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Abstract
We propose a novel methodology that combines Graph Neural Networks (GNNs) with Fuzzy Logic to
enhance the interpretability of deep learning models. GNNs handle structured data, while Fuzzy Logic
provides a framework that excels in handling uncertainty and imprecision. To solve the challenge of
interpretability in GNNs, we present a novel approach that marries GNNs’ expressive power with Fuzzy
Logic’s readability. Preliminary experiments show promising results, indicating the potential of this
approach to create AI systems that are transparent and trustworthy.
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1. Introduction

In recent years, the proliferation of Artificial Intelligence (AI) across many applications has
underscored the critical need for intelligent but also interpretable and trustworthy systems. This
necessity has given rise to eXplainable Artificial Intelligence (XAI), which seeks to address the
“black box” nature of many AI models, particularly deep learning models [1]. XAI aims to make
the decision-making processes of AI systems transparent, understandable, and accountable
to users, a demand increasingly stressed in ethical guidelines and regulatory frameworks
worldwide [2].

The quest for XAI has led to exploring various methodologies, each with strengths and
limitations. With its roots in logic and explicit knowledge representation, symbolic AI offers a
pathway to interpretability but often at the expense of flexibility and scalability [3]. Conversely,
the advent of deep learning has unlocked unprecedented capabilities in handling complex,
high-dimensional data, albeit often exacerbating the opacity of the decision-making process.

Amidst these dichotomies, the integration of Graph Neural Networks (GNNs) [4] and Fuzzy
Inference Systems (FIS) [5] emerges as a promising frontier. GNNs, with their ability to capture
complex relational structures within data, offer a robust framework for modeling complex
interactions in diverse domains, from social networks to molecular biology. However, their in-
terpretability remains challenging, limiting their utility in applications demanding transparency.
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Fuzzy Inference Systems, on the other hand, grounded in Fuzzy Logic, excel in handling uncer-
tainty and imprecision—traits inherent in real-world data. By articulating knowledge in the form
of fuzzy rules, FIS provides a mechanism for reasoning that is both interpretable and adaptable,
offering insights into the decision-making process that are intuitively understandable.

Therefore, the synthesis of GNNs and FIS represents an innovative approach to surmounting
the barriers of interpretability and flexibility in AI. This paper explores this novel neuro-symbolic
approach, demonstrating its potential to advance the state of the art in XAI. By bridging the gap
between the rich learning capabilities of GNNs and the interpretability afforded by Fuzzy Logic,
we propose a hybrid method that incorporates Fuzzy Logic into a GNN so that the graph-based
knowledge acquired from data can be easily expressed in the form of interpretable fuzzy rules.
Our basic idea is to apply a “fuzzification” process to transform the input features into fuzzy
variables with associated linguistic terms. This granular form of input features allows for the
adaptation of tabular data to graph representations so that a GNN can be applied to learn a
classification model from data. To further enhance explainability, we apply GNNExplainer,
which effectively improves the transparency of the graph-based model by analyzing the nodes
that were most significant in the classification task [6]. The proposed method is a preliminary
step toward developing effective, efficient, transparent, and trustworthy AI systems, thereby
aligning AI technologies more closely with human values and ethical standards.

The rest of this paper is structured as follows. Section 2 reviews the state of the art. Section
3 describes the proposed method. Section 4 presents preliminary quantitative and qualitative
experiments. Section 5 summarizes our findings, draws conclusions, and outlines future works.

2. Related Work

In recent years, Graph Neural Networks have emerged as powerful tools for modeling complex
relationships and structures in data represented as graphs [7]. GNNs have experienced a
significant surge in popularity, being used in various contexts ranging from biomedical data
to social networks [8]. However, while GNNs excel at capturing complex patterns, their
interpretability can be challenging. To address this issue and enhance the understandability of
GNN-based models, researchers have begun exploring hybrid approaches that integrate GNNs
with symbolic methods [9].

In particular, Fuzzy Logic [5] can express knowledge using fuzzy variables with associated
linguistic terms, thereby providing descriptions understandable to humans. This promotes
transparency and interpretability in decision-making, which is crucial in many domains. The
fuzzy theory has been used in neural networks for many years, and various hybrid neural
architectures have been created that incorporate fuzzy components, as the work described in
[10]. One of the most famous examples in the literature is the Adaptive Neuro-Fuzzy Inference
System (ANFIS) that has found applications in various domains [11, 12, 13].

By incorporating Fuzzy Logic, which deals with uncertainty and imprecision in data, hybrid
models aim to provide clearer explanations for AI systems’ decisions. This combination allows
for a more intuitive understanding of how neural networks process information and make
predictions, thus fostering trust and transparency in AI applications. Moreover, leveraging
the complementary strengths of neural networks and Fuzzy Logic can lead to more robust



and adaptable models that excel in various domains where interpretability is crucial, such as
healthcare, finance, and social networks.

However, the achievements in hybrid methods that combine FIS with neural networks have
not been mirrored in GNNs. Specifically, using GNNs within neuro-symbolic approaches has not
been extensively explored in the literature [9]. In particular, there is a small handful of hybrid
systems that combine GNNs and Fuzzy Logic. An example is Fuzzy GNN (FGNN) [14], a meta-
learning method for few-shot learning that employs an edge-focused GNN to perform the edge
prediction by iteratively updating the edge labels. According to the output of edge prediction, a
fuzzy membership function is designed to achieve more exact relationship representations for
node classification.

To our knowledge, our work is the first attempt to embed fuzzy theory into GNNs to achieve
accurate and interpretable models.

3. Methodology

We introduce a novel method that integrates Fuzzy Logic with GNNs to improve model inter-
pretability while retaining performance. The proposed method involves the following steps:

1. Fuzzification: The first step involves transforming crisp data inputs into fuzzy repre-
sentations, allowing for the incorporation of uncertainty and imprecision inherent in
real-world data.

2. Graph construction: Following fuzzification, the method constructs a graph representation
of the data, where nodes represent input features and related linguistic terms.

3. Graph-based classification: Using the constructed graph, the method applies a GNN to
make predictions based on the learned patterns and relationships encoded in the graph.
This step leverages the rich expressiveness of GNNs to model complex relational structures
within the data effectively.

4. Graph-based explanation: One of the distinguishing features of the method is its ability
to provide intuitive and simple explanations for the classification decisions made by the
model. By analyzing the graph structure and activations of the GNN, the method generates
interpretable explanations, shedding light on the reasoning behind each prediction.

5. Fuzzy rule extraction: The method extracts salient fuzzy rules from the learned graph-
based model, encapsulating the decision-making logic in a human-understandable format.
These fuzzy rules capture the underlying patterns and relationships the model identifies,
offering valuable insights into the data and the decision-making process.

In the following, we formalize each step of the proposed method.

3.1. Fuzzification

In this section, we detail the process of fuzzification [15], a critical initial step in our approach to
integrating Fuzzy Logic with GNNs for XAI. We begin with a labeled dataset 𝐷 = {(x𝑑, 𝑦𝑑)}𝑁𝐷

𝑑=1,
where x𝑑 ∈ R𝑛 represents the input feature vector corresponding to the 𝑑-th data point and 𝑦𝑑
denotes the associated ground truth label for the class of x𝑑.
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Figure 1: Membership functions for fuzzy sets corresponding to the linguistic terms SMALL, MEDIUM,
and HIGH.

We initially fuzzify the input values to address the inherent uncertainty in the data. Specifi-
cally, each input feature 𝑥𝑖, 𝑖 = 1 . . . 𝑛, is granulated into 𝑀𝑖 fuzzy sets 𝐴𝑖1, 𝐴𝑖2, . . . , 𝐴𝑖𝑀𝑖 . For
this study, we maintain a uniform number of fuzzy sets [5] across all input features, thereby
setting 𝑀𝑖 = 𝑀 for all 𝑖 = 1 . . . 𝑛. Each fuzzy set 𝐴𝑖𝑗 is characterized by a membership
function 𝜇𝑖𝑗 : 𝑋𝑖 ⊆ R→ [0, 1], with 𝜇𝑖𝑗(𝑥𝑖) = 𝑚𝑖𝑗 , which calculates membership values for
the input features. Consequently, each 𝑥𝑖 is associated with 𝑀 membership values 𝑚𝑖𝑗 , where
𝑗 = 1 . . .𝑀 . In this preliminary investigation, we opt for 𝑀 = 3 and label the fuzzy sets
𝐴𝑖1, 𝐴𝑖2, 𝐴𝑖3 with the linguistic terms SMALL, MEDIUM, and HIGH, respectively.

The membership functions for these fuzzy sets are illustrated in Fig. 1. Specifically, we employ
a z-function for the LOW term, a gaussian function for the MEDIUM term, and a s-function for
the HIGH term. These functions were selected to reflect the domain of discourse accurately.
The deployment of “open-ended” fuzzy sets at both extremities of the domain implies that our
model can accommodate values that extend beyond the observed range in the dataset, thereby
ensuring a holistic representation of the phenomenon under investigation.

To establish the parameters for the fuzzy sets, we determine the 25𝑡ℎ, 50𝑡ℎ, and 75𝑡ℎ percentiles
of the data distribution. These percentiles serve as critical reference points for defining the
core and support of each fuzzy set, ensuring that the membership functions are appropriately
aligned with the underlying data distribution.

The outcome of the fuzzification phase is a “fuzzified” dataset 𝐷𝐹 = {(x𝑑,m𝑑, 𝑦𝑑)}𝑁𝐷
𝑑=1,

wherein the original data points are augmented with fuzzy membership values for each input
feature. This fuzzified dataset forms the basis for subsequent phases of our approach.

3.2. Graph Construction

As a further data engineering phase, we represent each data point as a direct graph, defined as a
couple 𝒢 = (𝒱, ℰ), where 𝒱 is the set of vertices and ℰ ⊆ 𝒱 ×𝒱 is the set of edges. To this end,
given a data point (x,m) ∈ 𝐷𝐹 , the associated graph instance is created by composing a graph



Figure 2: Example of a generic data point transformed in a graph instance. Each feature 𝑥𝑖 is linked to all
the membership value nodes𝑚𝑖𝑗 , symbolizing the membership of the given feature to the corresponding
fuzzy set.

structure with nodes for each feature 𝑥𝑖 and each fuzzy set 𝐴𝑖𝑗 . Nodes corresponding to fuzzy
sets have the membership value 𝑚𝑖𝑗 as feature value. Edges are established by connecting each
feature node to its corresponding fuzzy set nodes. Formally, for each data point, we define 𝒱 =
{𝑥1, 𝑥2, . . . , 𝑥𝑛,𝑚11,𝑚12, . . . ,𝑚𝑛𝑀} and ℰ = {(𝑥𝑖,𝑚𝑖𝑗) with 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . ,𝑀}.

Figure 2 shows an example of a graph created with three input features
𝑥1, 𝑥2, 𝑥3 each connected to three fuzzy sets, leading to the following configuration:
𝑥1, 𝑥2, 𝑥3,𝑚11,𝑚12,𝑚13,𝑚21,𝑚22,𝑚23,𝑚31,𝑚32,𝑚33.

3.3. Graph-Based Classification

After applying the fuzzification process to the dataset 𝐷 and creating the corresponding graphs,
a new dataset, denoted as 𝐷𝐺, is generated as a set of labeled graphs. Formally, we have
𝐷𝐺 = {(𝒢𝑑, 𝑦𝑑) | 𝒢𝑑 = (𝒱𝑑, ℰ𝑑)}𝑁𝐷

𝑑=1. This transformation converts the initial classification
task into a graph classification task. We employ a graph-based methodology to address this
issue, training a Graph Convolutional Network (GCN) [16]. As depicted in Fig. 3, the input
graph instance 𝒢𝑑 is fed into the GCN to encode its contextual information. Specifically, the
GCN learns iterative node representations, namely for each node 𝑥𝑖 ∈ 𝒢𝑑, a node embedding ℎ𝑖
is computed by aggregating its neighborhoods, for each layer 𝑙 designed in the GCN. Formally:

ℎ
(𝑙+1)
𝑖 = 𝜎

⎛⎝𝑊
(𝑙)
𝑖

∑︁
𝑗∈𝒩 (𝑖)∪{𝑖}

𝐴̂𝑗,𝑖√︁
𝐷̂𝑗𝑗𝐷̂𝑖𝑖

ℎ
(𝑙)
𝑖

⎞⎠ ,

or in matrix formulation:

𝐻(𝑙+1) = 𝜎

(︂
𝐷̂

− 1
2 𝐴̂𝐷̂

− 1
2𝐻(𝑙)𝑊 (𝑙)

)︂
,

where 𝜎 is a general activation function (e.g., ReLU), 𝐴̂ = 𝐴+ 𝐼 is the adjacency matrix of the
input graph with inserted self-loops, 𝐷̂, with 𝐷̂𝑖𝑖 =

∑︀
𝑗=0 𝐴̂𝑖𝑗 is the diagonal degree matrix

associated with 𝐴̂, 𝐻(𝑙) is the node embedding matrix calculated at the 𝑙-th layer, 𝑊 (𝑙) is a
trainable parameter matrix, and 𝒩 is the neighborhood function defined as 𝒩 : 𝒱 ↦→ 𝒱* such
that 𝒩 (𝑣𝑖) = {𝑣𝑗 |(𝑣𝑖, 𝑣𝑗) ∈ ℰ ∨ (𝑣𝑗 , 𝑣𝑖) ∈ ℰ}.

The GCN acts as an encoder that, given an instance graph 𝒢𝑑, refines its initial node feature
matrix 𝑋 thanks to the graph convolutions to produce another instance graph 𝒵𝑑, which has



Figure 3: Our proposed method. The input graph corresponding to a fuzzified data point is fed to the
GNN. Then, a global mean pool layer compacts all the learned node embeddings into a single feature
vector, which is passed to a final linear layer for computing the final classification.

the same structure of 𝒢𝑑 but has a different node feature matrix, denoted as 𝐻 . Generating a
distinct feature vector representing the graph in a vector space is essential to classify an entire
input graph instance. To achieve this, we compress the entire refined feature matrix 𝐻 ∈ R𝑛×ℎ,
where ℎ denotes the hidden embedding dimensionality, applying a pooling layer to compute a
feature-wise average and producing a comprehensive graph feature vector p𝑑 ∈ Rℎ. Finally,
p𝑑 ∈ Rℎ is fed to a classification head layer to compute the output class, represented as a
softmax-activated class probability distribution. After training the GCN, we obtain a base model
Φ that can classify test instances represented as graphs.

3.4. Graph-Based Explanation

This phase of our framework is devoted to deriving explanations from the graphs corresponding
to test instances’ classifications using GNNExplainer [6] to determine the significance of edges
in the most influential subgraph for a given prediction. GNNExplainer operates with a given
input graph 𝒢 = (𝒱, ℰ), its associated feature matrix 𝑋 ∈ R𝑛×𝑑, where 𝑑 denotes the input
node feature dimensionality (in this work it is set to 1, since we represent each node with a scalar
feature), the adjacency matrix 𝐴 ∈ {0, 1}𝑛×𝑛, the base model Φ, and its prediction 𝑦 = Φ(𝑋,𝐴).
Specifically, this tool learns jointly two sets of parameters, namely 𝑋𝐹 ∈ [0, 1]𝑑, defined as a
feature mask vector, and 𝐴𝐹 ∈ [0, 1]𝑛×𝑛 representing the adjacency mask. The process begins
by slightly modifying the input graph’s structure. This involves updating its feature matrix
𝑋̃ ← 𝑋 ⊙𝑋𝐹 , and its adjacency matrix 𝐴̃← 𝐴⊙𝐴𝐹 , where ⊙ represents the element-wise



matrix product. Subsequently, 𝐴𝐹 and 𝑋𝐹 undergo optimization using cross-entropy loss
between 𝑦 and 𝑦, where 𝑦 = Φ(𝑋̃, 𝐴̃).

After finalizing this optimization phase, parameters nearing 1.0 accentuate pivotal node
characteristics or connections within the input graph, delineating the most significant sub-
graph for a specific prediction. Therefore, given any test instance, we obtain the corresponding
subgraph containing only edges crucial for the specific prediction.

This corresponds to pruning off useless fuzzy sets for each input variable. Indeed, for all the
data in the test set, we calculate the average of the activation values of the edges and prune off
the edges with a value above a threshold (defined empirically) of 0.50. Due to edge pruning,
scenarios may arise where all linguistic terms associated with an input variable are pruned. In
such cases, the variable is consequently eliminated, leading to automatic feature selection.

3.5. Fuzzy Rule Extraction

Given a specific input instance, the final step is to convert the subgraph obtained from the graph-
based explanation phase into a linguistic fuzzy rule. To achieve this, we assign the relevant
fuzzy linguistic terms for each specific instance in the prediction to every node corresponding
to a fuzzy variable. This is done using the “is” connector, which signifies the membership of a
specific instance to a fuzzy linguistic term. In cases where multiple fuzzy linguistic terms for the
same fuzzy variable are required for prediction, we employ the “OR” connector. Otherwise, we
apply the “AND” connector. If an input variable’s value lacks representation by any linguistic
term with sufficient degree, it is deemed irrelevant and excluded from the antecedent of the fuzzy
rule. This process continues until all input nodes have been processed, thereby establishing
the antecedent of the fuzzy rule. For the definition of the fuzzy rule’s consequent, we append
the name of the output variable, succeeded by the prediction outcome, following the “THEN”
connector.

An example of extracting a fuzzy rule is shown in Fig. 4. The example has the same structure
as Fig. 2, but since it is in the prediction phase of the result, the entire subgraph is represented,
including the target class (𝑦) with its corresponding result (𝑦1). GNNExplainer identifies the
most important edges, which are colored in red. These edges are the connections from fuzzy
variable 𝑥1 to linguistic term 𝑚13, from fuzzy variable 𝑥2 to linguistic terms 𝑚22 and 𝑚23, and
from fuzzy variable 𝑥3 to linguistic term 𝑚32. Subsequently, the significant edges are connected
to the target variable. The final result obtained is the following fuzzy rule:

IF 𝑥1 is 𝑚13 AND 𝑥2 is 𝑚22 OR 𝑚23 AND 𝑥3 is 𝑚32

THEN 𝑦 is 𝑦1

4. Experimental Results

To show the effectiveness of the proposed graph-based neuro-symbolic method, preliminary
experiments were carried out on two standard datasets: the Iris dataset1 and the Haberman

1Iris dataset: https://www.kaggle.com/datasets/arshid/iris-flower-dataset

https://www.kaggle.com/datasets/arshid/iris-flower-dataset


Figure 4: Example of fuzzy rule extracted from a given data point. Edges highlighted in red symbolize
the most influential connection in the graph, reflecting that the feature 𝑥𝑖 takes as membership value
𝑚𝑖𝑗 . On the contrary, blue edges represent non-influential links in the graph.

dataset.2 To better evaluate the quality of the models produced by the proposed method in terms
of accuracy and interpretability, they were compared with models generated by the ANFIS
neuro-fuzzy network. This four-layer feed-forward neural network reflects a fuzzy rule base in
its parameters and topology [17].

The same experimental setup was used to train the ANFIS neuro-fuzzy network for a fair
comparison. The dataset was divided into 60% training set, 10% validation set, and 30% test
set using the holdout method. A search for optimal hyperparameters was performed using
the Hyperopt algorithm3 [18]. The following hyperparameters of the GCN were optimized:
number of layers, number of hidden channels, aggregation function, batch size, and learning
rate. To train the GCN, we used the PyTorch Geometric (PyG)4 library that offers various types
of architectures. In this preliminary study, we limited our investigation to the basic Graph
Convolutional Network, without testing different types of graph neural layers.

4.1. Classification of Iris Flowers

The Iris dataset consists of 150 samples of Iris flowers, each belonging to one of three species:
Setosa, Versicolor, or Virginica. For each sample, four features were measured: sepal length, sepal
width, petal length, and petal width. The goal is to predict the species of Iris flowers based on
their feature measurements.

2Haberman dataset: https://www.kaggle.com/datasets/gilsousa/habermans-survival-data-set
3Hyperopt library: https://github.com/hyperopt/hyperopt
4PyG library: https://pytorch-geometric.readthedocs.io/en/latest/

https://www.kaggle.com/datasets/gilsousa/habermans-survival-data-set
https://github.com/hyperopt/hyperopt
https://pytorch-geometric.readthedocs.io/en/latest/


Dataset Method Accuracy Precision Recall F1

Iris Our method 0.91 0.92 0.91 0.91
ANFIS 0.93 0.93 0.93 0.93

Haberman Our method 0.68 0.54 0.53 0.53
ANFIS 0.70 0.54 0.52 0.52

Table 1
Comparison between our proposed method and ANFIS.

As shown in Table 1, the proposed graph-based approach and ANFIS exhibited similar
performance levels in accuracy, with our method yielding a marginally lower accuracy score
than ANFIS. However, our method overcomes ANFIS in terms of readability. Indeed, the model
generated by ANFIS includes 81(= 34) rules, and each rule contains all the input variables in
the antecedent part. Due to this high number of fuzzy rules, the ANFIS model can be hard
to read and interpret. Figure 5 shows some of the 81 rules generated by ANFIS. Conversely,
the model generated by our method is highly interpretable since it provides a single rule for
classifying a test instance, and each rule contains only significant input variables and useful
fuzzy sets. For example, Fig. 6 shows the sub-graph generated by GNNExplainer for classifying
a specific test instance. It can be seen that only edges with strong activation (red edges) are
retained because they are considered significant for the final classification. The input variable
petal width is weakly represented by its linguistic terms (blue edges), and it is not connected to
the output node, indicating that it does not affect the final prediction. The sub-graph can be
easily translated into a compact linguistic form as follows:

IF sepal lenght is low OR medium AND sepal width is low OR medium
AND petal length is low OR high

THEN type is Setosa

Our method gives users an understandable description of the prediction for a given test
instance, presented in both graphical form (the sub-graph) and textual form (the linguistic
IF-THEN rule).

4.2. Classification of Survival of Patients

The Haberman dataset is a classic dataset in the field of medical research and machine learning,
containing information about patients who underwent surgery for breast cancer at the University
of Chicago’s Billings Hospital between 1958 and 1970. It consists of 306 instances and three
input features: age (the age of the patient at the time of surgery), year (the year of the surgery),
and nodes (the number of positive axillary lymph nodes detected). The target variable is the
status, i.e., the survival status of the patient after surgery, categorized as either 0 (survived for 5
or more years) or 1 (died within 5 years).

Table 1 summarizes the comparative results. It can be seen that our method has slightly lower
accuracy than ANFIS. However, our model outperforms ANFIS in terms of interpretability as it
provides a synthetic rule for a given instance. Figure 7 shows an example of an explanation
generated by our method for an instance of the Haberman dataset. It can be seen that the



Figure 5: Some rules generated by ANFIS.

Figure 6: Example of sub-graph explaining the classification of an instance belonging to class Setosa.

pruning mechanism has effectively removed the linguistic term high from the fuzzy partition
of the variable age due to its activation exceeding the threshold of 0.50. Starting from this
sub-graph, the following linguistic rule is derived:

IF age is low OR medium AND years is medium OR high AND nodes is medium THEN status is 0

5. Conclusions

In this study, we proposed a new model that combines Graph Neural Networks with Fuzzy
Logic to enhance the interpretability of deep learning models. To test our model, we conducted



Figure 7: Example of sub-graph generated by our method for an instance of the Haberman dataset.

a preliminary study comparing our method with the ANFIS neuro-fuzzy network using two
benchmark datasets (Iris and Haberman). The quantitative results indicate that our model
achieved results similar to those of the neuro-fuzzy network. In detail, there is a 2% accuracy
difference in favor of the neuro-fuzzy model for both tested datasets. We can confirm that our
model achieves levels of robustness comparable to those of ANFIS.

Regarding the qualitative analysis, our model features a “one-shot” rule generation mechanism,
explaining the prediction for each instance. On the other hand, the neuro-fuzzy model does
not operate this way. It generates different fuzzy rules according to the number of fuzzy
variables and fuzzy linguistic terms. Thus, ANFIS obtained 81 and 27 fuzzy rules for the Iris and
Haberman datasets, respectively. Therefore, a significant reduction in interpretive complexity
can be observed. Using our model in a real-world context would allow domain experts to explain
the prediction outcome instantly.

In future work, it will be essential to compare our model with traditional machine learning
models to extend the experiments by increasing the number of datasets. Lastly, particular
attention will be given to scalability and computational complexity, critical aspects of the
proposed model’s applicability in real-world contexts.
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