
25

Scalable zero-knowledge proofs for verifying
cryptographic hashing in blockchain applications⋆

Oleksandr Kuznetsov1,2,3,∗,†, Anton Yezhov4,†, Vladyslav Yusiuk4,† and Kateryna Kuznetsova2,4,†

1 eCampus University, 10 Via Isimbardi, 22060 Novedrate, Italy
2 University of Macerata, 30/32 Via Crescimbeni, 62100 Macerata, Italy
3 V. N. Karazin Kharkiv National University, 4 Svobody sq., 61022 Kharkiv, Ukraine
4 Zpoken OÜ, Kesklinna linnaosa, Sakala tn 7-2, Harju maakond, 10141 Tallinn, Estonia

Abstract
Zero-knowledge proofs (ZKPs) have emerged as a promising solution to address the scalability challenges
in modern blockchain systems. This study proposes a methodology for generating and verifying ZKPs to
ensure the computational integrity of cryptographic hashing, specifically focusing on the SHA-256
algorithm. By leveraging the Plonky2 framework, which implements the PLONK protocol with the FRI
commitment scheme, we demonstrate the efficiency and scalability of our approach for both random data
and real data blocks from the NEAR blockchain. The experimental results show consistent performance
across different data sizes and types, with the time required for proof generation and verification remaining
within acceptable limits. The generated circuits and proofs maintain manageable sizes, even for real-world
data blocks with a large number of transactions. The proposed methodology contributes to the development
of secure and trustworthy blockchain systems, where the integrity of computations can be verified without
revealing the underlying data. Further research is needed to assess the applicability of the approach to other
cryptographic primitives and to evaluate its performance in more complex real-world scenarios.

Keywords
zero-knowledge proofs, blockchain, scalability, cryptographic hashing 1

1. Introduction
The advent of blockchain technology has revolutionized
various industries, offering a decentralized and secure
approach to data management and transactions [1].
However, as blockchain networks grow in size and
complexity, scalability has emerged as a critical challenge.
The increasing number of transactions and users on
blockchain networks has led to slower transaction
processing times and higher fees, hindering the widespread
adoption of this technology [2]. Addressing the scalability
issue is crucial for the success and practical applicability of
modern blockchain projects [3–5].

Zero-knowledge Proofs (ZKPs) have gained significant
attention as a potential solution to the scalability problem
in blockchain networks [6, 7]. ZKPs allow one party (the
prover) to prove to another party (the verifier) that a given
statement is true without revealing any additional
information beyond the validity of the statement itself
[8, 9]. By enabling the verification of transactions without
disclosing sensitive data, ZKPs can significantly reduce the
computational burden on blockchain nodes and improve the
overall efficiency of the network [7, 10]. The integration of
ZKPs into blockchain systems has the potential to enhance
privacy, security, and scalability, making them a promising

CQPC-2024: Classic, Quantum, and Post-Quantum Cryptography, August
6, 2024, Kyiv, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 oleksandr.kuznetsov@uniecampus.it (O. Kuznetsov);
anton.yezhov@zpoken.io (A. Yezhov); vladyslav.y@zpoken.io
(V. Yusiuk); kateryna.k@zpoken.io (K. Kuznetsova)

tool for addressing the limitations of current blockchain
implementations [6, 11].

The primary objective of this research is to investigate the
application of zero-knowledge proofs for ensuring the
computational integrity of cryptographic hashing in
blockchain systems. We aim to develop and evaluate a
methodology for generating and verifying ZKPs using the
Plonky2 framework, a state-of-the-art ZKP toolkit. The main
tasks of this study include:

1. Generating ZKPs for cryptographic hashing of
random data using Plonky2.

2. Testing the generated ZKPs to assess their
correctness and efficiency.

3. Applying the developed methodology to real data
blocks from the NEAR blockchain [12].

4. Analyzing the performance and scalability of the
proposed approach for both random and real-
world data.

By addressing these tasks, we seek to contribute to the
development of efficient and scalable solutions for ensuring
the integrity of computations in blockchain systems,
ultimately supporting the broader adoption of this
transformative technology.

 0000-0003-2331-6326 (O. Kuznetsov); 0009-0004-6380-5233
(A. Yezhov); 0009-0009-9662-9615 (V. Yusiuk); 0000-0002-5605-9293
(K. Kuznetsova)

© 2024 Copyright for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

26

2. Background
ZKPs are cryptographic protocols that allow a prover to
convince a verifier of the validity of a statement without
revealing any information beyond the truth of the statement
itself [13]. The concept of ZKPs was first introduced by
Goldwasser, Micali, and Rackoff in their seminal paper “The
Knowledge Complexity of Interactive Proof Systems” [8]. A
ZKP must satisfy three key properties:

1. Completeness: If the statement is true, an honest
prover can convince an honest verifier of its
validity.

2. Soundness: If the statement is false, no cheating
prover can convince an honest verifier that it is
true, except with a small probability.

3. Zero-knowledge: The verifier learns nothing
beyond the truth of the statement.

Mathematically, a ZKP for a statement x ∈ L can be
represented as an interactive protocol between a prover P
and a verifier V, where L is an NP language. The prover P
aims to convince the verifier V that x ∈ L without revealing
any additional information. The protocol is described as
follows [14]:

1, ;
(,)()

0, ,

if x L
P V x

otherwise


 


where (P,V)(x) denotes the output of the interaction
between P and V on input x.

The construction of ZKPs relies on several
cryptographic primitives and techniques, such as
commitment schemes, challenge-response protocols, and
hash functions [15]. A common approach to designing ZKPs
is the Sigma protocol, which consists of three moves:
commitment, challenge, and response [16, 17].

1. Commitment: The prover sends a commitment to
the verifier, which binds the prover to a specific
value without revealing it.

2. Challenge: The verifier sends a random challenge
to the prover.

3. Response: The prover computes a response based
on the commitment, challenge, and private
information related to the statement being proved.

The verifier then checks the validity of the response and
accepts or rejects the proof accordingly. The Fiat-Shamir
heuristic [18] can be used to convert a Sigma protocol into
a non-interactive ZKP by replacing the verifier’s challenge
with a hash of the prover’s commitment and the statement
being proved.

Cryptographic hash functions play a vital role in
blockchain systems, ensuring the integrity and
immutability of data. However, the computation of hash
functions can be time-consuming, especially for large
datasets. ZKPs can be employed to prove the correctness of
hash computations without revealing the input data,
thereby reducing the computational burden on blockchain
nodes [19].

In this study, we focus on the application of ZKPs to the
SHA-256 hash function, which is widely used in blockchain

systems. The Plonky2 framework, developed by Polygon
Zero, is utilized to generate and verify ZKPs for SHA-256
computations. Plonky2 is a modern ZKP toolkit that
implements the PLONK protocol [20] in conjunction with
the FRI (Fast Reed-Solomon Interactive Oracle Proofs) [21]
commitment scheme.

The PLONK protocol is a universally updatable
structured reference string scheme that enables efficient
proof generation and verification for arbitrary arithmetic
circuits [20]. The FRI commitment scheme provides a fast
and scalable method for committing to polynomials and
verifying their evaluations [22].

By leveraging the capabilities of the Plonky2
framework, we aim to develop an efficient and scalable
methodology for generating and verifying ZKPs for SHA-
256 computations, ultimately contributing to the
advancement of privacy-preserving and computationally
efficient blockchain systems.

3. Research methodology
In this section, we present a detailed description of the
methodology employed for generating and testing ZKPs
to ensure the computational integrity of cryptographic
hashing. Our approach consists of three main stages:
generating ZKPs for random data, testing the obtained
proofs, and applying the developed methodology to real
data blocks from the NEAR blockchain [12].

3.1. Generating ZKPs for hashing random
data

To generate ZKPs, we utilized the Plonky2 framework
developed by Polygon Zero. Plonky2 implements the
PLONK protocol in conjunction with FRI as a commitment
scheme, providing a robust and efficient verification
mechanism. The generation process involved the
following steps:

1. Generating random data of various lengths (10,
100, 1000, 10000 bytes).

2. Computing the SHA-256 hash function for the
generated data.

3. Creating a ZKP to validate the correctness of the
hash computation using Plonky2.

4. Storing the generated proof and the corresponding
circuit for subsequent verification.

The experiments for generating ZKPs were conducted
on a server with an AMD Ryzen 9 7950X 16-Core Processor
running at 4.7 MHz. For each length of random data (10, 100,
1000, 10000 bytes), we measured the following parameters:

 The complexity of native verification (computing
the hash function and comparing the result with
the hash code) in cycles per byte and seconds.

 The complexity of circuit generation in cycles per
byte and seconds.

 The complexity of proof generation in cycles per
byte and seconds.

 The complexity of proof verification in cycles per
byte and seconds.

27

 The size of the generated circuit in gates.
 The size of the generated proof in bytes.

3.2. Testing the generated ZKPs

To verify the correctness of the generated ZKPs, we
employed the following methodology:

1. Loading the generated proof and the
corresponding circuit for each set of random data.

2. Verifying the proof using Plonky2 while
measuring the verification complexity in cycles
per byte and seconds.

3. Comparing the hash code obtained from the
verification with the original hash code computed
for the random data.

3.3. Applying ZKPs to real data blocks from
the NEAR blockchain

To assess the applicability of the developed methodology to
real-world data, we utilized blocks from the NEAR
blockchain of various heights and with different numbers of
transactions:

 Block #121,114,606 at height 121,114,606,
containing 52 transactions (5677 bytes) [23].

 Block #121,136,789 at height 121,136,789,
containing 78 transactions (5092 bytes) [24].

 Block #121,117,653 at height 121,117,653,
containing 102 transactions (4897 bytes) [25].

 Block #121,089,333 at height 121,089,333,
containing 169 transactions (6262 bytes) [26].

The selected blocks reflect the diversity of real data in
the NEAR blockchain and allow us to evaluate the
performance of ZKPs generation and verification in various
scenarios.

The process of generating and testing ZKPs for the
selected NEAR blocks involved the following steps:

1. Obtaining the binary block data from the NEAR
blockchain using the provided block hashes.

2. Generating ZKPs for each block using Plonky2
while measuring the complexity of the circuit and
proof generation.

3. Verifying the generated proofs while measuring
the verification complexity.

4. Comparing the obtained results with the results
for random data to assess the applicability and
scalability of the proposed approach.

By following this structured methodology, we aim to
thoroughly evaluate the efficiency and practicality of
generating and verifying ZKPs using Plonky2 for both
random data and real data blocks from the NEAR
blockchain [27]. The results of these experiments will be
presented and discussed in the following section.

4. Results and analysis
In this section, we present and analyze the results
obtained from generating and testing ZKPs for both

random data and real data blocks from the NEAR
blockchain. The experiments were conducted using the
methodology described in the previous section, and the
results provide valuable insights into the efficiency and
scalability of the proposed approach.

4.1. Results for random data

Table 1 summarizes the results of generating and testing
ZKPs for random data of various lengths using the Plonky2
framework. The table includes the complexity of native
verification, circuit generation, proof generation, and proof
verification, as well as the sizes of the generated circuits and
proofs.

The results in Table 1 demonstrate the following key
observations:

1. The complexity of native verification, circuit
generation, proof generation, and proof
verification increases with the length of the
random data. However, the increase in complexity
is not linear, indicating the scalability of the
proposed approach.

2. The time required for native verification remains
negligible (in the order of microseconds) even for
larger data lengths, highlighting the efficiency of
the native verification process.

3. The time required for circuit generation and proof
generation increases with the data length but
remains within acceptable limits (less than 13
seconds for 10000 bytes of data).

4. The time required for proof verification is
significantly lower than that of proof generation,
emphasizing the efficiency of the verification
process, which is crucial for the practical
application of ZKPs.

5. The sizes of the generated circuits and proofs
increase with the data length but remain
manageable (less than 250 KB for 10,000 bytes of
data), ensuring the feasibility of storing and
transmitting the generated proofs.

These results confirm the efficiency and scalability of
the proposed approach for generating and verifying ZKPs
using the Plonky2 framework for random data of various
lengths.

To illustrate the relationship between the complexity of
proof verification and the length of random data, we present
Fig. 1, which shows the proof verification time as a function
of the input data size.

Figure 1: Proof verification time as a function of random
data length

28

As evident from Fig. 1, the proof verification time remains
consistently low, even for larger data sizes, with a
verification time of approximately 0.0044 seconds for
random data of length 10,000 bytes. This observation
highlights the efficiency of the verification process and its
potential for scalability in real-world applications.

The linear relationship between the verification time
and the data length can be attributed to the design of the

Plonky2 framework and the underlying cryptographic
primitives, such as the PLONK protocol and the FRI
commitment scheme. The efficient arithmetic circuit
representation and the optimized proof construction in
Plonky2 contribute to the fast verification times, even for
larger datasets.

Table 1
Results of generating and testing ZKPs for random data of various lengths

Random Data Length (bytes) 10 100 1,000 10,000

Native Verification Complexity
(cycles/byte) 196 250 1,752 17,022

Native Verification Complexity
(seconds)

0.00000004 0.00000005 0.0000003 0.000003

Circuit Generation Complexity
(cycles/byte) 197,896,186 432,109,936 5,653,509,584 58,641,652,143

Circuit Generation Complexity
(seconds) 0.04 0.09 1.23 12.70

Proof Generation Complexity
(cycles/byte)

255,670,545 465,505,001 3,730,111,317 38,720,856,965

Proof Generation Complexity
(seconds) 0.05 0.10 0.82 8.58

Proof Verification Complexity
(cycles/byte) 11,826,688 12,459,491 15,544,539 19,610,437

Proof Verification Complexity
(seconds)

0.0028 0.0029 0.0037 0.0044

Circuit Size (gates) 1,419 2,842 22,739 223,148
Proof Size (bytes) 121,752 127,256 152,756 180,112

Table 2
Results of generating and testing ZKPs for real data blocks from the NEAR blockchain

Block Height 121,114,606 121,136,789 121,117,653 121,089,333
Number of transactions 52 78 102 169

Block bytes 5,677 5,092 4,897 6,262
Native Verification Complexity

(cycles/byte)
9,368 8,424 8,366 10,318

Native Verification Complexity
(seconds) 0.000001 0.000001 0.000001 0.000002

Circuit Generation Complexity
(cycles/byte) 27,010,322,753 26,380,158,107 26,791,174,445 56,830,642,601

Circuit Generation Complexity
(seconds)

5.87 5.71 5.80 12.18

Proof Generation Complexity
(cycles/byte) 18,633,537,207 19,172,519,712 18,015,459,404 38,191,422,267

Proof Generation Complexity
(seconds) 4.18 4.10 4.03 8.32

Proof Verification Complexity
(cycles/byte)

17,173,339 17,197,238 17,034,388 19,024,157

Proof Verification Complexity
(seconds) 0.004 0.004 0.004 0.004

Circuit Size (gates) 126,498 113,704 109,442 139,289
Proof Size (bytes) 165,684 165,684 165,684 180,112

4.2. Results for real data blocks from the
NEAR blockchain

To assess the applicability of the developed
methodology to real-world scenarios, we generated and
tested ZKPs for data blocks from the NEAR blockchain.
Table 2 presents the results obtained for the selected
blocks, including the block height, the number of
transactions, the block size, and the complexity and time

required for native verification, circuit generation, proof
generation, and proof verification.

The results in Table 2 lead to the following
observations:

1. The complexity of native verification for real
data blocks is comparable to that of random
data of similar sizes, confirming the consistency
of the native verification process.

29

2. The time required for circuit generation and
proof generation for real data blocks is also
comparable to that of random data,
demonstrating the applicability of the
proposed approach to real-world scenarios.

3. The time required for proof verification
remains consistently low (around 0.004
seconds) for all the tested real data blocks,
regardless of the number of transactions or
block size, highlighting the efficiency of the
verification process.

4. The sizes of the generated circuits and proofs
for real data blocks are similar to those of
random data, indicating the feasibility of
storing and transmitting the proofs in real-
world applications.

These results validate the applicability and
scalability of the proposed methodology for generating
and verifying ZKPs using Plonky2 for real data blocks
from the NEAR blockchain.

The consistency in performance between random
and real data suggests that the approach can be
effectively utilized in practical scenarios, such as
ensuring the computational integrity of cryptographic
hashing in blockchain applications.

5. Discussion
The experimental results presented in this section
demonstrate the efficiency and scalability of the
proposed approach for generating and verifying ZKPs
using the Plonky2 framework. The methodology
exhibits consistent performance for both random data
and real data blocks from the NEAR blockchain,
highlighting its potential for practical applications.

The complexity of native verification, circuit
generation, proof generation, and proof verification
scales well with increasing data lengths, ensuring the
feasibility of applying the approach to larger datasets.
The time required for proof verification remains
consistently low, even for real data blocks with a large
number of transactions, emphasizing the efficiency of
the verification process, which is crucial for the practical
adoption of ZKPs.

Moreover, the sizes of the generated circuits and
proofs remain manageable, even for larger data lengths
and real data blocks, indicating the feasibility of storing
and transmitting the proofs in real-world scenarios. This
is particularly important for blockchain applications,
where the storage and transmission of proofs should not
introduce significant overhead.

The consistency in performance between random and
real data suggests that the proposed methodology can be
effectively applied to ensure the computational integrity
of cryptographic hashing in various applications,

including blockchain systems. The ability to generate and
verify ZKPs efficiently and scalably can contribute to the
development of more secure and trustworthy systems,
where the integrity of computations can be verified
without revealing the underlying data.

However, it is important to note that the current
study focuses on the specific case of cryptographic
hashing using the SHA-256 algorithm. Further research
is needed to assess the applicability of the proposed
approach to other cryptographic primitives and to
evaluate its performance in more complex real-world
scenarios.

In conclusion, the experimental results presented in
this section provide strong evidence for the efficiency
and scalability of the proposed methodology for
generating and verifying ZKPs using the Plonky2
framework. The approach demonstrates consistent
performance for both random and real data, highlighting
its potential for practical applications in ensuring the
computational integrity of cryptographic hashing,
particularly in the context of blockchain systems.

6. Conclusions
In this study, we proposed and evaluated a methodology
for generating and verifying ZKPs to ensure the
computational integrity of cryptographic hashing in
blockchain systems. By leveraging the Plonky2
framework, we demonstrated the efficiency and
scalability of our approach for both random data and
real data blocks from the NEAR blockchain.

The experimental results showed that the proposed
methodology achieves consistent performance across
different data sizes and types, with the time required for
proof generation and verification remaining within
acceptable limits. The complexity of native verification,
circuit generation, proof generation, and proof
verification scales well with increasing data lengths,
indicating the feasibility of applying the approach to
larger datasets.

Moreover, the sizes of the generated circuits and
proofs remain manageable, even for real-world data
blocks with a large number of transactions. This is
particularly important for blockchain applications,
where the storage and transmission of proofs should not
introduce significant overhead.

The consistency in performance between random
and real data suggests that the proposed methodology
can be effectively applied to ensure the computational
integrity of cryptographic hashing in various blockchain
systems. The ability to generate and verify ZKPs
efficiently and scalably contributes to the development
of more secure and trustworthy systems, where the
integrity of computations can be verified without
revealing the underlying data.

30

Further research is needed to assess the applicability of
the proposed approach to other cryptographic
primitives and to evaluate its performance in more
complex real-world scenarios. Nonetheless, the results
presented in this study provide a solid foundation for the
development of efficient and scalable solutions for
ensuring the integrity of computations in blockchain
systems, ultimately supporting the broader adoption of
this transformative technology.

References
[1] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic

Cash System, (2008).
[2] G. Kaur, C. Gandhi, Chapter 15. Scalability in

Blockchain: Challenges and Solutions, Handbook
of Research on Blockchain Technology, Academic
Press (2020) 373–406. doi: 10.1016/B978-0-12-
819816-2.00015-0.

[3] V. Zhebka, et al., Methodology for Choosing a
Consensus Algorithm for Blockchain Technology,
in: Digital Economy Concepts and Technologies,
vol. 3665 (2024) 106–113.

[4] B. Bebeshko, et al., Application of Game Theory,
Fuzzy Logic and Neural Networks for Assessing
Risks and Forecasting Rates of Digital Currency, J.
Theor. Appl. Inf. Technol. 100(24) (2022) 7390–
7404.

[5] V. Zhebka, et al., Methodology for Predicting
Failures in a Smart Home based on Machine
Learning Methods, in: Cybersecurity Providing in
Information and Telecommunication Systems, vol.
3654 (2024) 322-332.

[6] X. Yang, W. Li, A Zero-Knowledge-Proof-Based
Digital Identity Management Scheme in
Blockchain, Comput. Secur. 99 (2020). doi:
10.1016/j.cose.2020.1020 50.

[7] A. Emami, et al., A Scalable Decentralized Privacy-
Preserving E-Voting System Based on Zero-
Knowledge Off-Chain Computations, J. Inf. Secur.
Appl. 79 (2023). doi: 10.1016/j.jisa.2023.103645.

[8] S. Goldwasser, S. Micali, C. Rackoff, The
Knowledge Complexity of Interactive Proof-
Systems, Seventeenth Annual ACM Symposium
on Theory of Computing, Association for
Computing Machinery (1985) 291–304. doi:
10.1145/22145. 22178.

[9] E. Ben-Sasson, et al., Succinct {Non-Interactive}
Zero Knowledge for a von Neumann Architecture,
23rd USENIX Security Symposium (2014) 781–796.

[10] M. Loporchio, et al., A Survey of Set Accumulators
for Blockchain Systems, Comput. Sci. Rev. 49
(2023) 100570. doi: 10.1016/j.cosrev.2023.100570.

[11] Y. Huang, et al., Blockchain-Based Continuous
Data Integrity Checking Protocol with Zero-
Knowledge Privacy Protection, Digital Commun.

Netw. 8 (2022) 604–613. doi: 10.1016/j.dcan.
2022.04.017.

[12] NEAR | Blockchains, Abstracted. URL:
https://near.org/.

[13] O. Goldreich, S. Micali, A. Wigderson, Proofs That
Yield Nothing but Their Validity or All Languages
in NP Have Zero-Knowledge Proof Systems, J.
ACM 38 (1991) 690–728. doi: 10.1145/11682
5.116852.

[14] O. Goldreich, Y. Oren, Definitions and Properties
of Zero-Knowledge Proof Systems, J. Cryptology 7
(1994) 1–32. doi: 10.1007/BF00195207.

[15] U. Feige, A. Fiat, A. Shamir, Zero-Knowledge
Proofs of Identity, J. Cryptology 1 (1988) 77–94.
doi: 10.1007/BF02351717.

[16] I. Damgård, J. B. Nielsen, CPT Course Home Page
(2010). URL: https://cs.au.dk/~ivan/CPT.html

[17] C. Bartoli, I. Cascudo, On Sigma-Protocols and
(packed) Black-Box Secret Sharing Schemes (2023).
URL: https://eprint.iacr.org/2023/1652

[18] A. Fiat, A. Shamir, How to Prove Yourself:
Practical Solutions to Identification and Signature
Problems, Advances in Cryptology-CRYPTO ‘86,
Springer-Verlag (1987) 186–194.

[19] J. Eberhardt, S. Tai, ZoKrates - Scalable Privacy-
Preserving Off-Chain Computations, IEEE
International Conference on Internet of Things
(iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData) (2018) 1084–1091.
doi: 10.1109/Cybermatics_2018.2018. 00199.

[20] A. Gabizon, Z. J. Williamson, O.-M. Ciobotaru,
PLONK: Permutations Over Lagrange-bases for
Oecumenical Nonin-teractive Arguments of
Knowledge, IACR Cryptol, ePrint Arch. (2019).

[21] E. Ben-Sasson, et al., Fast Reed-Solomon
Interactive Oracle Proofs of Proximity (2018). doi:
10.4230/Lipics.Icalp.201 8.14.

[22] E. Ben-Sasson, et al., Scalable Zero Knowledge
with No Trusted Setup, Advances in Cryptology –
CRYPTO 2019, Springer International Publishing,
Cham (2019) 701–732. doi: 10.1007/978-3-030-
26954-8_23.

[23] Near Block DnGLLWt6Q4MKv65uLLc2u
AB81eRbvS944f5Jkh2FF5US | Near Blocks. URL:
https://nearblocks.io/blocks/DnGLLWt6Q4MKv65
uLLc2uAB81eRbvS944f5Jkh2FF5US

[24] Near Block CHNB17HdYWDbapLq5tv3y2Wwv
755LUT4LttrHn6KtwHD | Near Blocks. URL:
https://nearblocks.io/blocks/CHNB17HdYWDbap
Lq5tv3y2Wwv755LUT4LttrHn6KtwHD

[25] Near Block 5qD3eZtUrkheHKEGhQw3oa
rPHsdjiAmWNASeZV9W1r5s | Near Blocks. URL:

31

https://nearblocks.io/blocks/5qD3eZtUrkheHKEG
hQw3oarPHsdjiAmWNASeZV9W1r5s

[26] Near Block 4oMRqMRD1P6wPtnkPURNpa6s
nxUvMFMyDZCv7uSq53FX | Near Blocks. URL:
https://nearblocks.io/blocks/4oMRqMRD1P6wPtn
kPURNpa6snxUvMFMyDZCv7uSq53FX

[27] K. Kuznetsova, et al., Solving Blockchain
Scalability Problem Using ZK-SNARK, Advances
in Artificial Systems for Logistics Engineering III,
Springer Nature Switzerland, Cham (2023) 360–
371. doi: 10.1007/978-3-031-36115-9_33.

