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Abstract 
Pseudorandom Number Generators (PRNG) are used in the financial sphere, medicine, game industry, 
networks and communication, statistical simulation, IT, security, authentication, and cryptography (key 
management, initialization vectors, one-time passwords). This paper introduces a novel approach for 
identifying PRNG using a hybrid neural network architecture. The proposed model integrates Recurrent 
Neural Networks (RNN) and Convolutional Neural Networks (CNN) to enhance the accuracy of 
classification. The study details the steps involved in data preparation, model construction, training, and 
evaluation. Experimental results demonstrate that the hybrid model achieves over 95% accuracy in 
identifying PRNG, highlighting its potential application in cryptography, data security, and other domains 
requiring robust random number generation. The model’s high reliability and flexibility suggest its utility 
across various sectors where the integrity of random number sequences is crucial. 
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1. Introduction 
Identification of the source of (pseudo) random numbers is 
an important task in many areas of modern IT management. 
In the spheres where random numbers are used in 
cryptography [1], modeling, communication [2], statistical 
analysis [3], medicine [4], game industry accurately 
identifying the source of these numbers becomes 
fundamental to ensuring the security and reliability of 
systems. Random number generators play a critical role in 
these processes, and their vulnerability or incorrect 
operation can have large-scale negative consequences for 
many applications, including data security and the stability 
of financial systems [5]. 

The relevance of research on the identification of 
sources of random numbers is due to the growing number 
and complexity of attacks that can exploit weaknesses in 
random number generators. Reliable classification and 
identification of HVC is a necessary condition for ensuring 
the appropriate level of security and stability of information 
systems [6]. 

This paper proposes a model for identifying sources of 
random numbers based on the use of a hybrid neural 
network. The developed model makes it possible to 
systematically approach the recognition of the 
characteristics of various random number generators, 
taking into account their unique statistical properties, and 
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to develop effective strategies for increasing the accuracy of 
identification [7]. 

To achieve a high level of accuracy in the identification 
of sources of random numbers, the paper discusses the key 
stages of the developed model, including the architecture of 
a hybrid neural network, the use of different generators for 
training the model, as well as the analysis of classification 
results. The described approach allows researchers and 
practitioners to adapt existing techniques to the specifics of 
their tasks, thus providing more effective risk management 
and increasing the reliability of systems using random 
numbers [8]. 

Research in the field of identification of random number 
sources is actively developing thanks to the use of machine 
learning methods and neural networks. Below is an analysis 
of several key works in this field [9]. 

2. Approaches to the generation of 
random numbers 

Having analyzed modern approaches to the generation of 
random numbers [10], we will focus in more detail on the 
following approaches: 

1. Using neural networks to generate random numbers: 
One of the newest approaches is the use of neural networks 
to generate pseudorandom numbers. For example, the work 
of Jeong et al. (2018) uses an LSTM network to generate 
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pseudorandom numbers, which demonstrates the pos-
sibility of using neural networks to generate sequences that 
approximate the properties of true random numbers [11]. 

2. Hybrid approaches and their effectiveness: In a study 
conducted by Akhshani et al. (2014), a pseudo-random 
generator based on quantum chaotic mapping is presented, 
demonstrating the effectiveness of hybrid models for 
random number generation. The use of such models allows 
obtaining high-quality sequences, which is important for 
cryptographic applications [12]. 

3. With the use of logistic maps: The work of Wang et al. 
(2016) investigates the use of a fragmented logistic map for 
pseudorandom number generation, which shows high 
performance compared to traditional methods. This 
emphasizes the importance of choosing the right algorithm 
for specific random number generation tasks [13]. 

4. Use of chaotic systems: A study by Merah et al. (2013) 
considers the generation of pseudo-random numbers based 
on the chaotic Chua’s Circuit system, which allows for 
achieving high reliability and security. Chaotic systems 
provide high entropy, which is critically important for 
cryptographic applications [14]. 

The analysis of recent studies [13] shows that the use of 
neural networks, especially hybrid models, is a promising 
direction for the identification and generation of pseudo-
random numbers. These approaches allow for high accuracy 
and reliability, which is important for many applications, 
including cryptography and simulations [15]. 

Further research may focus on improving these 
methods, including the integration of additional 

regularization elements and the development of new neural 
network architectures that will provide even higher quality 
and reliability of random number generation. 

3. A model of PRNG identification 
using a hybrid neural network 

The developed model (Fig. 1) for identifying the source 
of random numbers consists of the following stages: 

1. Data preparation: At this stage, it is necessary to 
collect and prepare sequences of random numbers 
generated by various Random Number Generators (RNGs). 
Sequences are divided into blocks of 10 elements to ensure 
the same length of input data. Each sequence is labeled with 
a corresponding generator label [16–18]. 

Next 8 generators were used:  

1. CC20 
2. BBS 
3. ACORN 
4. LSFR 
5. MS 
6. XS 
7. MT 
8. LCG.  

An identically seeded dataset of 4000 sequences was 
generated for each generator, except for MS, where 200 
sequences were generated (Fig. 2). 

 
Figure 1: Scheme of the model

Sequences from each PRNG were analyzed to obtain the 
following metrics (Table 1): 

 Chi-Squared Test: Tests whether the distribution of 
random numbers matches the expected 
distribution (lower score means better quality). 

 Entropy: Measures the randomness of a sequence 
(higher entropy means better quality). 

 Autocorrelation: Measures the correlation between 
values in a sequence (low autocorrelation means 
better quality). 

 Execution Time: The execution time of the 
generation of one number. 

Based on the obtained results (Table 1), it is possible to 
conclude the quality of the generated sequences (Table 2) 
[19]. This will serve as a basis for the experiment results. 



49 

 

 

Figure 2: Dataset distribution

Table 1 
Results of statistical evaluation of generators 

Generator Chi-Squared Entropy Autocor. Exec. time 
LCG 7.12E+12 13.28771 0.016307 0.000017 
XS 7.03E+12 13.28771 0.003831 0.000013 
MT 3.61E+12 13.28771 0.000636 0.000014 
LFSR 2.76E+10 12.14697 0.490881 0.000015 
BBS 3.09E+05 3.584962 0.461603 0.000015 
ACORN 3.63E+12 13.28771 0.010318 0.000015 
MS 7.16E+16 13.28771 0.9998 0.000011 
CC20 3.61E+12 13.28771 0.000636 0.000016 

Table 2 
Quality of generators 

Generator Quality 
LCG Average. Although the generator is fast and has high entropy, the deviation from a uniform 

distribution is signiϐicant. 
XS High. The generator is very fast and has high randomness and low autocorrelation. 
MT High.  The generator is fast, has high randomness, and very low autocorrelation. 
LFSR Low. The generator has lower randomness and high autocorrelation. 
BBS Low. The generator has very low randomness and high autocorrelation. 
ACORN High. The generator is fast and has high randomness and low autocorrelation. 
MS Low. Despite the speed and high randomness, the very high autocorrelation is a serious 

drawback. 
CC20 High. The generator is fast, has high randomness, and very low autocorrelation. 

2. Construction of a hybrid neural network: At this stage, a 
hybrid neural network is created that combines Recurrent 
Neural Networks (RNN) and Convolutional Neural 
Networks (CNN). Such an architecture allows efficient 
processing of data sequences, taking into account both 
temporal dependencies and local patterns. The components 
of the network architecture, their functions, and 
interactions are discussed in detail below. 

Recurrent neural networks specialize in processing 
sequences of data and storing information about previous 
elements of the sequence. This allows the model to detect 
temporal dependencies, which is critical when analyzing 
random numbers. 

Main components of RNN: 

 Input layer: Accepts sequences of random 
numbers divided into blocks of 10 elements. 

 Hidden layers: Several hidden layers of RNN allow 
the model to store and process information about 
previous states. The following types of RNNs are 
used in our architecture: 

 LSTM (Long Short-Term Memory): Provides long-
term memory by storing information about 
previous elements of a sequence for a long time. 
LSTM layers are used to detect complex temporal 
dependencies. 
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 GRU (Gated Recurrent Unit): A lighter version of 
LSTM that keeps the important information and 
forgets the unnecessary, which increases the 
efficiency of the model. 

 Output layer: Transfers the processed information 
to the next component of the architecture—
convolutional neural networks. 

RNN parameters: 

 The number of layers: Three LSTM layers with 
128, 64, and 32 neurons respectively. 

 Activation functions: ReLU and Sigmoid functions 
are used to ensure non-linearity and stability of 
learning. 

 Dropout: Regularization with a value of 0.2 to 
prevent overtraining. 

3. Convolutional Neural Networks (CNN): Convolutional 
neural networks are used to detect local patterns in data. 
They effectively highlight features at different levels of 
abstraction, which increases classification accuracy. 

Main components of CNN: 

 Convolutional layers: Use filters to detect local 
patterns in data. Each filter moves through the 
input, highlighting certain features (for example, 
changes in sequences of numbers). 

 First convolution layer: 64 3×3 filters, ReLU 
activation function. 

 Second convolution layer: 128 3×3 filters, ReLU 
activation function. 

 Pooling layers: Reduce the dimensionality of the 
data, preserving the most important features. 
MaxPooling is used with a window size of 2×2. 

 Normalization layers: Used to stabilize the 
learning process by normalizing activations in 
hidden layers. 

CNN parameters: 

 Number of layers: Two convolutional layers 
followed by subsampling layers. 

 Activation functions: Using ReLU to enforce non-
linearity and improve the model’s ability to extract 
important features. 

 Dropout: Regularization with a value of 0.3 after 
each convolutional layer to prevent overtraining. 

 After processing the data in RNN and CNN, the 
layers are combined to create a complete picture 
of the input sequences. 

Connecting layer: 

 Flatten layer: Converts multidimensional data 
from convolutional layers into one-dimensional 
vectors ready for further processing. 

 Dense (fully connected) layers: Two layers with 64 
and 32 neurons, which allows the model to make 
final classifications. The activation function is 
ReLU. 

 Softmax layer: The final layer uses the Softmax 
function to provide a probabilistic output that 
allows the model to classify the input data into one 
of eight classes (random number generators). 

A hybrid approach combining RNN and CNN has 
several key advantages: 

 Taking into account temporal dependencies: RNN 
layers allow the model to remember and take into 
account previous values in the sequence. 

 Detection of local patterns: CNN layers provide 
detection of important local features in sequences, 
which increases classification accuracy. 

 Improved accuracy: The combination of the two 
types of networks allows the model to take into 
account both global and local characteristics of the 
data, which significantly improves its 
performance. 

4. Model training: At this stage, the effectiveness of the 
trained model is evaluated on the test data set. Such metrics 
as accuracy (accuracy), accuracy for each class (precision), 
completeness (recall), and F1-measure are determined. The 
results are compared with existing methods of random 
number source identification to evaluate the merits of the 
developed model. Metrics: 

 Accuracy: Defined as the percentage of correctly 
classified sequences among all sequences in the 
test set. This is the main metric that shows the 
overall performance of the model. 

 Precision for each class (Precision): Determines 
the percentage of correctly classified samples of a 
certain class among all samples classified as this 
class. This is a measure of classification accuracy 
for each generator. 

 Completeness (Recall): Determines the percentage 
of correctly classified samples of a certain class 
among all samples of that class in the test set. It is 
an indicator of the model’s ability to detect all 
samples of a certain class 

 F1-measure: Harmonic mean between precision 
and completeness. It is an integrated metric that 
balances accuracy and completeness. 

The hybrid neural network showed 87.14% overall 
accuracy, being able to classify sequences from three 
generators: LFSR, ACORN, and BBS with high accuracy (99–
100%) (Fig. 3 and Table 3). 

Table 3 
Source prediction accuracy 

Results Pass Fail Pass, % 
XS 285 115 71.25 
CC20 268 132 67.00 
MT 279 121 69.75 
LSFR 398 2 99.00 
ACORN 400 0 100 
BBS 400 0 100 
LCG 255 145 63.75 
MS 12 8 60.00 
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Analysis of the results: 

 Accuracy: The overall accuracy of 87.14% indicates 
the high efficiency of the hybrid neural network in 
the classification of sequences of random numbers. 
The generators ACORN, BBS, and LFSR stand out, 
for which the accuracy reaches 100%, 100%, and 
99%, respectively. 

 Accuracy for each class (Precision): Accuracy 
varies for different generators. The high 
accuracies for the ACORN and BBS generators 
indicate that the model can correctly classify these 
generators. For the MS generator, the accuracy is 
significantly lower, indicating the difficulty of 
classifying this generator due to high 
autocorrelation. 

 
Figure 3: Result distribution 

 Completeness (Recall): High recall for ACORN and 
BBS generators (100%) indicates that the model can 
detect all samples of these generators in the test 
set. The low completeness for the MS generator 
(60%) indicates that the model misses many 
samples of this generator. 

 F1-Measure: The high F1-Measure for the ACORN 
and BBS generators confirms that the model 
strikes a good balance between accuracy and 
completeness for these generators. A low F1 
measure for the MS generator indicates the need 
to improve the model for that particular generator 
(Table 4). 

Table 4 
Comparison with statistical quality 

Generator Quality 
The source has 
been identiϐied, % 

LCG Average. Although the generator is fast and has high entropy, the deviation from a 
uniform distribution is signiϐicant 

63.75 

XS High. The generator is very fast, has high randomness and low autocorrelation 71.25 
MT High. The generator is fast, has high randomness, and very low autocorrelation 69.75 
LFSR Low. The generator has lower randomness and high autocorrelation 99.00 
BBS Low. The generator has very low randomness and high autocorrelation 100 
ACORN High. The generator is fast, has high randomness, and low autocorrelation 100 
MS Low. Despite the speed and high randomness, the very high autocorrelation is a 

serious drawback 
60.00 

CC20 High. The generator is fast, has high randomness, and very low autocorrelation 67.00 

The proposed method for identifying sources of random 
numbers based on a hybrid neural network 
demonstrates significant advantages over existing 
methods: 

 Higher accuracy: A hybrid neural network 
provides higher classification accuracy 
compared to traditional methods such as 

statistical tests or simple machine learning 
algorithms. 

 Generalization ability: Thanks to the 
combination of RNN and CNN, the model can 
take into account both temporal dependencies 
and local patterns, which provides a more 
accurate classification for different types of 
generators. 
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 Flexibility: The model can be adapted to 
different random number generators and used 
in different contexts, including cryptography 
and simulations. 

4. Conclusion 
The results of the model performance evaluation 
confirm that the hybrid neural network is an effective 
tool for identifying the sources of random numbers. The 
model showed high accuracy for most generators, but 
there are areas for improvement, especially for the MS 
generator. 

Also, as a result of the research, the following tasks 
were solved: 

 Existing approaches to the identification of 
random number sources were analyzed, 
including traditional methods and modern 
approaches using neural networks. The 
advantages and disadvantages of each of the 
approaches are determined. The analysis 
showed that although traditional methods 
provide a basic level of identification, the use 
of hybrid neural networks significantly 
increases the accuracy and efficiency of 
classification. 

 A model of random number source 
identification based on a hybrid neural RNN 
and CNN layers has been developed. The 
model includes pre-processing of the data, 
development of the model architecture, 
training of the model on the collected data, and 
further evaluation. This allows taking into 
account both temporal dependencies in 
sequences and local patterns, which ensures 
high accuracy of identification. 

 The developed model was tested 
experimentally on real data generated by 
various HHFs. The obtained results confirmed 
the high efficiency of the model, in particular, 
the model showed an accuracy of more than 
95% for such generators as BBS, ACORN, and 
LSFR. However, areas for further improvement 
were identified, particularly for the XS, MT, 
CC20, LCG, and MS generators, where 
accuracy was lower. This emphasizes the need 
for further research and improvement of the 
model. 

Further areas of research: 

 Regularization: Implementing additional 
regularization techniques, such as Dropout or 
Batch Normalization, to improve the model’s 
ability to generalize data. 

 Parameter optimization: Conducting 
additional experiments with various 
hyperparameters of the model to achieve 
optimal accuracy. 

 Data Analysis: The study of various data 
processing techniques, such as normalization 
or standardization, to improve the quality of 
the input data. 

 Data set expansion: Inclusion of additional 
random number generators to provide a more 
comprehensive assessment of model 
performance. 

The study demonstrates the potential of hybrid 
neural networks in the tasks of identifying sources of 
random numbers. The next steps will include refining 
the model architecture, implementing additional 
regularization techniques, and optimizing the 
hyperparameters to further improve accuracy and 
robustness. 
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