, indicating the feasibility of 
storing and transmitting the proofs in real-
world applications. 

These results validate the applicability and 
scalability of the proposed methodology for generating 
and verifying ZKPs using Plonky2 for real data blocks 
from the NEAR blockchain.  

The consistency in performance between random 
and real data suggests that the approach can be 
effectively utilized in practical scenarios, such as 
ensuring the computational integrity of cryptographic 
hashing in blockchain applications. 

5. Discussion 
The experimental results presented in this section 
demonstrate the efficiency and scalability of the 
proposed approach for generating and verifying ZKPs 
using the Plonky2 framework. The methodology 
exhibits consistent performance for both random data 
and real data blocks from the NEAR blockchain, 
highlighting its potential for practical applications. 

The complexity of native verification, circuit 
generation, proof generation, and proof verification 
scales well with increasing data lengths, ensuring the 
feasibility of applying the approach to larger datasets. 
The time required for proof verification remains 
consistently low, even for real data blocks with a large 
number of transactions, emphasizing the efficiency of 
the verification process, which is crucial for the practical 
adoption of ZKPs. 

Moreover, the sizes of the generated circuits and 
proofs remain manageable, even for larger data lengths 
and real data blocks, indicating the feasibility of storing 
and transmitting the proofs in real-world scenarios. This 
is particularly important for blockchain applications, 
where the storage and transmission of proofs should not 
introduce significant overhead. 

The consistency in performance between random and 
real data suggests that the proposed methodology can be 
effectively applied to ensure the computational integrity 
of cryptographic hashing in various applications, 

including blockchain systems. The ability to generate and 
verify ZKPs efficiently and scalably can contribute to the 
development of more secure and trustworthy systems, 
where the integrity of computations can be verified 
without revealing the underlying data. 

However, it is important to note that the current 
study focuses on the specific case of cryptographic 
hashing using the SHA-256 algorithm. Further research 
is needed to assess the applicability of the proposed 
approach to other cryptographic primitives and to 
evaluate its performance in more complex real-world 
scenarios. 

In conclusion, the experimental results presented in 
this section provide strong evidence for the efficiency 
and scalability of the proposed methodology for 
generating and verifying ZKPs using the Plonky2 
framework. The approach demonstrates consistent 
performance for both random and real data, highlighting 
its potential for practical applications in ensuring the 
computational integrity of cryptographic hashing, 
particularly in the context of blockchain systems. 

6. Conclusions 
In this study, we proposed and evaluated a methodology 
for generating and verifying ZKPs to ensure the 
computational integrity of cryptographic hashing in 
blockchain systems. By leveraging the Plonky2 
framework, we demonstrated the efficiency and 
scalability of our approach for both random data and 
real data blocks from the NEAR blockchain. 

The experimental results showed that the proposed 
methodology achieves consistent performance across 
different data sizes and types, with the time required for 
proof generation and verification remaining within 
acceptable limits. The complexity of native verification, 
circuit generation, proof generation, and proof 
verification scales well with increasing data lengths, 
indicating the feasibility of applying the approach to 
larger datasets. 

Moreover, the sizes of the generated circuits and 
proofs remain manageable, even for real-world data 
blocks with a large number of transactions. This is 
particularly important for blockchain applications, 
where the storage and transmission of proofs should not 
introduce significant overhead. 

The consistency in performance between random 
and real data suggests that the proposed methodology 
can be effectively applied to ensure the computational 
integrity of cryptographic hashing in various blockchain 
systems. The ability to generate and verify ZKPs 
efficiently and scalably contributes to the development 
of more secure and trustworthy systems, where the 
integrity of computations can be verified without 
revealing the underlying data. 
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Further research is needed to assess the applicability of 
the proposed approach to other cryptographic 
primitives and to evaluate its performance in more 
complex real-world scenarios. Nonetheless, the results 
presented in this study provide a solid foundation for the 
development of efficient and scalable solutions for 
ensuring the integrity of computations in blockchain 
systems, ultimately supporting the broader adoption of 
this transformative technology. 

References 
[1] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic 

Cash System, (2008). 
[2] G. Kaur, C. Gandhi, Chapter 15. Scalability in 

Blockchain: Challenges and Solutions, Handbook 
of Research on Blockchain Technology, Academic 
Press (2020) 373–406. doi: 10.1016/B978-0-12-
819816-2.00015-0. 

[3] V. Zhebka, et al., Methodology for Choosing a 
Consensus Algorithm for Blockchain Technology, 
in: Digital Economy Concepts and Technologies, 
vol. 3665 (2024) 106–113. 

[4] B. Bebeshko, et al., Application of Game Theory, 
Fuzzy Logic and Neural Networks for Assessing 
Risks and Forecasting Rates of Digital Currency, J. 
Theor. Appl. Inf. Technol. 100(24) (2022) 7390–
7404. 

[5] V. Zhebka, et al., Methodology for Predicting 
Failures in a Smart Home based on Machine 
Learning Methods, in: Cybersecurity Providing in 
Information and Telecommunication Systems, vol. 
3654 (2024) 322-332. 

[6] X. Yang, W. Li, A Zero-Knowledge-Proof-Based 
Digital Identity Management Scheme in 
Blockchain, Comput. Secur. 99 (2020). doi: 
10.1016/j.cose.2020.1020 50. 

[7] A. Emami, et al., A Scalable Decentralized Privacy-
Preserving E-Voting System Based on Zero-
Knowledge Off-Chain Computations, J. Inf. Secur. 
Appl. 79 (2023). doi: 10.1016/j.jisa.2023.103645. 

[8] S. Goldwasser, S. Micali, C. Rackoff, The 
Knowledge Complexity of Interactive Proof-
Systems, Seventeenth Annual ACM Symposium 
on Theory of Computing, Association for 
Computing Machinery (1985) 291–304. doi: 
10.1145/22145. 22178. 

[9] E. Ben-Sasson, et al., Succinct {Non-Interactive} 
Zero Knowledge for a von Neumann Architecture, 
23rd USENIX Security Symposium (2014) 781–796.  

[10] M. Loporchio, et al., A Survey of Set Accumulators 
for Blockchain Systems, Comput. Sci. Rev. 49 
(2023) 100570. doi: 10.1016/j.cosrev.2023.100570. 

[11] Y. Huang, et al., Blockchain-Based Continuous 
Data Integrity Checking Protocol with Zero-
Knowledge Privacy Protection, Digital Commun. 

Netw. 8 (2022) 604–613. doi: 10.1016/j.dcan. 
2022.04.017. 

[12] NEAR | Blockchains, Abstracted. URL: 
https://near.org/. 

[13] O. Goldreich, S. Micali, A. Wigderson, Proofs That 
Yield Nothing but Their Validity or All Languages 
in NP Have Zero-Knowledge Proof Systems, J. 
ACM 38 (1991) 690–728. doi: 10.1145/11682 
5.116852. 

[14] O. Goldreich, Y. Oren, Definitions and Properties 
of Zero-Knowledge Proof Systems, J. Cryptology 7 
(1994) 1–32. doi: 10.1007/BF00195207. 

[15] U. Feige, A. Fiat, A. Shamir, Zero-Knowledge 
Proofs of Identity, J. Cryptology 1 (1988) 77–94. 
doi: 10.1007/BF02351717. 

[16] I. Damgård, J. B. Nielsen, CPT Course Home Page 
(2010). URL: https://cs.au.dk/~ivan/CPT.html 

[17] C. Bartoli, I. Cascudo, On Sigma-Protocols and 
(packed) Black-Box Secret Sharing Schemes (2023). 
URL: https://eprint.iacr.org/2023/1652 

[18] A. Fiat, A. Shamir, How to Prove Yourself: 
Practical Solutions to Identification and Signature 
Problems, Advances in Cryptology-CRYPTO ‘86, 
Springer-Verlag (1987) 186–194. 

[19] J. Eberhardt, S. Tai, ZoKrates - Scalable Privacy-
Preserving Off-Chain Computations, IEEE 
International Conference on Internet of Things 
(iThings) and IEEE Green Computing and 
Communications (GreenCom) and IEEE Cyber, 
Physical and Social Computing (CPSCom) and 
IEEE Smart Data (SmartData) (2018) 1084–1091. 
doi: 10.1109/Cybermatics_2018.2018. 00199. 

[20] A. Gabizon, Z. J. Williamson, O.-M. Ciobotaru, 
PLONK: Permutations Over Lagrange-bases for 
Oecumenical Nonin-teractive Arguments of 
Knowledge, IACR Cryptol, ePrint Arch. (2019).  

[21] E. Ben-Sasson, et al., Fast Reed-Solomon 
Interactive Oracle Proofs of Proximity (2018). doi: 
10.4230/Lipics.Icalp.201 8.14. 

[22] E. Ben-Sasson, et al., Scalable Zero Knowledge 
with No Trusted Setup, Advances in Cryptology – 
CRYPTO 2019, Springer International Publishing, 
Cham (2019) 701–732. doi: 10.1007/978-3-030-
26954-8_23. 

[23] Near Block DnGLLWt6Q4MKv65uLLc2u 
AB81eRbvS944f5Jkh2FF5US | Near Blocks. URL: 
https://nearblocks.io/blocks/DnGLLWt6Q4MKv65
uLLc2uAB81eRbvS944f5Jkh2FF5US 

[24] Near Block CHNB17HdYWDbapLq5tv3y2Wwv 
755LUT4LttrHn6KtwHD | Near Blocks. URL: 
https://nearblocks.io/blocks/CHNB17HdYWDbap
Lq5tv3y2Wwv755LUT4LttrHn6KtwHD 

[25] Near Block 5qD3eZtUrkheHKEGhQw3oa 
rPHsdjiAmWNASeZV9W1r5s | Near Blocks. URL: 



31 

https://nearblocks.io/blocks/5qD3eZtUrkheHKEG
hQw3oarPHsdjiAmWNASeZV9W1r5s 

[26] Near Block 4oMRqMRD1P6wPtnkPURNpa6s 
nxUvMFMyDZCv7uSq53FX | Near Blocks. URL: 
https://nearblocks.io/blocks/4oMRqMRD1P6wPtn
kPURNpa6snxUvMFMyDZCv7uSq53FX 

[27] K. Kuznetsova, et al., Solving Blockchain 
Scalability Problem Using ZK-SNARK, Advances 
in Artificial Systems for Logistics Engineering III, 
Springer Nature Switzerland, Cham (2023) 360–
371. doi: 10.1007/978-3-031-36115-9_33. 


