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Abstract 
All known algorithms of cryptographic systems, which have the property of interference resistance, are 
based on codes that detect and correct errors. This work proposes a study of stochastic codes for their 
potential use in cryptographic system algorithms. For stochastic codes, there is a “copy” decoding 
algorithm when two or more values of a code block of a stochastic code, including (n, n–1) is a code 
with the detection of errors that are the same during their transmission, it is possible to carry out joint 
decoding of the extended code with bug fixes. Furthermore, the number of errors that can be corrected 
in a single block of the extended code is significantly higher than the total number of errors that can be 
corrected in each block. To simplify the comparative analysis, we converted the given value Pq to the 
probability of flipping the binary symbol P0. We estimated this probability for different degrees of error 
grouping using the Portov model with the coefficient a. 
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1. Introduction 
The introduction of modern information technologies 
into the everyday life of society has caused problems in 
ensuring information security [1, 2]. One of the solutions 
to this problem is the widespread use of cryptography [3, 
4]. At the moment, strict technological requirements are 
imposed on cryptographic algorithms not only in terms of 
stability but also in terms of speed [5]. 

The need to maintain the high performance of 
automated systems after protection mechanisms are 
implemented has led to increased speed requirements. Ease 
of hardware implementation is necessary to reduce the 
cost of encryption tools, which will contribute to their 
mass application and wider possibilities of embedding in 
portable equipment. Given the specific way that 
information is presented in digital devices, blockciphersare 
of particular interest.  

Their problem oriented use in the devices and systems 
mentionedabovecanprovide effective protection against 
cyberthr eats. Thus, the development of problem-oriented 
encryption systems is an important and urgent task of 
applied cryptography [6]. Codes that detect and correct 
errors are the backbone of all known cryptographic systems 
that possess interference resistance properties [7]. 
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The best-known public-key cryptosystem based on 
algebraic coding theory is McEliece’s cryptosystem based 
on a class of error-correcting codes called Goppa codes. 
The basic idea is to create a Goppa code and disguise it as 
a regular linear code. There is a fast algorithm for 
decoding Goppa codes, but the general problem of finding 
codewords of this weight in a linear binary code is an NP-
complete task [8]. 

Analysis of the crypto resistance of this algorithm 
indicates that to ensure reliable protection of information, 
the in imum parameter values required are n = 1024 and 
k = 524. The protected properties of the algorithm are 
contingent on the parameter t, which must be chosen such 
that t>50. This value is optimal for channels because the 
error probability is only 10-4 [8]. For reliable cryptographic 
protection, it is necessary to obtain the decoding 
complexity that would meet modern cryptographic 
standards (of the order of 250). To ensure there is required 
decoding complexity in the analyzed cryptosystem, it’s 
necessary to use 750-800 columns in the check matrix of the 
Goppa code [9]. 

As can be seen from the above analysis, meeting the 
necessary limit requirements for system parameters 
ensures fairly reliable cryptographic protection of 
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information. For instance, the durability of McEliece’s 
system is. 

Demonstrated by the fact that despite multiple tempts 
to cryptanalysis, none of them have been successful. Despite 
their interference resistance, several coding algorithms used 
for detecting and correcting errors introduce artificial 
information redundancy [10]. This can be a major drawback 
of interference-resistant codes. This circuit stance leads to a 
significant increase in the ciphered text compared to the 
original (in the McEliece system, by a fact or two). 
Furthermore, the public key in the MacEliece and 
Niederreiter systems is quite large by modern standards, at 
219 bits [11]. 

Jam-resistant crypto-algorithms shave high 
requirements for hardware [12], speed [13], memory, and 
security. These requirements depend on the properties of 
the applied code algorithms that use artificial redundancy. 

2. Statement of research problem 

2.1. Self-resistant coding in transmission 
channels 

The main works of С. Shannon [14], in which the tasks of 
interference-resistant information transmission with any 
predetermined accuracy of information transmission are 
formulated, proposes to use the principle of randomness of 
the used signals as a solution to these tasks. For 
interference-resistant information transmission, it is 
proposed to use random (n, k)-codes, formed by randomly 
selecting from 2n possible binary combinations of length n 
2k combinations, each of which is identified with one of the 
information combinations of length k. Using this model of 
signals for transmission over a communication channel, С. 
Shannon proved a theorem about the possibility of 
transmitting information over a communication channel 
with a probability of error that depends on the parameters 
n and k, and which can be made arbitrarily small by 
choosing the appropriate values for these parameters. The 
proof of this theorem was of fundamental importance for 
the creation of the theory of interference-resistant coding, 
although it did not give constructive suggestions about the 
implementation of such a possibility [15]. 

In practice, a relatively small group of algebraic 
interference-resistant codes is used: Bowes-Choudhury-
Hockingham (BCH) codes, Reed-Solomon (RS) codes, and 
convolutional codes. The most widely used cyclic codes 
with error detection, are a partial case of BCH codes and are 
used in standard X.25/2 protocols (LAP-B, LAP-M). RS codes 
with error correction in radio communication channels are 
being used. Convolutional codes are widely used in satellite 
communication channels, which are characterized by the 
independent nature of errors. Codes with error correction 
are not widely used due to the complexity of implementing 
error correction, and the high dependence of the probability 
of a decoding error on the law of error distribution. 

In the works on information theory and interference-
resistant coding, written in the 70s, codes with error 
correction were considered. First, codes based on 
С. Shannon’s random codes, then algebraic codes. This is 
explained by the achievement of higher characteristics 
when transmitting information with error-correcting codes, 

compared to the currently widely used error-detecting 
codes. The transition from correction codes to error 
detection codes can be explained by several main reasons: 

 Firstly, the greater computational complexity of 
implementing an error-correcting codec. 

 Secondly, the need to match the type and 
parameters of the error-correcting code with the 
conditions of information transmission, that is the 
intensity and distribution law of errors in the used 
communication channel. 

 Thirdly, the use of, as a rule, high-quality 
channels, a high degree of development of the 
necessary technical solutions for the 
implementation of the cyclic code in the developed 
microcircuits for connection with communication 
channels produced by several companies and the 
standardization of channel-level protocols, which 
include the implementation of the cyclic code [14]. 

Therefore, to consider the alternative of using codes 
with error correction, it is worth looking for significant 
reasons for such a transition. Let’s formulate the properties 
of error-proof code with error correction that allow us to 
talk about such an alternative, and then consider a possible 
option for building and using such a code. So, such code 
should have the properties: 

 The code has error detection and error correction 
modes, providing in both modes a guaranteed 
(predetermined) probability of decoding with an 
error in an arbitrary communication channel and 
a reliable rejection of decoding when the error 
cannot be corrected. 

 The code has such a correcting ability and allows 
you to choose such parameters n and k that the 
information transmission algorithm that uses 
them is characterized by no worse probabilistic-
temporal characteristics in comparison with the 
use of alternative codes. 

 The code provides, in the error correction mode, 
the selection of a part of the correctly received 
symbols with a specified accuracy, even if the 
error multiplicity exceeds the code’s correction 
ability. 

 The code allows you to decode several copies 
(identical in terms of the information content of 
the code blocks) of the block with an efficiency 
that exceeds the efficiency of decoding the source 
code with the detection or correction of errors. 
This property can be used to work in parallel 
channels when multiple transmissions of a 
message on a single channel or in a channel with 
feedback when processing copies after receiving a 
repeated block. 

 Code encoding and decoding procedures contain 
only modulo two operations. 

 The coding method should have properties of the 
randomness of signals at the encoder output, 
which provide a joint solution to the problems of 
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ensuring interference resistance in C. Shannon’s 
formulation. 

The implementation of such a statement of the task will 
allow: 

 To expand the spectrum of used communication 
channels according to the permissible level of 
channel quality due to the use of channels of 
reduced quality. 

 Ensuring the guaranteed probability of the level 
specified by the consumer (10- 9, 10-18, 10-27) in 
case of any type of distortion in the 
communication channel. 

 To remove the problem of accuracy (probability) 
of information when creating global hyper-
informational spaces under the condition of 
information transmission via almost any 
communication channels. 

 To ensure a return to C. Shannon’s classic 
statement in solving the problems of interference 
resistance but within the framework of a single 
information transformation algorithm. 

Interference-resistant coding is effective among the 
known methods of increasing the reliability of message 
reception, but its use in a complex interference 
environment caused by the active influence of radio-
electronic warfare means is limited because in such 
conditions it can lead to an increase in the number of 
errors at the decoding stage (the effect of error 
multiplication) [16]. In this case, it is advisable to use the 
majority coding principle, which allows you to avoid the 
effect of multiplying errors. 

The majority principle consists of the fact that an odd 
number of times the same message is sent to the channel, 
and on the receiving side, code combinations of the same 
name (or binary digits of the same name) are compared 
with each other. At reception, the code combination (or 
bit) that has been received the most number of times is 
chosen [17]. 

The disadvantage of majority coding is the 
redundancy of information, which increases in 
proportion to the number of repetitions of the same 
message (bit), therefore, when using it, it is necessary to 
take into account the time limits on the transmission of 
messages. 

It is worth noting that for telemetry systems, 
monitoring of remote objects, control systems of 
unmanned aerial vehicles, and other special purpose 
systems, in addition to increasing the reliability of 
information reception, an especially important task is to 
ensure the information confidentiality of message 
transmission. One of the approaches that allows solving 
such tasks is the use of Combined Random Coding (CRC) 
[18]. 

The method of combined random coding, which is 
proposed in [19], involves the use of a combination of 
interference-resistant coding and a pseudo-random 
change of the ensemble of code combinations—
stochastic coding of information. At the same time, high 

reliability of message transmission is ensured due to 
tamper-resistant coding, and information secrecy and 
protection against unauthorized access—due to coding, 
which refers to non-cryptographic methods of 
information protection. With CRC, the information-
theoretic level of information protection is provided, 
which is determined by the level of uncertainty of the 
choice of an ensemble of code combinations 
corresponding to the transmitted message, for an 
attacker who carries out radio interception [20]. 

2.2. Construction and properties of error-
correcting stochastic codes 

In the 1980s, work was started on the creation of a new 
design of codes that fit into the structure of existing data 
transmission networks, to increase the technical and 
economic effect when transmitting information through 
communication channels of different quality [21]. The 
work resulted in the creation of designs and algorithms for 
coding and decoding q stochastic codes with error 
correction. These codes are based on the formation of binary 
codes for communication channels of varying quality [22]. 

The following estimates are valid for these codes, 
confirmed by theoretical studies and test statistics of 
practically implemented complexes [23]: 

a) the code provides a predetermined probability 
(guaranteed probability of a decoding error) both when 
detecting and when correcting errors, related to the 
selected length of the q-symbol and the allowed number 
of corrected errors and relative to the maximum possible 
number of corrected errors t associated with the code 
distance of the original binary code d, 

𝑡 = 𝑑 − 2 (1) 

This property can be used in duplex and simplex 
communication channels. 

b) in a system with feedback [15], which employs a 
duplex data transmission channel, the error correcting code 
provides the following benefits (see the tables below): 

 An increase in the relative (effective) speed of 
information transmission, in comparison with 
the use of error-detecting codes, in the entire 
range of possible channel quality (that is, 
always) [24]. 

 A higher probability of successful decoding of 
the code block in case of error correction, about 
the error detection mode; at the same time, the 
data transmission channel acquires the 
properties of a real-time channel (“tempo” 
channel) [25], where information is transmitted 
with a much smaller number of repetitions, 
which maximally satisfies the requirements for 
combining data transmission and speech in one 
channel (digital speech transmission is critical 
to repetitions) [26]. 

c) the encoder output signal has the character of 
“white noise,” because not one randomly selected (n, k) 
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code is used, but an ensemble of codes, where a code 
change occurs at each successive code block [27]. 

d) in the presence of two or more values in the 
receiver that are a priori the same before coding on the 
transmitting side of the code blocks (first transmission 
and repetition on request in the feedback system or 
multiple transmission of the block in single-channel and 
multi-channel simplex systems—“copies” of blocks) 
there are algorithms for decoding copies that make it 
possible to significantly increase the reliability of 
message delivery in conditions of intense interference in 
communication channels [27]. 

As a result, it is claimed that the considered 
construction of codes has a scope that coincides with the 
scope of the application of information systems and 
telecommunications technology in general. 

Below are the main properties of error-correcting 
stochastic codes with a guaranteed probability of a 
decoding error [28]. 

The code base is selected q = 232, which means, the 
binary length of the q-symbol is 32 bits, and the number 
of such symbols in the block is n and k. 

The probability of an error [29] in decoding stochastic 
q-codes does not depend on the type and nature of 
distortions and is mainly related to the value of q as in the 
error detection mode (n, n-1)—code (with one redundant 
symbol), and in error correction mode [30]. With the 
selected base q, the probability of an error after decoding 
does not exceed any type of twists  

𝑃௦ < 𝑞ିଵ = 2ିଷଶ < 10ିଽ (2) 

The number of corrected errors t is related to the code 
distance d of the original binary code by the ratio t = d-2 
and approximately corresponds to the number of 
corrected errors of the Reed-Solomon code with the same 
parameters n and k [31]. 

Note that these codes correct errors in a probabilistic 
sense. Specifically, errors are always corrected in multiples 
of 1 (when the 1 q-symbol is twisted), while errors in 
multiples of 2 or more are corrected with a controlled 
probability that depends on the code. It is important to note 
that decoding errors or failures are still possible, but in 
practical implementation, these probabilities can be reduced 
to desired values. The decoding and encoding of the 
stochastic codes use only binary operations with q-symbols 
[32, 33]. Since the number of decoding operations does 
not depend on q, as q increases, the number of operations 
per 1 bit of transmitted information decreases [34]. The 
number of decoding operations with error correction per 
block of q-code can be of the order of magnitude of bn 
binary operations with length operands 

𝐿 = − log 𝑞, (𝐿 = 32), (3) 
where the coefficient b = 5–10. In the calculation of 1 

bit of transmitted information, the number of operations 
decreases by L times and has a value of less than 1 op/bit 
[35]. In the error detection mode for (n, n–1) q-code, the 
number of encoding and decoding operations is minimal 
and is n binary operations with operands of length L [36]. 

That is, for the code (16, 15) at q=232, the number of 
binary encoding (decoding) operations is 16 per block of 
length 16×32 = 512 bits. 

The probability of successful decoding of the code block 
(Pr(1)) from the first transmission and the effective speed 
[37] can be calculated using the following formula: 

𝑅 =
𝑘 ∗ 𝑁

𝑛 ∗ 𝑁௧
 (4) 

where Nr and Nt are the number of received and 
transmitted blocks, respectively. 

For stochastic codes, there is a “copy” decoding 
algorithm, when for two or more values of a code block of 
a stochastic code, including (n, n–1)—a code with the 
error detection that is the same during their 
transmission, it is possible to carry out joint decoding of 
the extended code with error correction [35, 36]. At the 
same time, the number of errors corrected in the block of 
the extended code significantly exceeds the number of 
errors corrected in total in each block [38, 39], for 
example, if the source code corrects t = 2 errors, then 
when the source block is repeated 2 times in an extended 
block, at least 6 twisted q-symbols are corrected, with 
three repetitions—at least 10 symbols, etc. At the same 
time, the guarantee of the reliability of the decoded 
information is preserved [40]. 

The copy decoding mode is most promising in simplex 
radio channels, particularly those with low-quality 
communication channels and intense radio interference. It 
is also effective in duplex channels that employ joint 
decoding of previously decoded and repeated blocks [41]. 
The temporal (or pace) characteristics of the code depend 
on two factors: the effective transmission speed Ref and the 
probability of the block being successfully delivered in the 
first (or subsequent) transmission [42]. 

2.3. Comparative characteristics of 
stochastic codes with error 
correction, and obtained results 
of hardware and software tests 

We conducted bench tests of stochastic codes using a 
software simulator of communication channel errors. The 
results of the set tests are presented in Tables 1, 2, and 3.  

Table 1 
The results of bench tests of stochastic codes obtained 
using a software simulator of communication channel 
errors 

Code 

Ch
an

n
el

 q
u

al
it

y 

Рq 
Р0 

α = 0 α = 0,3 α = 0,5 

1/2 0,02142 0,05942 0,11532 

1/4 0,00895 0,02511 0,04958 

1/8 0,00416 0,01173 0,02332 

1/16 0,0020 0,0057 0,0113 

1/32 0,0009 0,0028 0,0056 

1/64 0,0005 0,0014 0,0028 

1/128 0,00025 0,00069 0,00139 
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During the tests, different values of the probability of 
twisting in the q-symbol channel (Pq) were used. The values 
were chosen randomly and ranged from once every two 
symbols (1/2) to once every four symbols (1/4), and soon. To 
simplify the comparative analysis, we estimated the 
probability of twisting the binary symbol (P0) for different 
degrees of error grouping based on the given value of Pq. We 
used the Purtov model with the coefficient “a” to estimate 
this probability. Specifically, we considered three different 
values of “a”: 0 for independent errors, 0.3 for weak 
grouping in the leading channel, and 0.5 for strong grouping 
in the radio channel. 
 

 
Figure 1: Channel quality for different degrees of error 
grouping with coefficient α 

 

 
Figure2: Dependence of the effective speed (Ref) on the 
probability of distortion in the q symbol channel Pq for codes 
(4,3), (8,7), (8,4), (16,15), and (32,3) 
 

 
Figure 3: Dependence of the effective speed (Ref) on the 
probability of distortion in the q symbol channel Pq for codes 
(8,2), (16,11), (15,11), (16,7) and (32,26) 

 

 
Figure 4: Dependence of the probability of reception of the 
block Рr (1) value of the probability of distortion in the 
channel of the q-symbol Pqfor codes (4,3), (8,7), (16,15), 
(32,3) and (8,4) 

 

 
Figure 5: Dependence of the probability of reception of the 
blockРr (1) on the value of the probability of distortion in 
the channel of the q-symbol Pqfor codes (8,2), (16,11), 
(15,11), (16,7) and (32,26) 
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Table 2 
Dependence of the effective speed (Ref) on the probability of distortion in the q symbol channel (Pq) 

Code 
Channel quality 

Рq 1/2 1/4 1/8 1/16 1/32 1/64 1/128 

Effective speed Ref 

(4,3) 0.0319 0.1711 0.3339 0.4647 0.5009 0.526 0.0319 
(8,7) 0.3740 0.0573 0.2524 0.4825 0.5817 0.588 0.6852 
(16,15) 0.0048 0.0076 0.1336 0.3206 0.5073 0.646 0.7012 
(32,31) 0.0057 0.0082 0.0096 0.1772 0.3026 0.446 0.7351 
(8,4) 
(t = 2) 

0.0635 0.2681 0.3815 0.3982 0.4062 0.406 0.4062 

(8,2) 
(t = 2) 

0.1051 0.1533 0.1559 0.1562 0.1562 0.156 0.1562 

(16,11) 
(t = 2) 

0.1024 0.1157 0.4383 0.5627 0.6215 0.641 0.6406 

(15,11) 
(t = 2) 

0.1085 0.1139 0.2597 0.5483 0.6345 0.680 0.6802 

(16,7) 
(t = 4) 

0.0925 0.3539 0.3869 0.3906 0.3906 0.391 0.3906 

 
Table 3 
Dependence of the probability of reception of the block Рr (1) value of the probability of distortion in the channel of the 
q symbol Pq 

Code 
Channel quality 

Рq 1/2 1/4 1/8 1/16 1/32 1/64 1/128 

The probability of receiving a block Pr(1) 

(4,3)  0.0175 0.3684 0.6315 0.8070 0.8594 0.9298 0.962 
(8,7)  0.0785 0.2634 0.3428 0.600 0.7142 0.8380 0.963 
(16,15)  0.0874 0.1739 0.2222 0.3777 0.5333 0.7333 0.899 
(32,31)  0.0038 0.0074 0.0096 0.1772 0.3026 0.6874 0.735 
(8,4)  
(t = 2) 

0.2970 0.695 0.9350 0.948 0.9735 0.9805 0.997 

(8,2)  
(t = 2) 

0.6816 0.9825 0.9961 0.9981 0.9984 0.9989 0.999 

(16,11)  
(t = 2) 

0.1818 0.2308 0.6615 0.7692 0.9538 0.9673 0.972 

(15,11)  
(t = 2) 

0.1598 0.2763 0.4769 0.8153 0.9076 0.9153 0.951 

(16,7)  
(t = 4) 

0.2190 0.8571 0.9810 0.9905 0.9917 0.9946 0.998 

 
3. Conclusion 
Our results demonstrate that codes with natural 
redundancy can be used in diverse information systems 
with strict security requirements, especially in noisy 
communication channels. Additionally, these codes are 
beneficial for hardware systems where minimizing size, 
cost, and energy consumption is important. 
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