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Abstract 
We suggest two families of multivariate public keys defined over arbitrary finite commutative ring K with 
unity. The first one has a quadratic multivariate public rule, this family is an obfuscation of previously 
defined cryptosystem defined in terms of well-known algebraic graphs D(n, K) with the partition sets 
isomorphic to Kn. Another family of cryptosystems uses the combination of Eulerian transformation of K[x1, 
x2, ..., xn] sending each variable xi to a monomial term with the quadratic encryption map of the first 
cryptosystem. The resulting map has an unbounded degree and the density O(n4) like the cubic multivariate 
map. The space of plaintexts of the second cryptosystem is the variety (K*)n and the space of ciphertexts is 
the affine space Kn. 
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1. Introduction 
This paper presents the generalization of the quadratic 
multivariate public key given in [1] with the use of 
quantum computing. 

The progress in the design of experimental quantum 
computers is speeding up lately. Expecting such 
development the National Institute of Standardisation 
Technologies of USA announced in 2017 the tender on 
standardization best known quantum-resistant 
algorithms of asymmetrical cryptography. The first 
round was finished in March 2019, and essential parts of 
the presented algorithms were rejected. At the same 
time, the development of new algorithms with a 
postquantum perspective was continued. A similar 
process took place during the 2nd, 3rd, and 4th rounds. 

The last algebraic public key “Unbalanced Oil and 
Vinegar Rainbow like digital signatures” (ROUV) 
constructed in terms of Multivariate Cryptography was 
rejected in 2021 (see [2, 3]). Certain hopes of algebraists 
are connected with so-called Noncommutative 
Cryptography which is based on problems connected 
with the studies of algebraic objects such as groups, 
semigroups, noncommutative rings, and algebras. 
Presented on Mist tender single algorithms from this 
class based on braids group was broken. The first four 
winners of this competition were announced in 1922, 
they are developed in terms of Lattice Theory. 
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Noteworthy that the NIST tender was designed for the 
selection and investigation of public key algorithms and 
in the area of Multivariate Cryptography only quadratic 
multivariate maps were investigated. So, a large class of 
protocol-supported asymmetric algorithms of El Gamal 
type was eliminated. We were working on the design of 
the new algorithms from this class during our project. We 
have to admit that general interest in various aspects of 
Multivariate Cryptography was connected with the 
search for secure and effective procedures of digital 
signature where mentioned above ROUV cryptosystem 
was taken as a serious candidate to make the shortest 
signature. 

Let us summarize the outcomes of the mentioned 
above NIST tender. 

Five categories were considered by NIST in the PQC 
standardization (the submission date was 2017; in July 
2022, the four winners and the four final candidates were 
proposed for the 4th round—this is the current official 
status. However, the current 8 final winners and 
candidates only belong to the following four different 
mathematical problems (not the five announced at the 
beginning): 

 Lattice-based 
 Hash-based 
 Code-based 
 Supersingular elliptic curve isogeny based. 

 0000-0002-2138-2357 (V. Ustymenko); 0000-0002-3294-2794 
(T. Chojecki); 0000-0001-9724-4586 (A. Wróblewska) 
 

 
© 2024 Copyright for this paper by its authors. Use permitted under 
Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



55 

The standards are to be published in 2024. But already at 
the end of round 3, the last candidate (“Rainbow”) from 
the multivariate cryptography (MVC) category was out.  

Its interesting obfuscation “TUOV: Triangular 
Unbalanced Oil and Vinegar” was presented to NIST 
[39] by principal submitter Jintaj Ding.  

Further development of Classical Multivariate 
Cryptography which studies quadratic and cubic 
endomorphisms of Fq[x1, x2, …, xn] see [6–18]. Current 
research in Postquantum Cryptography can be found in 
[35–38]. 

We use the concept of quadratic accelerator of the 
endomorphism σ of K[x1, x2, …, xn] which is the piece of 
information T such that its knowledge allows us to 
compute the reimage of (σ, Kn) in time O(n2). Symbol K 
stands here for an arbitrary commutative ring with unity. 
Our suggestion is to use for public key the pairs (σ, T) such 
that σ has a polynomial density, i. e. number of monomial 
terms of σ(xi), i = 1, 2, …, n. Some examples of such public 
keys the reader can find in [4, 5]. 

For each pair (K, n), n > 1 we present quadratic 
automorphism σ of K[x1, x2,…, xn] with the trapdoor 
accelerator T defined via totality of special bipartite 
Jordan-Gauss graphs with the partition sets isomorphic to 
Kn. We discuss the possible use of these transformations 
in the case of finite fields and arithmetical rings Zq where 
q is a prime power. Additionally, we create a public key as 
a composition of quadratic σ with the Eulerian 
transformation sending each x1 to a monomial term. The 
public map has an unbounded degree and density O(n4). 
So the complexity of encryption is as in the case of 
classical cubic maps. 

2. On Jordan-Gauss graphs and 
multivariate keys 

The missing definitions of graph-theoretical concepts 
which appear in this paper can be found in [19–21]. All 
graphs we consider are simple graphs, i.e. undirected 
without loops and multiple edges. Let V(G) and E(G) 
denote the set of vertices and the set of edges of G 
respectively. When it is convenient we shall identify G 
with the corresponding anti-reflexive binary relation on 
V(G), i.e. E(G) is a subset of V(G)◦V(G) and write v G u 
for the adjacent vertices u and v (or neighbors).  

We refer to |{x ϵ V(G)|xGv}| as the degree of the 
vertex v. 

The incidence structure is the set V with partition 
sets P (points) and L (lines) and symmetric binary 
relation I such that the incidence of two elements 
implies that one of them is a point and another one is a 
line. We shall identify I with the simple graph of this 
incidence relation or bipartite graph. The pair x, y, x ϵ P, 
y ϵ L such that x I y is called a flag of incidence structure 
I. 

Let K be a finite commutative ring. We refer to an 
incidence structure with a point set P = Ps,m = Ks+m and a 
line set L = Lr,m = Kr+m as linguistic incidence structure Im 
if point x = (x1, x2 ,…, xs, xs+1, xs+2, …, xs+m) is incident to 
line y = [y1, y2, …, yr, yr+1, yr+2, …, yr+s] if and only if the 
following relations hold 

a1xs+1-b1yr+1 = f1 (x1, x2, …, xs, y1, y2, …, yr) 
a2xs+2-b2yr+2 = f2 (x1, x2, …, xs, xs+1 xs+1, y1, y2, …, yr, yr+1) 
… 
amxs+m-bmyr+m = fm (x1, x2, …, xs, xs+1, …, xs+m-1, y1, y2, …, 

yr, yr+1, …, yr+m-1) 
where aj, and bj, j = 1, 2, …, m are not zero divisors, 

and fj are multivariate polynomials with coefficients 
from K (see [22, 23]). Brackets and parenthesis allow us 
to distinguish points from lines. 

The color ρ(x) = ρ((x)) (ρ(y) = ρ([y])) of point (x) (line 
[y]) is defined as the projection of an element (x) 
(respectively [y]) from a free module on its initial s 
(relatively r) coordinates. As it follows from the 
definition of linguistic incidence structure for each 
vertex of the incidence graph there exists a unique 
neighbor of a chosen color. 

We refer to ρ((x)) = (x1, x2, …, xs) for (x) = (x1, x2, …, 
xs+m) and ρ([y]) = (y1, y2, …, yr) for [y] = [y1, y2, …, yr+m] as 
the color of the point and the color of the line 
respectively. For each b ϵ Kr and p = (p1, p2, …, ps+m) there 
is a unique neighbor of the point [l] = Nb(p) with the 
color b. Similarly for each c ϵ Ks and line l = [l1, l2, …, lr+m], 
there is a unique neighbor of the line (p) = Nc([l]) with 
the color c. The triples of parameters s, r, and m define 
the type of linguistic graph. 

We consider also linguistic incidence structures 
defined by the infinite number of equations. 

Linguistic graphs are defined up to isomorphism. 
We refer to written above equations as canonical 
equations of linguistic graphs. We consider also 
linguistic incidence structures defined by the infinite 
number of equations. Linguistic graphs are defined up to 
isomorphism. We refer to written above equations as 
canonical equations of linguistic graphs. 

We say that linguistic graph is a Jordan-Gauss type 
if the map [(x), [y]] → (f1 (x1, x2, …, xs, y1, y2, …, yr), f2 (x1, 
x2, …, xs, xs+1, y1, y2, …, yr, yr+1), …, fm-1 (x1, x2, …, xs, xs+1, …, 
xs+m-1, y1, y2, …, yr, yr+1, …, yr+m-1)) where (x)ϵKs+m, [y]ϵKr+m 
is a bilinear map into K1. So all fi are special quadratic 
maps. In the case of Jordan-Gauss graphs, the 
neighborhood of each vertex is given by the system of 
linear equations written in its row—echelon form. 

Let Im be a linguistic graph defined over the 
commutative ring K. For each bϵ Kr and p = (p1, p2, …, ps+m) 
there is the unique neighbor of the point [l] = Nb(p) with 
the color b. Similarly, for each c ϵ Ks and line l = [l1, l2, …, 
lr+m] there is the unique neighbor of the line (p) = Nc([l]) 
with the color c. We refer to the operator of taking the 
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neighbor of vertex accordingly chosen color as 
neighborhood operator. 

On the sets P and L of points and lines of the linguistic 
graph we define jump operators 1J = 1Jb(p) = (b1, b2, …, bs, 
p1, p2, …, ps+m), where (b1, b2, …, bs) ϵ Ks and 
2J = 2Jb([l]) = [b1, b2, …, br, l1, l2, …, lr+m], where (b1, b2, …, 
br) ϵ Kr. We refer to tuple (s, r, m) as the type of the 
linguistic graph I.  

We say that point (p) is a line [l] adjacent in the 
linguistic graph I if 1Jb(p)I 2Jc[l] for some colors b ϵKs and 
c ϵKr. Let ψ stand for the adjacency relation of the 
linguistic graph. We say that the linguistic graph has 
degree d, d≥2 if the maximal degree of nonlinear 
multivariate polynomials fi, i = 1, 2, …, m is d. 

Noteworthy, that the path v0, v1, …, vk in the 
linguistic graph Im_ is determined by starting vertex v0 
and colours of vertexes v1, v2, …, vk such that 
ρ(vi) ≠ ρ(vi+2) for i = 0, 1, …, k-2. 

Let us consider the sequence of colours c(1), c(2), c(3), 
c(4), c(5) where c(1) and c(4), c(5) are from Ks and c(2), 
c(4) are elements of Kr. 

Let v0 = (x) be a general point of the graph I then for 
the vertices v1 = 1Jc(1)(v0), v2 = Nc(2)(v1), v3 = 2Jc(3),(v2), 
v4 = Nc(4)(v3), v5 = 1Jc(5)(v4) the relations v0ψv3, v2 ψv5 
holds. 

We consider the tuple of colors c(1), c(2)…., c(t), t = 1 
mod 4 such that c(i)ϵKs for i = 0,1 mod 4 and c(i) ϵKr for 
i = 2,3 mod 4. 

We refer to the sequence of vertexes v1 = 1J(v0), 
v2 = Nc(2)(v1), v3 = 2Jc(3), v4 = Nc(4)(v3), v5 = 1J(v4), v6 = Nc(6)(v5), 
v7 = 2Jc(7)(v6), v8 = Nc(8)(v7), …, vt-1 = Nc(t-1)(vt-2), vt = 1J(vt-1) as 
walk on the adjacency graph with the starting point (x) and 
the colour trace c(1), c(2), …, c(t). 

For each positive integer l, we can consider graph 
Im(K) together with lIm = Im(K[y1, y2, …, yl]) defined by the 
same polynomials fi, i = 1, 2, …, m with coefficients from 
K. 

Assume that l = m+s. We can consider the walk on 
the adjacency graph ψ(K[y1, y2, …, yl]) of length 4t+1 
with starting point (y1, y2, …, ys, ys+1, ys+2, …, ym+s) and 
colours c(1), c(2), …, c(t) such that c(i)ϵK[y1, y2, …, ys]s for 
i = 0,1 mod 4 and c(i)ϵK[y1, y2, …, ys]r for i = 2,3 mod 4.  

Assume that c(t) = (h1(y1, y2, ..., ys), h2(y1, y2, …, ys), 
…, hs(y1, y2, …, ys)). 

Then v1 = (h1, h2, …, hs, g1, g2, …, gm). Let us consider 
the polynomial map I(K),c Pass, cϵ K[x1, x2, …, xs] (2t+1)s+2rt 
of K s+m to itself which sends (y1, y2, …, ys, ys+1, …, ys+m) 
to vt, i. e. the map  

y1 → h1(y1, y2, ..., ys), y2 → h2(y1, y2, ..., ys), …, ys → 
→ hs(y1, y2,...,ys), 

ys+1 → g1(y1, y2, ..., ys, ys+1, ys+2, ..., ys+m), ys+2 → 
→ g2(y1, y2, ..., ys, ys+1, ys+2, ..., ys+m), …, ys+m → → gm(y1, 
y2, ..., ys, ys+1, ys+2, ..., ys+m). 

It is easy to see that this transformation is bijective 
if and only if the map y1 → h1(y1, y2, ..., ys), y2 → h2(y1, 

y2, ..., ys), …, ys → hs(y1, y2, ..., ys), is bijective on Ks [24]. 
Defined above transformations form a semigroup I(K)SP 
of multivariate transformation. Some basic properties of 
this semigroup are discussed in [24]. 

Of course, we can use lines instead of points and define 
another semigroup I(K)SL formed by transformation of kind 
I(K), cPass, cϵ K[x1, x2, …, xs] (2t+1)r+2 ts acting on the variety Km+r. 

Remark. We may omit some operators of kind Jc(i) 
making the color c(i) to be the same as c(i – 1). 

We can treat the sequence c from K[x1, x2, …, xs]l as 
the tuple of its coordinates ci from K[x1,x2,…, xs] and 
define the degree of c as polynomials ci(x1, x2,…, xs).  

In [25] special Jordan-Gauss graph JG(r, s, m, Fq), 
q = 2t, t>1 was used for the construction of the public 
key. This linguistic graph of type (r, s, m) is obtained 
from the projective geometry PGn(Fq), i.e. the totality of 
nonzero proper subspaces of (Fq)n+1. The corresponding 
bipartite graph is obtained as an induced subgraph of 
bipartite incidence graph with the partition sets which 
are largest Schubert cells, i.e. largest orbits of UTn(Fq) 
acting on l dimensional subspaces and subspaces of 
dimension t, l ≠ t. 

Cubic public keys defined in [26U, Ch, K] used 
Jordan-Gauss graphs A(n, Fq) [27] and D(n, Fq) [28]. 
These two families of graphs were used in [1] for the 
construction of a quadratic public key. This paper also 
contains the construction of trapdoor accelerator T of 
quadratic endomorphism σ of K[x1, x2, …, xn] acting 
bijectively on Kn and defined in terms of graph D(n, K) 
where K is an arbitrary commutative ring with unity 
[23]. 

The description of the generalization of this 
construction is given below. 

Affine root system Ầ1 (A1 with wave see [29]) is the 
totality of vectors in the two-dimensional Euclidean space 
R2 with the standard basis e1 = (1, 0) and e2 = (0, 1) containing 
vectors (1, 0), (0, 1), (i, i), (i, i + 1), (i + 1, i), i ≥ 1. All multiples 
of (1, 1) are known as imaginary roots, other roots that have 
no multiples are known as real roots. 
We modify Ầ1 by adding copies (i, i)’ for each imaginary 
root (i, i), i >1. So we obtain a set Root consisting of roots 
of Ầ1 and elements (i, i)’, i>1. 

Let R1 = Root—{(0,1)} and R2 = Root—\{(1,0))\} and K be 
a commutative ring with unity. We consider sets Li = KRi, 
i = 1, 2 of all functions f from Ri, i = 0,1 to K such that 
only for finite elements x from Ri the value f(x) differs 
from zero. 

We write an element X = (x) from P = L1 as the tuple 
(x) = (x1,0, x1,1, x1,2, x2,1, x2,2, x’2, 2, …, xi, i+1, xi+1,i, xi+1,i+1, x’i+1, 

i+1, ...) where xα is the value of X on the root α from Ầ1 
and x’i,i is the value of X on (i, i)’, i>1. 

Similarly we write an element Y = [y] from L = L2 as 
the tuple 

[y] = [y0,1, y1,1, y1,2, y2,1, y2,2 y’2,2, …, yi,i+1, yi+1,i, yi+1,i+1, 
y’i+1, i+1, …] where yα is the value of Y on the root α from 
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Ầ1 and y’i,i is the value of Y on (i, i)’, i>1. We introduce 
the incidence structure (P, L, I) as the following bipartite 
graph on P U L. 

A point (x) of this incidence structure I is incident 
with a line [y], i.e. (x)I[l], if their coordinates obey the 
following relations: 

xi, i, – y i, I = x1,0 yi-1,i, 
x’i,i – y’i,i=xi, i-1y0,1, 
x i,i+1 – yi, i+1 = xi,iy0,1, 
xi+1,i – yi+1,I = x1,0y’i,i. 

(1) 

(These four relations are well defined for i>1, 
x1,1 = x’1,1, y1,1 = y’1,1). 

We start the description of the connectivity 
invariants of D(k, K). 

To facilitate notation in the future results on 
“connectivity invariants” of D(n, K), it will be convenient 
for us to define x-1,0 = y0,-1 = y1,0 = = x0,1 = 0, x0,0 = y0,0 = -1, 
x’0,0 = y’0,0 = -1, x1,1 = x’1,1, y1,1 = y’1,1 and to assume that 
our equations are defined for i≥0. 

Graphs CD(k, K) with k≥6 were introduced in [23], as 
induced subgraphs of D(k, K) with vertices u satisfying 
special equations a2(u) = 0, a3(u) = 0, …, at(u) = 0, 
t = [(k+2)/4], where u = (uα, u1,1, u1,2, u2,1, …, ur,r, u’r,r, ur,r+1, 
ur+1, r, …), 2≤r≤t, α ϵ {(1, 0), (0,1)} is a vertex of D(k, K) and 
ar = ar(u) = Σi=0,r (ui,iu’r-i,r-i -ui, i+1 ur-i,r-1-1) for every r from 
the interval [2,t]. 

We set a = a(u) = (a2, a3, …, at) and assume that D(k, 
K) = CD(k, K) if k = 2, 3, 4, 5. As it was proven in [23] 
graphs D(n, K) are edge transitive. So their connected 
components are isomorphic graphs. 

Let vCD(k, K) be a solution set of the system of 
equations a(u) = (v2, v3, …, vt) = v for certain vϵ Kt-1. It is 
proven that each vCD(k, K) is the disjoint union of some 
connected components of graph D(n, K). 

If K is a commutative ring with unity of odd 
characteristic then vCD(k, K) is the actual connected 
component of the graph (see [30]).  
If K is a finite field of even characteristics of order ≥ 8 
then vCD(k, K) is the actual connected component of the 
graph (see [31]). 

Let us consider the following graphs DT(k, K) 
associated with D(n, K) and subset T = {j(1), j(2), j(s)} of 
{2, 3, …, [(k+2)/2]} via the following procedure. 

Delete coordinates of points and lines indexed by 
roots (i(l), i(l))’, l = 1, 2, ..., s together with corresponding 
equations of kind x’i(l),i(l) -y’i(l), i(l) = ..., = 1, 2, ..., s. 

Substitute equations xi(l)+1,i(l) – yi(l)+1,i(l)=x1.0y’i(l), i(l) by xi(l)+1,i(l) 
– yi(l)+1,i(l)=x1.0yi(l), i(l). the last action is just a deletion of the 
prime symbol on the righthand side of the equation. 

Proposition. Graphs DT(k, K) are Jordan-Gauss graphs 
of type (1, 1, n-m-1) where m is a cardinality of T. 

Polynomials ai(v) where 1<i<j(1) are connectivity 
invariants of vertex v (point or line) of the vertex v from 
DT(k, K) or D(k, K). 

Let G be a t-regular simple graph and v be the vertex 
from V(G). We say that k is the local depth of the vertex 
v if the induced graph of all vertices at distance ≤k is a 
tree and the graph on vertices at the distance k+1 has a 
cycle. 

The depth of G is the maximal local depth. 
Computer simulation supports the conjecture that 

the depths of graphs D(k, K) and DT (k, K) are the same. 
It is known that the depth of D(k, K) is at least [(k+3)/2]. 

Let us renominate the coordinates of points and line 
of DT (k, K) with one variable index i according to the 
lexicographical order on roots of Ầ1. So we have point 
(x1, x2, ..., xk-m) and line [y1, y2, ..., yk-m] of linguistic graph. 

We take the “symbolic” line [y1, y2, ..., yk-m] of this 
graph and consider the infinite graph DT (k, K[y1, y2,..., 
yk-m]). We use the presented above technique to 
associate with this graph the polynomial 
transformations acting on K, but slightly modify the 
procedure. 

Let ℾ(n, K), n=k-m be one of the graphs DT (k, K). The 
graph ℾ(n, K) has so-called linguistic coloring ρ of the 
set of vertices. We assume that ρ(x1, x2, …, xn) = x1 for the 
vertex x (point or line) given by the tuple with 
coordinates x1, x2,…, xn. We refer to x1 from K as the color 
of vertex x. 

Recall that Na and Ja are operators of taking the 
neighbor with color a and jump operator changing the 
original color of point or line for new color a from K.  

Let [y1, y2, …, yn] be the line y of ℾ(n, K[y1, y2, …, yn]) 
and (ᾳ(1), ᾳ(2), …, ᾳ(t)) and (β(1), β(2), …, β(t)) are the 
sequences of colours from K[y1] of the length at least 2. 
We consider the sequence 0v = y, 1v = Jᾳ(1)(0v), 
= 2v = Nβ(1)(1v), 3v = Nᾳ(2)(2v), 4v = Nβ(2)(3v), 5v = Nᾳ(3)(4v), …, 
2t- 2v=Nβ(t-1)(2t-3v), 2t-1v=Nᾳ(t)(2t-2v), 2tv=Jβ(t)(2t-1v).  

Assume that v = 2tv = [v1, v2, …, vn] where vi are from 
K[y1, y2, …, yn]. We consider polynomial transformation 
g(ᾳ(1), ᾳ(2), …, ᾳ(t), β(1), β(2), …, β(t)), t ≥2 of affine space 
Kn of kind y1 → y1+β(t), y2 → v2(y1, y2), y3 → v3(y1, y2, 
y3), …, yn → vn(y1, y2, …, yn). 

It is easy to see that g(ᾳ(1), ᾳ(2), …, ᾳ(t), β(1), β(2), …, 
β(t))•g(γ(1), γ(2), …, γ(s), σ(1), σ(2), …, σ(t)) = g(ᾳ(1), ᾳ(2), 
…, ᾳ(t), γ(1)(β(t)), γ(2)(β(t)), …, γ(s)(β(t)), β(1), β(2), …, β(s), 
σ(1)(β(t)), σ(2)(β(t)), …, σ(s)(β(t)). 

The following statements are formulated in [1] in 
the case of graph D(k, K) but they hold for arbitrary 
graph DT (k, K). 

Proposition 1. Transformations of kind g = g(ᾳ(1), 
ᾳ(2), …, ᾳ(t), β(1), β(2), …, β(t)), t ≥2 generate a semigroup 
S(ℾ(n, K)) of transformations of Kn. 

Lemma 1. The degree of transformation g of the 
Proposition 1 is at least [deg(ᾳ(1))+deg(ᾳ(1)-
ᾳ(2))+deg(ᾳ(2)-ᾳ(3))+… +deg((ᾳ(t-1)-
ᾳ(t))]+[deg(β(1)+(deg(β(1)-β(2))+ +(deg(β(2)-
β(3))+…(deg(β(t-2)-β(t-1))]. 
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Lemma 2. Transformation g as in the Proposition 1 is 
bijective if and only if β(t)(x) = a has a unique solution for 
each a from K. 

Proposition 2. Transformations of kind ng = g(ᾳ(1), 
ᾳ(2),…, ᾳ(t), β(1), β(2), …, β(t)), t≥2 such that deg(ᾳ(i)) = 0 
and β(i) = y1+c(i), c(i)ϵK generate a subgroup 2G(ℾ(n, K)) 
of transformation of maximal degree 2. 

Remark 1. The inverse element of ng = g(ᾳ(1), ᾳ(2),…, 
ᾳ(t), β(1), β(2), …, β(t)), t ≥2 as in the Proposition 2 can be 
written as ng(ᾳ(t), ᾳ(t-1), …, ᾳ(1), β(t-1)(β(t)-1), β(t-2)(β(t)-

1, …, β(1)(β(t)-1), β(t)-1). 
Remark 2. In the case of two quadratic 

transformations of Kn of “general position,” their 
composition will have degree 4. 

We associate with the sequence ᾳ(1), ᾳ(2), …, ᾳ(t), 
β(1), β(2), …, β(t-1) of Proposition 2 and β*(t) = f(y1, y2, …, 
yn) of degree 2 another quadratic transformation 
h = H(ᾳ(1), ᾳ(2), …, ᾳ(t), β(1), β(2), …, β(t-1), β*(t)) 
constructed via the sequence of vertices 0v, 1v, 2v, …, 2t-

2v = = Nβ(t-1)(2t-3v), 2t-1v=Nᾳ(t)(2t-2v). We compute 2tv = Jβ*(t)(2t-

1v) = v and define h as the quadratic map yi → vi, i = 1, 2, 
…, n. 

Theorem 1. Let K be the finite field Fq, q = 2r, r>1. 
Then transformation h = h(ᾳ(1), ᾳ(2), …, ᾳ(t), β(1), β(2), 
…, β*(t)) for which deg ᾳ(i) = 0, i = 1, 2, …, t, β(i) = y1+c(i), 
c(i)ϵK, i = 1, 2, … t-1 and β*(t) = (y1)2 is a bijective 
quadratic transformation of the vector space (Fq)n, the 
polynomial degree of its inverse transformation is at least 
2r-1. 

We use the modifications of transformation 
Theorem 1 for the construction of quadratic public keys. 

Algorithm 1. Alice selects commutative ring K with 
unity and K* of order >2 together with parameters k, m. 
She selects T = {j(1), j(2),…, j(m)} and works with the 
graph DT(k, K). Let us assume that j(1)>3. 

Alice selects two transformations L1 and L2 from the 
group AGLn(K). She takes t = O(n), 2<t <[(n+3)/2] and 
selects the parameters α1, α2 = α1+d(1), …, α3 = α2+d(2), …, 
αt = αt-1+d(t-1) where parameters d(i) are elements of K*, 
β1 = y1+c(1), β2 = y1+c(2), …, βt-1 = y1+c(t-1) where 
elements c(1)-c(2), c(2)-c(3), …, c(t-2)-c(t-1) are elements 
of K*. Alice forms β* as a polynomial of kind 

d((d’ y1+Σi=2,3,…, i(1)-1ai([α2, y1, y2, …, yn])λi+λ)r+ Σi=2,3,…, 

i(1)-1ai([α2, y1, y2,…, yn])μi+ μ) 
where dϵK*, d’ϵK*, r = 2 if the order of K* is odd, 

r = 1 if K* has even order, and elements λi, λ, μi, and μ can 
be arbitrary elements from K. 

She has to select β* as a nontrivial multivariate 
polynomial of degree 2.  

Alice uses the transformation h = H(ᾳ(1), ᾳ(2), …, 
ᾳ(t), β(1), β(2), …, β(t-1), β*(t)) and compute the standard 
form of G = L 1H(ᾳ(1), ᾳ(2), …, ᾳ(t), β(1), β(2), …, β(t-1), 
β*(t)) L2 of kind y1 → g1(y1, y2, …, yn), y2 → g1(y1, y2,…, 
yn), …, yn → gn(y1, y2, …, yn). 

Alice sends the multivariate polynomials gi to Bob via 
the open channel. He will use it to encrypt the plaintext 
from Kn.  

Private Decryption Procedure. Let us assume that 
Alice gets the ciphertext c from Bob. 

At the beginning, Alice forms an intermediate tuple 
L1(p) = [y1, y2, ..., yn] and treats its coordinates as 
variables yi.  

She computes the vector b = (L2)-1(c ) = (b1, b2, ..., bn). 
She forms the tuple (ᾳ(t), b2, b3, …, bn) = u and 

computes invariants ai(u) for i = 2, 3, …, i(1)-1. Alice 
computes Σi=2,3,…, i(1)-1ai(u)λi+λ = t(1) and Σi=2,3,…, i(1)-1ai(u) μi+ 
μ = t(2) which coincide with the Σi=2,3,…, i(1)-1ai([α2, y2, y3, …, 
yn])λi+λ and Σi=2,3,…, i(1)-1ai([α2, y2, y3, …, yn])μi+μ) 
respectively. 

She solves d((d’y1+t(1))r+t(2) = b1 for y1 and gets the 
solution y1 = y*1. 

She computes β*(t-1) = y*1+c(t-1), β*(t-2) = = y*1+c(t-
2), …, β*(1) = y*1+c(1). 

Alice computes Nβ*(t-1)(u) = 1u, Nα(t-2)(1u) = 2u , Nβ*(t-2)( 

2u) = 3u, 
Nα(t-3)(3u)=4u, …, Nβ*(1)(2t-4u)=2t-3u, Nα(1)=(α(1), y*2, y*3, …, 

y*n). So Alice gets the intermediate tuple [y1, y2, …, 
yn] = y*1, y*2 ,..., y*n] = y*. 

She computes the plaintext [p] as (L1)-1(y*). 

3. Special endomorphisms of K[x1, 
x2 …, xn] and cryptosystems of 
post quantum cryptography 

3.1. Some definitions 

Affine Cremona Semigroup nCS(K) is defined as an 
endomorphism group of polynomial ring K[x1, x2, ..., xn] 
over the commutative ring K. It is an important Cremona 
object of Algebraic Geometry (see Max Noether paper 
[32] about Mathematics of Luigi Cremona who was the 
prominent figure in Algebraic Geometry in the XIX 
century, [33] and further references on papers which use 
the term affine Cremona group). Element of the 
semigroup σ can be given via its values on variables, i.e. 
as the rule xi → fi(x1, x2, …, xn), i = 1, 2,…, n. This rule 
induces the map σ’: (a1, a2, ..., an) → (f1(a1, a2,.., an), f2(x1, 
x2, …, xn), …, fn(x1, x2, …, xn)) on the free module Kn. 
Automorphisms of K[x1, x2, ..., xn] form affine Cremona 
Group nCG(K). 

Let nES(K) stands for the semigroup of all 
endomorphisms of K[x1, x2, …, xn] of kind  

x1 → ϻ1x1 a(1,1) x2 a(1,2) … xn a(1,n),  
x2 → ϻ2x1 a(2,1) x2 a(2,2) … xn a(2,n), 
… 
xn → ϻnx1 a(n,1) x2 a(n,2) … xn a(n,n), 

(1) 

where K is a finite commutative ring with the 
multiplicative group K* of regular elements (nonzero 
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divisors) of the ring. a(i, j) are elements of arithmetic 
ring Zd, d=|K*|, ϻiϵK*. 

We consider the natural action of Eulerian 
semigroup nES(K) on the set nE(K) = (K*)n. Let nEG(K) 
stand for the Eulerian group of invertible 
transformations from nES(K). They act as bijective maps 
on the variety (K*) n. 

We can use the following method of generating 
invertible elements. 

Let π and δ be two permutations on the set {1, 2, ..., 
n}. Let us consider a transformation of (K*)n, d = |K*|. 
(the most important cases are K = Zm or K = Fq). We 
define transformation AJG(π, δ), where A is a triangular 
matrix with positive integer entries 0≤a(i,j)≤d, i≥j 
defined by the following closed formula. 

yπ(1) = ϻ1xδ(1)
a(1,1) 

yπ(2) = ϻ2 xδ(1)
a(2,1) xδ(2)

a(2,2)
  

… 
yπ(n) = ϻn xδ(1)

a(n,1) xδ(2)
a(n,2)

 …xδ(n)
a(n,n)  

where (a(1,1),d)=1, (a(2,2),d)=1, …, (a(n,n),d)= =1. 
We refer to AJG(π, δ) as Jordan—Gauss multiplicative 
transformation or simply JG element. It is an invertible 
element of nES(K) with the inverse of kind BJG(δ, π) such 
that a(i,i)b(i,i)=1 (mod d). Notice that in the case K= Zm 
straightforward process of computation of the inverse of 
the JG element is connected with the factorization 
problem of integer m. 

3.2. Some algorithms 

So Alice can generate the element J as a product of 
several Jordan Gauss transformations. The simplest case 
in the spirit of LU factorization is the composition of 
lower and upper triangular transformations. 

The cryptosystem is the following procedure. 
Alice can select several Jordan-Gauss 

transformations J1, J2, …, Jd, d>1 from mEG(K) and 
compute their product J. One of the options is to send J 
to public user Bob. It looks like the security of such a 
cryptosystem depends on the choice of commutative 
ring K (see [34]). 

We suggest the following use J as a public rule. 
Public user works with the space of plaintexts (K*)m. 
The idea to use polynomial map F of bounded degree 

with the trapdoor accelerator T is used in [dop], [arch] 
for the construction of multivariate public key in the 
case of special rings K = Fq and K = Zq. These schemes 
use cubic endomorphism F of K[x1, x2, ..., xn] with the 
trapdoor accelerator T defined in terms of graphs D(n, K) 
(or their homomorphic images A(n, K)). We suggest the 
following modification of these algorithms. 

3.3. Multivariate public key of 
unbounded degree 

Alice selects the finite commutative ring K with unity. 
She selects parameter n to work with the 
endomorphisms of K[x1, x2, ..., xn]. Alice takes positive 
integer d = O(1), d>2 and selects Jordan-Gauss 
multiplicative transformations J1, J2, ..., Jd,. She computes 
their inverses (Jj)-1 and the composition J = J1J2, ..., Jd 

Alice takes parameters m and k such that n = m-k. 
She selects graph DT(m, K) such that T contains k 
elements. 

Alice chooses affine and transformations L1 and L2 
from 

AGLn(K). She forms ᾳ(1), ᾳ(2), …, ᾳ(t), β(1), β(2), …, 
β(t-1), β*(t) of Algotithm 1 of section 2. Alice uses the 
transformation G = L1H(ᾳ(1), ᾳ(2), …, ᾳ(t), β(1), β(2), …, 
β(t-1), β*(t)) L2. 
She computes the standard form F of JG which has linear 
degree O(n) and density O(n4).  

Alice sends F to public user Bob. 
Correspondents Alice and Bob use the variety (K*)n 

as the space of plaintexts and a free module (K)n as the 
space of ciphertexts. 

Bob writes the plaintexts p = (p1, p2, ..., pn) in the 
alphabet K*. He sends the ciphertexts c = F(p) to Al ice. 

Alice computes u = G-1 (c) according to her private 
decryption procedure of Algorithm 1. Noteworthy that 
u is an element of (K*)n. 

Alice computes consequtively  
du = Jd(u), 
d-1u = Jd-1(du), ..., 1u = J1(2u) = p. 

4. Conclusions 
Multivariate Cryptography in a wide sense is about 
constructions and investigations of Public Keys in the 
form of nonlinear Multivariate rules defined over some 
finite commutative ring K.  

This rule F has to be written as transformation 
xi → fi, i = 1, 2, ..., n, fi ϵ K[x1, x2, ..., xn] over the 
commutative ring K. Bijective F can be used for the 
encryption of tuples (plaintexts) from the affine space 
Kn. Multivariate rules can serve as instruments for the 
creation of digital signatures. In the case of bijective 
transformation, the decryption process can be thought 
of as an application of inverse rule G. The degree of G 
can be defined as the maximum of degrees of 
polynomials G(xi), i = 1, 2, ..., n. For the usage of given 
publicly, F as an efficient and secure instrument its 
degree of has to be bounded by some constant c 
(traditionally c = 2) but the polynomial degree of the 
inverse G has to be high.  

The key owner (Alice) is supposed to have some 
additional piece S of private information about pair (F, 
G) to decrypt ciphertext obtained from the public user 
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(Bob). Recall that the family Fn, n = 2, 3, ... from K[x1, x2,..., 
xn] has trapdoor accelerator nS if the knowledge of the 
piece of information nS allows to compute reimage x of 
y = Fn(x) from Kn in time O(n2). Of course, the concept of 
trapdoor accelerator is just an instrument to search for 
practical trapdoor functions. As you know the existence 
of theoretical trapdoor functions is just a conjecture. It 
is closely connected to the Main Conjecture of 
Cryptography about the fact that P ≠ NP. 

Without the knowledge of Sn one has to solve a 
nonlinear system of equations which generally is an NP-
hard problem. The finding of the inverse for Fn is an NP-
hard problem if these maps are in the so-called “general 
position”. In the case of specific maps additional 
argumentation of the complexity to find inverses Gn can 
be useful. 

We present such heuristic arguments in the case of 
DT(n, K) based encryption defined for arbitrary 
commutative ring K with unity with at least 3 elements 
and presented in the previous section. Subset T can be 
viewed as part of the corresponding trapdoor accelerator 
nS. 

Graphs DT(n, K) have partition sets Kn (set of points 
and set of lines), and the incidence relation between 
points and lines is given by the system of linear 
equations over K.  

To define the trapdoor accelerator for standard 
forms Fn, n = 2, 3, ... we use special walks on graphs DT(n, 
K) and DT(n, K[x1, x2, ..., xn]). The constructed map Fn acts 
on the selected partition set Kn. In the case of trivial 
affine transformations L1 and L2 the relation Fn(x) = y for 
x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) vertices x and y are 
joint in the graph DT(n, K) by the path of length >cn, 
where c is positive constant. 

Finding the path will give us the trapdoor 
accelerator for the computation of preimages. This can 
be done by the Dijkstra algorithm of complexity O(v 
ln(v)) where v is the order of graphs. It could not be done 
in polynomial time because v = 2|K|n and |K|≥3. 
Noteworthy that the usage of nontrivial L1 and L2 will 
complicate the cryptanalysis. 

Noteworthy that any nonlinear system of 
multivariate equations of of constant degree d over a 
finite field can be rewritten as a quadratic system with 
extra variables. 

Studies of quadratic multivariate public rules over 
finite rings with zero divisors is an interesting task for 
cryptanalysts. Arithmetical rings modulo 2s is an 
important practical task because several natural 
alphabets for the presentation of files in informatics 
have size which is the power of 2. We are looking for the 
K-theory of multivariate cryptography and presenting 
the public rule defined over a general finite commutative 
ring with unity. 

We believe that studies of multivariate public rules of 
polynomial degree in variable n and the polynomial 
density are also interesting areas of research. 

So we present a new cryptosystem from this area 
obtained via the composition of the Eulerian map of 
unbounded degree O(n) with the constructed quadratic 
endomorphism of K[x1, x2, ..., xn] with the trapdoor 
accelerator. 
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