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Abstract
In today’s world where explainable AI is gaining importance, rule learning is a classic but favourable machine
learning approach that can be enhanced using advances in semantic web technologies. The expressiveness of rules
learnt over Knowledge Graphs (KGs) is largely dependent on the language bias of a rule learner which in turn
determines the complexity of the search space for models. In this paper, we propose a relaxed rule specification
approach that allows rules to contain branches and tree shapes, negated graph patterns, and SPARQL style
filtering which adds numerical and temporal comparisons into the rule’s vocabulary. By targeting compatibility
with SPARQL, we can tap into the advanced query optimisation features of triple stores which implement SPARQL
to evaluate and apply weakly-constrained rules as SPARQL queries. We use an expert-guided rule-template based
approach to generate candidate rules and we extend standard rule quality measures for such relaxed rules. We
introduce a further extension that can be used to extract numeric attribute values in order to include numeric
attributes within our symbolic rule learning framework.

Keywords
Rule learning, Rule mining, Knowledge graphs, Inductive logic programming, SPARQL

1. Introduction

Knowledge Graphs (KGs) are a modern database-meets-knowledge-representation encoding of semi-
structured data that enables efficient querying and logical deductive reasoning. First-order-logic rules
expressed over KGs can offer explainable patterns in the KG and can predict missing facts. Hence such
rules are a useful option for representation of predictive models built from KGs as training data.

Typically, when learning logic rules over KGs, there is a difficult tradeoff in selecting a rule language
that is adequately expressive for accuracy, predictive power, and compact explainability, but not so
expressive that the search space for good rules exceeds computational feasibility. The selection of a
rule language imposes a bias on the predictive models that can be learnt.

Many KGs contain schema information, usually in a form of an OWL1 ontology, describing entity
types, class relationships, relation domain and range, cardinality constraints, and so forth. Some rule
learners also make use of this information when learning rules [1, 2].

We wish to address the problem of learning meaningful, accurate, and expressive rules for open-
ended problems. According to Michalski and Chilausky [3], ”open-endedness implies that when we make
inductive assertions about some piece of reality, there is no natural limit to the level of detail of descriptions
of this reality, to the scope of concepts and operators used in the expressions of these assertions, or to the
richness of their forms.” We wish to achieve richness of learnt rules by relaxing the language bias of the
rule specification, which allows us to express more complex rules than is possible by the restrictive
language biases adopted in related work.
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This relaxation greatly increases the expressiveness of the rules and makes rule learning challenging
given the increasing search space and complexity required to learn rules of such forms. To achieve this,
we begin with manually crafted rule templates, that are constructed using expert domain knowledge and
explicit ontology information. The rule templates provide human-in-the-loop hints to the automated
process of model-building. Templates enable the simultaneous specification of both rule structural
forms and rule vocabulary, that is, both the shape of rules and the KG terms to be used. Thus our
approach is an expert guided technique, trading-off learning automation vs. rule expressiveness.

The main contributions of our work are the following:

• We propose a relaxed rule specification that allows rules to contain: branches and tree shapes,
negated graph patterns (in contrast to negated atoms) and SPARQL2 style filtering (including
numerical comparisons, and variable inequality constraints). (Section 3.2)

• We define the standard rule quality measures of Rule Support, Standard Confidence and Head
Coverage for the proposed relaxed rules. (Section 3.4)

• We use an expert-guided template-based approach to generate multiple rules of similar format,
thus minimising the effort needed to separately specify rules that share the same structure.
(Sections 3.3 and 3.5)

A benefit of our SPARQL compatibility is that the rule specification can be easily converted to a
SPARQL query to directly work with RDF3 KGs stored in RDF Triple Stores such as Virtuoso4 and
GraphDB5, thus taking advantage of their inherent query optimisation techniques [4] when evaluating
complex rules. We present examples of our relaxed rules defined over the FutureSOILS KG, recently built
for the project FutureSOILS: Future Proofing the Soils of Southern and Central NSW from Acidification
and Soil Organic Carbon Decline6 to predict the pH response of the soil to various liming techniques
adopted by farmers. Rule quality measures (such as Standard Confidence, Head Coverage, Rule Support,
Rule Body Support, and Head Support) have been evaluated by issuing SPARQL queries generated from
the rule to a Virtuoso triple store. Similarly, when making predictions from the rules, instance tables
matching rule head and body patterns are retrieved from the KG by issuing SPARQL SELECT queries
which can be generated from the rule specification.

In a separate additional use of this relaxed specification, we have allowed SPARQL style variable
binding and projection as well as optional graph patterns in the rule specification (in Section 4), so
that it can be used to retrieve tabular data from the KG which can be fed into other machine learning
models which require typical tabular data as input. In the FutureSOILS work, such attribute extraction
rules have been used to extract tabular data to train numeric prediction models such as Random Forest
Regressor to predict soil acidity represented as pH values.

2. Background and related work

A KG contains a set of RDF triples of the form (𝑠, 𝑝, 𝑜) where 𝑠 is called the subject, 𝑜 the object and
𝑝 the relation (also called predicate in this paper), which we write as 𝑝(𝑠, 𝑜) following the convention
of first-order logic. We consider KGs with binary relations of the above form, and unary relations
conveniently written as 𝑝(𝑠, 𝑠).

A first-order Horn rule 𝑟 is of the form

ℎ ⟸ 𝑏1 ∧ 𝑏2 ∧ … ∧ 𝑏𝑛 (1)

where ℎ and 𝑏’s are atoms of the form 𝑝(𝑡1, 𝑡2) where 𝑝 is a predicate and 𝑡1, 𝑡2 are terms [5]. A term
is either a variable, entity or literal value (such as a number, text value, date, etc.). Without loss of

2https://www.w3.org/TR/sparql11-overview/
3https://www.w3.org/TR/rdf11-primer/
4https://virtuoso.openlinksw.com/
5https://www.ontotext.com/products/graphdb/
6https://farmlink.com.au/futuresoils
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generality, we use the term constant to refer to both entities and literal values. The atom ℎ is the head
of 𝑟 and the conjunction of atoms 𝑏1, … , 𝑏𝑛 is the body of 𝑟.

For rule learning in KGs, a very restricted class of first-order Horn rules is commonly employed,
closed-path (CP) rules, where the body atoms form a continuous path from the subject to the object of
the head atom. A CP rule is of the following form

ℎ(𝑥𝑜, 𝑥𝑛) ⟸ 𝑏1(𝑥𝑜, 𝑥1) ∧ 𝑏2(𝑥1, 𝑥2) ∧ … ∧ 𝑏𝑛(𝑥𝑛−1, 𝑥𝑛) (2)

where a predicate (of the head and body atoms) may be interpreted as its inverse with the subject and
object bindings swapped and 𝑥𝑗’s (0 ≤ 𝑗 ≤ 𝑛) can only be variables. The head predicate ℎ may occur in
the body.

We now recall the closed and connected properties of a rule. A variable is closed if it appears at least
twice in the rule. A rule is closed if all the variables in the rule are closed. Two atoms in a rule are
connected if they share a variable or constant. A rule is connected if every atom in the rule is connected
to another atom. A CP rule is both closed and connected, but not vice versa [5].

Various extensions of CP rules have been proposed and learnt by other rule learners by relaxing the
language bias and allowing unary predicates, thereby increasing the expressiveness of the learnt rules.
For example, AMIE [6, 7, 8] can only learn connected and closed rules (which is a relaxation of CP rules)
over binary predicates. AnyBURL [9, 10, 11] limits the occurrence of the variables in the learnt rule
to occur at most twice and requires strict variable inequality while allowing entities in limited places.
Omran et al. [12] define more general open-path rules by allowing an open variable in the head and
the last body atom, but still requiring body atoms to form a continuous path linking each atom to its
successive atom. They also define inverse open-path rules to represent branching out patterns (SHACL7

shapes) which are systematically aggregated to generate tree-shaped rules.
Some rule learners have achieved more expressiveness by going beyond first-order Horn rules. For

example, allowing negated atoms in the rule body [13], simple comparisons among numeric values
[14, 15] and dealing with temporal values [16, 17] over a temporal KG where every atom has a timestamp
[5]. Our proposed rule specification follows the structure of Horn rules in that it doesn’t require a
continuous path being formed by the body patterns thereby allowing branching and tree shapes, but
goes beyond Horn rules by allowing multiple negated graph patterns in the body (in contrast with
negated single atoms). It also allows complex numeric filtering and time comparisons while still working
on a KG with binary predicates.

3. Relaxed rule specification

3.1. Context of the prediction

We would first like to introduce the context of the FutureSOILS [18] KG used in this study in order
to motivate the need for the proposed relaxations. The KG contains information about several farm
management units and controlled replicated trials of various management strategies used over several
years, as well as measurements of soil characteristics and information about crop rotations and harvest
yield. The data was required to conform to pre-determined data guidelines and the KG was modelled
according to an ontology designed to match the scope of data available. Due to the abundance of N-ary
relation patterns in the input data, the KG adopts the standard design for modelling such N-ary relations
in RDF [19]. The complete concept map of the ontology and resources related to this paper is accessible
in https://w3id.org/kgcp/SRRS.

Numerical values representing soil and crop data and management techniques were transformed
to entity instances with expert guidance, or a frequency based approach when industry-adopted bin
intervals were unavailable. For example, soil pH8 values were binned into four intervals as follows [*,
4.5), [4.5, 4.8), [4.8, 5.5), [5.5, *].

7https://www.w3.org/TR/shacl/
8pH values measured using the 1:5 CaCl2 method.

https://w3id.org/kgcp/SRRS
https://www.w3.org/TR/shacl/


In the project’s scope, the experts were interested in asking several predictive scenarios and gained
insights from themodelled data, such as the following, given a particular method of liming (e.g. application
of 3 t/ha of lime to the soil followed by a particular cultivation treatment) and given the starting pH value
of the soil, what would be the pH (bin) value of the soil one year later? And also two/three years later?.
Additional information may be given in each scenario question, such as: Soil Aluminium %, Carbon %,
crops planted, weather data, etc.

The structure of the KG that links to multiple N-ary relations9 requires rules that can represent
branching patterns and can compare numerical and time values. Consider the following example rule
presented in natural language: If the starting pH value is between 4.8-5.5 at soil depth 7.5-10.00 cm and
the unit was limed at a rate 2.0-3.0 t/ha and cultivated with Low Soil Disturbance, then the pH value 1 year
later at the same depth would be 4.5-4.8.

Note that this rule would not have been possible in the other rule learners we have discussed, for e.g.
AMIE or AnyBURL does not allow rules with branch and tree shaped structures as we have regarding
the farm management unit in this rule (see Table 1 for a comparison of expressiveness capabilities
among different learners).

In favour of increased rule coverage, we relax some of the temporal definitions like 1 year to include
±2 months (i.e. 10-14 months later) and consider pH measurements taken within 2 months of liming.
Some examples of variations of the same rule are given below:

1. Generalisation by shortening the rule (e.g. disregarding cultivation treatment)
2. Generalisation by replacing an entity with a variable (e.g. suffice to have that any cultivation

treatment was given, or that liming occurred irrespective of depth and rate)
3. Variation of the rule by adding a negated sub-string (e.g. requiring that cultivation treatment was

not done)
4. Refinement of of the rule by adding a further cultivation related information (e.g. also consider

depth of cultivation)
5. Refinement of the rule by adding adding more pre-lime observations (e.g. soil Aluminium

percentage, Total Carbon percentage)

See Michalski and Chilausky [3] for a comprehensive list of rule generalisation techniques like this for
inductive learning.

3.2. Relaxed rules for inductive reasoning

We now formally specify our relaxed rule language that can support the increased expressiveness
required to model complex rules as described above.

ℎ ⟸ 𝑏1 ∧ 𝑏2 ∧ … ∧ 𝑏𝑛∧ ∼ {𝑏𝑛+1 ∧ 𝑏𝑛+2 ∧ … ∧ 𝑏𝑚}∗ (3)

Atoms enclosed by ∼ {…} have the meaning of the SPARQL FILTER NOT EXISTS operator10 over
graph patterns (i.e. a negated graph pattern which is not known to exist in the KG) and a rule may
contain zero or more negated graph patterns (multiplicity denoted by the Kleene star ∗).

The rules also need to be connected, that is, every atom in the rule is connected to another atom
by sharing a variable or constant with another atom. Additionally, all atoms within a negated graph
pattern need to be connected with another atom in the pattern and at least one atom of the pattern
should be connected to an outside atom(s) which is not part of a negated graph pattern. The rule does
not necessarily need to be closed, but we require that at least one head variable occurs in a non negated
atom(s) of the body.

Rules can optionally contain the additional constructs of BIND11 and FILTER12 clauses that need to
be SPARQL compatible. FILTER clauses allow us to specify multiple additional constraints not usually

9Most particularly the branching structure around the farm management unit called an ECCMO in the ontology.
10https://www.w3.org/TR/sparql11-query/#func-filter-exists
11https://www.w3.org/TR/sparql11-query/#bind
12https://www.w3.org/TR/sparql11-query/#expressions
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supported by traditional rule specifications (such as numerical comparisons, variable inequality con-
straints, type checking, etc.), allowing greater flexibility to work with existing KGs without introducing
additional entity mappings into the KG. BIND clauses can be used for specifying new variable bindings
which can be used in FILTER clauses.

These rules are closely related to Tree-shaped rules in Omran et al. [12] and rules with negated atoms
in Ho et al. [13]. We have extended the concept of negated atoms to negated graph patterns and we
have performed numerical and temporal comparisons using a KG with binary predicates as illustrated
in the examples further below.

3.3. Template based rule generation

In bottom-up rule learners such as AnyBurl [11], one way of generalising a rule is by replacing entities
with variables [3]. In our work, we take a top-down approach, where we work with a set of template
rules and then generate variants of the template by replacing selected variables with all the possible
combinations of entities that can appear in the respective rule atoms.

For example, consider the following rule template from FutureSOILS that attempts to predict the soil
pH roughly one year following liming. The variables ?𝑚_𝑋, ?𝑚_𝑝𝐻, ?𝑚_𝑙 𝑖𝑚𝑒 represent literal values of
type xsd:positiveInteger and a relaxed definition of time has been implemented by including numerical
comparisons in the FILTER clauses where multiple filtering constraints can be specified. Note the
negated graph pattern at the end of the rule which specifies that the unit was limed but not cultivated
in this example. To differentiate between variables and constants, the variables in the rule are prefixed
with ”?”. Predicates and entities are in RDF prefixed format. Although the BIND clause is not strictly
essential in this example, we show it here to demonstrate its usage.

BIND[(?m_X - ?m_lime AS ?gap)]
FILTER[(?gap >= 10 && ?gap <= 14), (?m_pH - ?m_lime <= 2 && ?m_lime - ?m_pH <= 2)]
fs-data:pH__(1-5-CaCl2)__PSC(?X,?pH_bin_X) <=

fs-onto:hasObservation(?eccmo_X,?X),
sosa:observedProperty(?X,fs-data:ObservedProperty-pH),
sosa:usedProcedure(?X,fs-data:MoA-1-5-CaCl2),
fs-onto:hasDepth(?X, ?d_pH),
sosa:phenomenonTime(?X, ?t_X),
fs-onto:hasMonthCount(?t_X, ?m_X),

fs-onto:hasECCMO(?eccmoByRep_X, ?eccmo_X),
rdf:type(?eccmoByRep_X, fs-onto:ECCMObyRep),
fs-onto:hasControl(?eccmoByRep_X, ?eccmo_C),

fs-onto:hasObservation(?eccmo_C, ?obs_pH),
fs-data:pH__(1-5-CaCl2)__PSC(?obs_pH,?pH_bin),
fs-onto:hasDepth(?obs_pH, ?d_pH),
sosa:phenomenonTime(?obs_pH, ?t_pH),
fs-onto:hasMonthCount(?t_pH, ?m_pH),

fs-onto:hasObservation(?eccmo_C, ?obs_Al),
sosa:phenomenonTime(?obs_Al, ?t_pH),
fs-onto:hasDepth(?obs_Al, ?d_pH),
fs-data:Aluminium-%-of-Cations__(Calculated)__%__PSC(?obs_Al, ?Al_bin),

fs-onto:hasECCMO(?mu_lime, ?eccmo_X),
fs-onto:hasTime(?mu_lime, ?t_lime),
fs-onto:hasMonthCount(?t_lime, ?m_lime),
fs-onto:hasManagement(?mu_lime,?mng_lime),
rdf:type(?mng_lime, fs-onto:Management-Amelioration-Lime),
fs-data:Lime-Application-Rate__PSC(?mng_lime, ?lr_bin),

~{fs-onto:hasECCMO(?mu_culti, ?eccmo_X),
fs-onto:hasTime(?mu_culti, ?t_culti),
fs-onto:hasMonthCount(?t_culti, ?m_lime),
fs-onto:hasManagement(?mu_culti,?mng_culti),
rdf:type(?mng_culti, fs-onto:Management-Amelioration)}



Now, if we replace some of the variables of the above template with the possible combinations of
candidate entity values for the variables, we can generate multiple rule variants from the above template.
In the FutureSOILS domain, replacing ?𝑝𝐻_𝑏𝑖𝑛_𝑋, ?𝑑_𝑝𝐻, ?𝑝𝐻_𝑏𝑖𝑛, ?𝐴𝑙_𝑏𝑖𝑛, ?𝑙𝑟_𝑏𝑖𝑛 in the above template
yielded 6144 rule variants with the head atom containing a variable and a constant. This was done
by declaring (predicate, variable name) combinations to be replaced in a JSON file (see Figure 1). The
candidate entity values for the variables can be retrieved from the KG itself at the time of generating
the rule variants (refer Algorithms 1 and 2).

Figure 1: A sample JSON file specifying variable names to be replaced

Algorithm 1 Retrieving entities for replacing variables
Require: The KG and the set of predicate, variable names {(𝑝, 𝑣)} = {(𝑝1, 𝑣1), (𝑝2, 𝑣2), … (𝑝𝑛, 𝑣𝑛)} to be

replaced (assuming unique 𝑣𝑛 values)
1: 𝑐 ← 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦() ▷ Declare an empty dictionary
2: for each 𝑝 do
3: 𝑐[𝑝] ← {𝑜𝑏𝑗𝑒𝑐𝑡 |(𝑠𝑢𝑏𝑗𝑒𝑐𝑡 , 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡) ∈KG & 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 == 𝑝} ▷ assuming that 𝑣 will be

referred in the the rule atom as 𝑞(𝑡𝑥, 𝑣)
4: end for

return 𝑐

Algorithm 2 Rule variant generation from template
Require: A template rule 𝑟, the set of predicate, variable names {(𝑝, 𝑣)} to be replaced and combination

values 𝑐 for each predicate from Algorithm 1
1: 𝑑 ← 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦() ▷ Declare an empty dictionary
2: for each atom 𝑞(𝑡1, 𝑡2) ∈ 𝑟 do
3: if (𝑞, 𝑡2) ∈ {(𝑝, 𝑣)} then
4: 𝑑[𝑣] ← 𝑐[𝑝] ▷ Assume v is unique
5: end if
6: end for
7: 𝑟𝑢𝑙𝑒_𝑣𝑎𝑟 𝑖𝑎𝑛𝑡𝑠 ← 𝑙𝑖𝑠𝑡() ▷ Declare an empty list
8: for each (𝑐1, 𝑐2, … , 𝑐𝑛) ∈ 𝐶𝑎𝑟 𝑡𝑒𝑠𝑖𝑎𝑛𝑃𝑟𝑜𝑑𝑢𝑐𝑡(𝑑[𝑣_1], 𝑑[𝑣_2], … , 𝑑[𝑣_𝑛]) do
9: 𝑟 ′ ← Replace (𝑣1, 𝑣2, … , 𝑣𝑛) variable names in rule 𝑟 with (𝑐1, 𝑐2, … , 𝑐𝑛)

10: Append 𝑟 ′ to 𝑟𝑢𝑙𝑒_𝑣𝑎𝑟 𝑖𝑎𝑛𝑡𝑠
11: end for

return 𝑟𝑢𝑙𝑒_𝑣𝑎𝑟 𝑖𝑎𝑛𝑡𝑠

Each rule variant can then be assessed by evaluating rule confidence measures such as Standard
Confidence, Head Coverage and Rule Support by issuing SPARQL queries generated from the rule to



the KG triple store. This process is parallelised to save time.

3.4. Relaxed rule quality measures

We now define standard rule quality measures for our relaxed rules: Rule Support (RS), Standard
Confidence (SC) and Head Coverage (HC). All of these measures are calculated over the known KG
data as it binds to the body and head of the rule, so that a closed-world assumption is made for this
evaluation. RS is a count of the number of distinct facts that the rule predicts correctly and is the
numerator when calculating SC and HC. SC measures the proportion of correct predictions wrt all
distinct predictions that the rule can make given the body bindings in the KG. Note here that missing
predictions and known-false predictions are treated equivalently here. HC measures the proportion of
the known facts satisfying the rule head that are correctly predicted by the rule, and gives an indication
of the generalisation power of the rule.

Since the existing rule quality measures in the literature are based on more restrictive language
biases than ours, we define rule quality measures for our relaxed rules which uses a relaxed language
bias. These definitions encompass the traditional rule quality measures [12, 8, 13] and falls back to the
traditional definitions when the same language bias referred in the traditional measures are being used.

Consider the following rule of form (3), where we have expanded the atoms to depict the variables
and constants subject to the constraints specified above. A predicate is interpreted also as its inverse
with the subject and object bindings swapped around.

ℎ(𝑡0, 𝑡′) ⟸ ∧𝑛𝑖=1 𝑏𝑖(𝑡(2𝑖−2), 𝑡(2𝑖−1))

∧ ∼ {∧𝑛1𝑗1=(𝑛+1)𝑏𝑗1(𝑡(2𝑗1−2), 𝑡(2𝑗1−1))}

∧ ∼ {∧𝑛2𝑗2=(𝑛1+1)𝑏𝑗2(𝑡(2𝑗2−2), 𝑡(2𝑗2−1))}

∧ … ∧ ∼ {∧𝑛𝑚𝑗𝑚=(𝑛(𝑚−1)+1)𝑏𝑗𝑚(𝑡(2𝑗𝑚−2), 𝑡(2𝑗𝑚−1))}

(4)

where ℎ and each 𝑏 is a predicate in the KG. To satisfy the connectedness constraints of the relaxed
rule, some terms (𝑡’s) will be equal and 𝑡0 is a closed variable. We denote the set of term equalities as
𝐸 = {(𝑡𝑥, 𝑡𝑦)|𝑡𝑥 = 𝑡𝑦, 𝑡𝑥 ∈ 𝑇 , 𝑡𝑦 ∈ 𝑇 }, where 𝑇 ∈ {𝑡′, 𝑡0, … , 𝑡(2𝑗𝑚−1)} (for example, when 𝑡1 = 𝑡2). We denote
the set of constraints defined on 𝑇 specified by the BIND and FILTER statements as 𝐹. Recall that some
terms in 𝑇 may be constants.

First, let us consider rules with two closed variables in the rule head, so we have 𝑡′ = 𝑡2𝑛−1. Since the
order of the atoms is irrelevant, without loss of generality, we require the variables in the head to be
connected to the first and last non-negated atoms.

Definition 3.1 (Quality measures for relaxed rules with two closed variables in the head). Let 𝑟 be
a relaxed rule of the form (4) and 𝑡′ = 𝑡2𝑛−1. Then a pair of constants (𝑒0, 𝑒′) satisfies the body
of 𝑟 denoted body𝑟(𝑒0, 𝑒

′), if there exists constants 𝑒0, … , 𝑒2𝑛−1 in the KG (with 𝑒′ = 𝑒2𝑛−1) such
that 𝑏1(𝑒0, 𝑒1), 𝑏2(𝑒2, 𝑒3), … , 𝑏𝑛(𝑒2𝑛−2, 𝑒2𝑛−1) are facts in the KG and for each negated graph pattern
{∧𝑛𝑘𝑗𝑘=(𝑛(𝑘−1)+1)𝑏𝑗𝑘(𝑒(2𝑗𝑘−2), 𝑒(2𝑗𝑘−1))} (in 1 ≤ 𝑘 ≤ 𝑚 where 𝑛0 = 𝑛), the atoms (predicates and the vari-
able bindings) specified in the entire negated graph pattern does not exist in the KG, subject to the term
equalities 𝐸 and constraints 𝐹. Also (𝑒0, 𝑒′) satisfies the head of 𝑟 denoted head𝑟(𝑒0, 𝑒′), if ℎ(𝑒0, 𝑒′) is a
fact in the KG. The rule support (RS), standard confidence (SC) and head coverage (HC) of 𝑟 are given
respectively by

𝑅𝑆(𝑟) = |{(𝑒0, 𝑒′) ∶ body𝑟(𝑒0, 𝑒
′) and head𝑟(𝑒0, 𝑒′)}|

𝑆𝐶(𝑟) =
𝑅𝑆(𝑟)

|{(𝑒0, 𝑒′) ∶ body𝑟(𝑒0, 𝑒′)}|

𝐻𝐶(𝑟) =
𝑅𝑆(𝑟)

|{(𝑒0, 𝑒′) ∶ head𝑟(𝑒0, 𝑒′)}|

Now, let us consider rules with a constant in the rule head.



Definition 3.2 (Quality measures for relaxed rules with a constant in the head). Let 𝑟 be a relaxed
rule of the form (4) and 𝑡′ = 𝑐, where 𝑐 is a constant (either an entity or literal value). Then the
constant 𝑒0 satisfies the body of 𝑟 denoted body𝑟(𝑒0), if there exists constants 𝑒0, … , 𝑒2𝑛−1 in the KG
such that 𝑏1(𝑒0, 𝑒1), 𝑏2(𝑒2, 𝑒3), … , 𝑏𝑛(𝑒2𝑛−2, 𝑒2𝑛−1) are facts in the KG and for each negated graph pattern
{∧𝑛𝑘𝑗𝑘=(𝑛(𝑘−1)+1)𝑏𝑗𝑘(𝑒(2𝑗𝑘−2), 𝑒(2𝑗𝑘−1))} (in 1 ≤ 𝑘 ≤ 𝑚 where 𝑛0 = 𝑛), the atoms (predicates and the variable
bindings) specified in the entire negated graph pattern does not exist in the KG, subject to the term
equalities 𝐸 and constraints 𝐹. Also 𝑒0 satisfies the head of 𝑟 denoted head𝑟(𝑒0, 𝑐), if ℎ(𝑒0, 𝑐) is a fact in the
KG. The rule support (RS), standard confidence (SC) and head coverage (HC) of 𝑟 are given respectively
by

𝑅𝑆(𝑟) = |{𝑒0 ∶ body𝑟(𝑒0) and head𝑟(𝑒0, 𝑐)}|

𝑆𝐶(𝑟) =
𝑅𝑆(𝑟)

|{𝑒0 ∶ body𝑟(𝑒0)}|

𝐻𝐶(𝑟) =
𝑅𝑆(𝑟)

|{𝑒0 ∶ head𝑟(𝑒0, 𝑐)}|

Finally, let us consider rules with an open variable in the rule head which implies 𝑡′ does not occur
in the rule body.

Definition 3.3 (Quality measures for relaxed rules with an open variable in the head). Let 𝑟
be a relaxed rule of the form (4) and the variable 𝑡′ ∉ {𝑡0, … , 𝑡(2𝑗𝑚−1)}. Then the constant
𝑒0 satisfies the body of 𝑟 denoted body𝑟(𝑒0), if there exist constants 𝑒0, … , 𝑒2𝑛−1 in the KG such
that 𝑏1(𝑒0, 𝑒1), 𝑏2(𝑒2, 𝑒3), … , 𝑏𝑛(𝑒2𝑛−2, 𝑒2𝑛−1) are facts in the KG and for each negated graph pattern
{∧𝑛𝑘𝑗𝑘=(𝑛(𝑘−1)+1)𝑏𝑗𝑘(𝑒(2𝑗𝑘−2), 𝑒(2𝑗𝑘−1))} (in 1 ≤ 𝑘 ≤ 𝑚 where 𝑛0 = 𝑛), the atoms (predicates and the vari-
able bindings) specified in the entire negated graph pattern does not exist in the KG, subject to the term
equalities 𝐸 and constraints 𝐹. Also 𝑒0, satisfies the head of 𝑟 denoted head𝑟(𝑒0, 𝑒′), if ℎ(𝑒0, 𝑒′) is a fact in
the KG for any constant 𝑒′. The rule support (RS), standard confidence (SC) and head coverage (HC) of
𝑟 are given respectively by

𝑅𝑆(𝑟) = |{𝑒0 ∶ ∃𝑒′, body𝑟(𝑒0) and head𝑟(𝑒0, 𝑒′)}|

𝑆𝐶(𝑟) =
𝑅𝑆(𝑟)

|{𝑒0 ∶ body𝑟(𝑒0)}|

𝐻𝐶(𝑟) =
𝑅𝑆(𝑟)

|{𝑒0 ∶ ∃𝑒′, head𝑟(𝑒0, 𝑒′)}|

In our experience, we found that the SC and HC which are the most widely adopted rule measures
were not sufficient to measure the quality of a rule. For example, a rule that correctly predicts 4 out of
5 times and another rule that correctly predicts 80 out of 100 times would get the same SC value of
0.8 and would not convey the number of instances covered by the body of the rule. Those instances
provide the evidence for the confidence, while the number of instances covered by the head indicate the
generalisation power of the rule. Hence, we also retain the denominator of SC as Rule Body Support
(BS) and the denominator of HC as Head Support (HS), which are related to the sample size of SC and
HC respectively.

3.5. Template generation

In Section 3.1, we discussed more examples of rule generalisation and refinement involving rule
shortening, extending and considering negated graph patterns. We can think of these variations as
different templates. The process of template generation (with example parameter settings for the pH
prediction rules in FutureSOILS) and rule generation (as explained in Section 3.3) is given in Figure 2.

In our work, we have generated these rule templates using a custom function which constructively
generates rule templates for the pH prediction example presented in Section 3.1. This was done by using



variations of a list of relevant questions that the project wanted to answer and considering different
input scenarios, such as varying how many months following liming (e.g. 10-14, 22-26, 34-38) do we
want to predict the pH?, what other pre-lime observations to consider other than the starting pH (e.g.
Al)? and what management combinations of Liming, Cultivation, etc. to consider?, whether to disregard
Cultivation or require no Cultivation treatment?, etc.).

Thus our expert-guided template-based approach to generate multiple rules of similar format, min-
imises the effort needed to separately specify rules that share the same structure.

Figure 2: Template and rule generation process

4. Rules for attribute extraction

An extension of the relaxed rules specification can be used for the purpose of attribute extraction, with
the introduction of optional patterns, that are optional parts of a graph pattern.

ℎ ⟸ 𝑏1 ∧ 𝑏2 ∧ … ∧ 𝑏𝑛 ∧ {𝑏𝑛+1 ∧ 𝑏𝑛+2 ∧ … {𝑏𝑚+1 ∧ 𝑏𝑚+2 ∧ … ∧ 𝑏𝑜}∗ … ∧ 𝑏𝑚}∗∧
∼ {𝑏𝑜+1 ∧ 𝑏𝑜+2 ∧ … ∧ 𝑏𝑞}∗ (5)

Atoms enclosed by {…} have the meaning of the SPARQL OPTIONAL keyword13 and a rule may
contain zero or more optional patterns (denoted by ∗) and can be nested inside other optional patterns.
An optional pattern needs to be connected (within the pattern) and at least one atom of the outermost
negated graph patterns should be connected to an outside atom(s) which is not part of an optional or
negated graph pattern. Nested optional patterns need to be connected to an outer optional pattern. In
this form, the head atom may or may not contain an open variable.

Attribute extraction rules can also contain SELECT clauses in addition to the BIND and FILTER
clauses. SELECT clauses allow us to declare additional variables to be projected when using attribute
extraction rules for training other ML models or data visualisation.

The example below is an attribute extraction rule from the FutureSOILS domain. The rule extracts
data to train an off-the-shelf numerical model to predict the soil pH value roughly one year following
liming. In contrast to the rule template given in Section 3.3 where we referred to the binned numeric
entities, here we refer to the numeric attribute values (for example ?𝑝𝐻_𝑣𝑎𝑙 instead of ?𝑝𝐻_𝑏𝑖𝑛, ?𝐴𝑙_𝑣𝑎𝑙
instead of ?𝐴𝑙_𝑏𝑖𝑛, ?𝑙𝑟_𝑣𝑎𝑙 instead of ?𝑙𝑟_𝑏𝑖𝑛, etc.). Note that the rule head contains the not-closed variable
?𝑝𝐻_𝑣𝑎𝑙_𝑋 that becomes the target value to train models. This example computes the mid-point of the
soil depth range as ?𝑑_𝑝𝐻_𝑎𝑣𝑔 and number of months since liming as ?𝑔𝑎𝑝.

SELECT[((?d_pH_to + ?d_pH_from)/2 AS ?d_pH_avg), (?m_X - ?m_lime AS ?gap)]
BIND[]
FILTER[(?m_X - ?m_lime >= 10 && ?m_X - ?m_lime <= 14),

(?m_pH - ?m_lime <= 2 && ?m_lime - ?m_pH <= 2)]
fs-data:pH__(1-5-CaCl2)__ASC(?X,?pH_val_X) <=

fs-onto:hasObservation(?eccmo_X,?X),
sosa:observedProperty(?X,fs-data:ObservedProperty-pH),

13https://www.w3.org/TR/sparql11-query/#OptionalMatching

https://www.w3.org/TR/sparql11-query/#OptionalMatching


sosa:usedProcedure(?X,fs-data:MoA-1-5-CaCl2),
fs-onto:hasDepth(?X, ?d_pH),
sosa:phenomenonTime(?X, ?t_X),
fs-onto:hasMonthCount(?t_X, ?m_X),

fs-onto:hasECCMO(?eccmoByRep_X, ?eccmo_X),
rdf:type(?eccmoByRep_X, fs-onto:ECCMObyRep),
fs-onto:hasControl(?eccmoByRep_X, ?eccmo_C),

fs-onto:hasObservation(?eccmo_C, ?obs_pH),
fs-data:pH__(1-5-CaCl2)__ASC(?obs_pH,?pH_val),
fs-onto:hasDepth(?obs_pH, ?d_pH),
fs-onto:from(?d_pH, ?d_pH_from),
fs-onto:to(?d_pH, ?d_pH_to),
sosa:phenomenonTime(?obs_pH, ?t_pH),
fs-onto:hasMonthCount(?t_pH, ?m_pH),

fs-onto:hasObservation(?eccmo_C, ?obs_Al),
sosa:phenomenonTime(?obs_Al, ?t_pH),
fs-onto:hasDepth(?obs_Al, ?d_pH),
fs-data:Aluminium-%-of-Cations__(Calculated)__%__ASC(?obs_Al, ?Al_val),

fs-onto:hasECCMO(?mu_lime, ?eccmo_X),
fs-onto:hasTime(?mu_lime, ?t_lime),
fs-onto:hasMonthCount(?t_lime, ?m_lime),
fs-onto:hasManagement(?mu_lime,?mng_lime),
rdf:type(?mng_lime, fs-onto:Management-Amelioration-Lime),
fs-onto:hasLimeApplicationRate(?mng_lime, ?lr_val),
{fs-onto:hasDepthOfLimePlacement(?mng_lime, ?d_lime)},

{fs-onto:hasECCMO(?mu_culti, ?eccmo_X),
fs-onto:hasTime(?mu_culti, ?t_culti),
fs-onto:hasMonthCount(?t_culti, ?m_lime),
fs-onto:hasManagement(?mu_culti,?mng_culti),
rdf:type(?mng_culti, fs-onto:Management-Amelioration),
fs-onto:hasCultivationTreatment(?mng_culti, ?culti),
skos:broader(?culti, ?culti_lvl),
fs-onto:index(?culti_lvl, ?culti_idx),
{fs-onto:hasDepthOfCultivation(?mng_culti, ?d_culti_val)}}

The optional pattern in this example enables extraction of data about limed units that were either
cultivated or not. The extension enables simple extraction of tabular data by converting the rule to a
SPARQL SELECT query. The attribute rules can be generated constructively similar to rule template
generation mentioned in Section 3.5. The process of model training by extracting data using attribute
extraction rules is given in Figure 3.

Figure 3: Attribute Rule Generation and Model Training Process



5. Discussion

Here we presented our SPARQL-based relaxed rule specification and extended standard rule quality
measures. In summary,

• we allow meaningful and more expressive inductive rules to be defined over non-trivial KGs
by proposing a relaxed rule specification that allows rules to contain branches and tree shapes,
negated graph patterns and SPARQL style filtering which can make numerical and temporal
comparisons,

• and define generalised rule quality measures of Rule Support, Standard Confidence and Head
Coverage in order to evaluate the performance of the proposed relaxed rules.

Our approach has the capacity to represent rules with greater expressiveness over KGs with binary
predicates. This expressiveness requirement was driven by large-scale application domain modelling,
following recommended ontology design patterns and reusing fragments of popular and standard
ontologies. We also proposed an expert-guided rule-template-based learning approach to mitigate the
issue of the complexity of the search space resulting from the relaxed language bias. Our approach
permits expert domain knowledge about the likely relationships in the ontology to be leveraged in the
search for good rules. We further extended our relaxed rule specification to include optional patterns
which can be used for attribute extraction from KGs to train other ML models. We have not used the
optional patterns in the specification of rule templates and generation of variants. Indeed optional
patterns in rules have no effect on the application, prediction and quality measures of rules, but may
add explanatory value. Ultimately, our rule language, including both the domain-expert-specifiable
templates and the automated rule extensions, is expressed in SPARQL. This can be re-expressed in a
more conventional rule language as a Datalog sub-language following the translation by Polleres [20].

Since our contribution is mainly a specification, we assess the expressiveness of our proposed relaxed
rules against relevant related work in Table 1. As future work, we hope to extend our use-case scenario of
FutureSOILS to include geographic data (such as from TERN14) and adopt our relaxed rule specification
to retain compatibility with GeoSPARQL15. We also hope to apply our relaxed rules to existing large and
complex KGs to demonstrate the scalability of our method and perform a quantitative analysis related
to the existing work. We would also like to explore whether large language models could substitute for
human domain knowledge to propose initial domain-informed rule templates.

Table 1
Relaxed rule evaluation

Rule-learning approach Branches
and Trees

Numerical
relations

Temporal
relations

Negated
patterns

Relaxed-Rules (our approach) Y Y Y Y
AMIE [8] N N N N
AnyBURL [11] N N N N
Learning SHACL shapes [12] Limited N N N
Rules with negated atoms [13] N N N Limited
Rules with numeric comp.[15, 14] N Limited N N
Temporal rules [17, 16] N N Limited N
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